The Design and Architecture of ReticularSpaces — an
Activity-Based Computing Framework for Distributed and
Collaborative SmartSpaces

Jakob E. Bardram, Steven Houben, Sofiane Gueddana, Sgren Nielsen
The Pervasive Interaction Technology Laboratory
IT University of Copenhagen, Rued Langgaardsvej 7, DK-2300 Copenhagen, Denmark
{bardram,shou,sgue,snielsen} @itu.dk

ABSTRACT

Interactive workspaces are increasingly physically dis-
tributed, highlighting the challenge of building interfaces
that support group interaction with digital documents through
multiple locations and devices. This paper presents the tech-
nical implementation and user interface of ReticularSpaces.
Based on the concepts and principles of Activity-Based Com-
puting (ABC), ReticularSpaces implements a novel approach
to smart space user interfaces, and supports task-based infor-
mation management, mobility, and collaboration.

Author Keywords
Distributed User Interfaces, Multiple Display Environments,
Smart Spaces, Activity-Based Computing

ACM Classification Keywords
H.5.2 INFORMATION INTERFACES AND PRESENTA-
TION: User Interfaces—User interface management systems

INTRODUCTION

Since the pioneering work at Xerox PARC on the design
of the Ubiquitous Computing technologies for meeting sup-
port [17], a significant line of research has been investigat-
ing such kind of ‘smart space’ technologies. ‘Smart space’
is an ill-defined concept, but in general the term covers re-
search into augmenting a physical space — typically a meeting
room — with computational resources. These resources often
include; interactive vertical and horizontal collocated multi-
touch displays of various sizes; mobile devices including lap-
top computers, tablet computers, and smart phones; embed-
ded sensors and room control for sensing of people and ob-
jects in the room, and control of e.g. lighting. A core research
problem — often referred to as ‘Distributed User Interfaces’ —
is investigating how the devices and displays (fixed and mo-
bile) can work together in a unified and interlinked way. An-
other research problem is how to design a smart space infras-
tructure for device discovery, interoperation, and information
management.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EICS’12, June 25-26, 2012, Copenhagen, Denmark.

Copyright 2012 ACM 978-1-4503-1168-7/12/06...$10.00.

269

Figure 1. The RecticularSpaces smart space setup, comprising of large
wall-based displays, horizontal tabletop displays, laptops, and tablet
computers.

Looking at recent research into these problems, some of the
important design tradeoffs in the design of smart space tech-
nologies seem to be:

e Operating System (OS) — should a smart space run on ex-
isting (primarily commercial) personal computing OSs like
Windows, Linux, and Mac OS? Or is there a need for a new
type of operating system for smart space technologies?

e User Interface (UI) — should smart space technology ex-
tend and build on existing user interfaces (mostly designed
according to the desktop metaphor)? Or is a novel design
metaphor and user interface needed?

e Information Management — does the smart space provide
support for ‘smart’ or context-aware information manage-
ment (like automatic capture and access of relevant docu-
ments for a meeting)? Or is information management left
for the users to handle?

e Mobility — to what degree should a smart space support
mobile or nomadic users? Does smart space support extend
beyond the smart space itself? Should users be able to enter
and leave the smart space?

e Devices — what sort of devices are supported by the smart
space? Does it support fixed wall displays? Mobile de-
vices? Phones? Service Devices such as printers and scan-
ners? Embedded devices like HVAC controls, sensors, and
lighting?

e Collaboration — what sort of collaboration is supported?
Collocated collaboration within the smart space? Or re-
mote collaboration with users outside the smart space?

The work done on the Ubiquitous Computing environ-
ment [17] and the iLand design of RoomWare technolo-
gies [15] took a rather fundamental approach by designing
and building special-purpose hardware, displays, infrastruc-
tures, operating systems, and even furniture for smart spaces.
The core argument was, that the existing approach to com-
puting, designed according to the personal computer model
with its desktop metaphor UI, was not suited for this new
kind of ‘Post-PC’ computing environments. And hence, a
new technology stack including everything from hardware to
UI was needed. More recent work on smart space technolo-
gies have to a larger degree taken the existing OSs and Uls
for granted, and have tried to extend these with support for
smart spaces. For example, the GAIA meta-operating sys-
tem [12] and the One.World framework [11] have been ex-
tending contemporary operating systems to also support fea-
tures like application migration and service discovery, which
are used in a smart space. Similarly, recent approaches like
iRos [13], ComPUTE [6], Impromptu [8], Aris [7], and Air-
Lift [1] focus on extending and augmenting the Ul of existing
personal computing operating systems with features for smart
space interaction. This include graphics redirection; pointer,
control, and view redirection; annexation of local displays;
relocation of information across displays; and engagement of
multiple users in collaboration on shared content.

Hence, prior research have investigated a wide range of issues
and have provided a set of infrastructure and UI technologies
for smart spaces. However, a set of the core questions listed
above still seems rather unexplored. First, even though much
of the recent research have taken the approach to merely
extending the contemporary UI desktop metaphor, it is still
questionable if a ‘desk’ with its icons, folders, files, and doc-
uments is the right design metaphor for a smart space. Be-
yond the obvious familiarity to users, this metaphor seems to
provide little leverage for a smart space. Second, even though
most research incorporate support for mobile devices entering
and leaving a smart space, this support rarely goes beyond the
room itself. But mobile and nomadic work is increasingly an
important target for computer technologies and hence smart
spaces. Smart spaces should not only be targeting meeting
rooms in regular office buildings, but will also be use in e.g.
hospitals [4] and biology laboratories [11], which has a high
degree of mobile and nomadic work patterns. Third, few ap-
proaches support collaboration beyond collocated collabora-
tion inside the smart room. But an important part of work
inside a smart room is to be able to collaborate with users
outside it. Finally, existing research have been addressing
information management by focusing on document sharing
and context-aware file management. There is little or no sup-
port for the overall tasks that users are engaged in, and the
‘smart’ space is often surprisingly unaware of what activities
and tasks are taking place inside it.

In sum, there is still a set of challenges in the design of smart
space technology, infrastructures, and interfaces that support

270

spanning activities over a large amount of devices, better sup-
port for content and document management, while supporting
collaboration amongst multiple users and across multiple lo-
cations!.

In this paper we present ReticularSpaces, which is novel in-
frastructure and user interface for smart spaces [2]. Figure 1
shows ReticularSpaces in use. Compared to prior research on
smart spaces, ReticularSpaces focuses specifically on provid-
ing answers to 4 of the questions listed above:

e User Interface — ReticularSpaces implements a com-
pletely novel UI metaphor for smart space. As such, Reti-
cularSpaces does not rely or expand on existing desktop
Uls, but implement a new design based on an ‘Activity’
metaphor. The goal is to align the UI metaphor to the ac-
tivities of the users, rather than their desktop.

e Information Management — according to the ‘Activity’
metaphor, ReticularSpaces implements an activity-based
computing approach to information and data management.
Thus, in contrast to the desktop metaphor where informa-
tion management is modeled according to an office (files,
folders, trashcans), the goal of ReticularSpaces is to align
information management to the activities of the users.

e Mobility — ReticularSpaces has inherent support for mo-
bility of users as well as devices. In addition to supporting
devices entering and leaving a smart room, ReticularSpa-
ces supports mobility within a larger smart space, which
typically spans a large geographical areas like a hospital,
large factory, or a campus.

e Collaboration — ReticularSpaces has inherent support for
collaboration amongst users and devices. In addition to
supporting collocated collaboration by display sharing in-
side a room, remote collaboration across a larger site is
supported.

This paper presents the technical design and implementation
of the ReticularSpaces system infrastructure and Ul manage-
ment system. The overall motivation, design, and usage of
ReticularSpaces is described in [2].

RETICULARSPACES TECHNICAL ARCHITECTURE

ReticularSpaces is the 5th generation of our research into
activity-based computing (ABC) and applies a peer-to-peer
(P2P) architecture illustrated in Figure 2. In contrast to the
3rd [3] and 4th [5] generation of the ABC infrastructure
where the Activity Manager was located on a central server,
each peer (client) in ReticularSpaces has an instance of the
activity manager running. Each client can also run the user-
interface client called ReticUI . A ReticUI client knows the
network address (default is ‘localhost’) of its activity manager
(connection of type C1 in Figure 2). Activity managers are
constantly looking for other activity managers (using mDNS),
and can thereby discover and connect to each other (C2). An
ReticUI client can connect to any activity manager which

"This conclusion is in line with the discussion and conclusion from
recent CHI workshops on the design of smart space and related sys-
tems. For example the CHI 2006 workshop on ‘Information Visual-
ization and Interaction Techniques for Collaboration across Multiple
Displays’ [16] and the CHI 2011 workshop on ‘Distributed User In-
terfaces’ [10]

is discovered and enlisted by its (local) Activity Manager.
Hence, in Figure 2, the activity browser on client_I can mount
and access data in activity manager on client_2 (C3), once the
activity manager of client_2 has discovered and connected to
the activity manager of client_1 (C2).

client_1 client_2

C3

RecticUl RecticUl

Activity c2

Manager

Activity

I:E Manager

Figure 2. A schematic view of the ReficularSpaces P2P architecture.

A more elaborate deployment example is illustrated in Fig-
ure 3. This deployment setup is the demonstration setup illus-
trated in Figure 1 and used for the evaluation presented in [2].
In Figure 3 the smart room runs a dedicated smart room activ-
ity manger on a separate server machine. The ReticUI client
of each of the displays fixed inside the smart room — such as
the wall and tabletop displays — connects to this central activ-
ity manager (C1 type of connections). When a mobile device
(in this case the tabletPC) enters the smart space network en-
vironment, the two activity managers will discover and con-
nect to each others (C2). The ReticUI client will display
available activity managers as shown in Figure 4. By clicking
on the label for an activity manager, the user ‘mounts’ this
activity manager and thereby establish connection C3.

This illustrates the technical setup in the scenario where a
user enters the smart room with a tablet computer, which is
discovered and displayed on a wall display. Any user can then
go to the wall display, mount the activity manager, and access
its data from the wall display.

Activity Manager

The core component in the ABC infrastructure is the Activity
Manager. Figure 5 illustrates the overall software architec-
ture of the activity manager. The activity manager is imple-
mented using the Aexo framework [9] by extending the base
Aexo component called AComponent. An Aexo component
is hosted by the Aexo runtime on a host device, and uses an
event-based RESTful communication interface. This allows
clients to get, post, and delete data as well as subscribe to
changes in data in a component, in which case the client (sub-
scriber) will get notified if data is updated. In ReticularSpa-
ces , the Aexo ActivityManagerComponent basically
initializes itself within the Aexo runtime system, and then
holds a reference to the ActivityController, which is
responsible for all the logic in the ABC infrastructure. Us-
ing three registries, the activity manager holds references to
other discovered activity managers, services (such as printers,
sensors, etc.), and attached ReticUI clients.

Activity managers maintain information about the physical
location of devices running a ReticUI client. In the exam-
ple above, the smart room server’s activity manager knows

271

wall_display

o | oo RecticUl cs

tablet_pc

T Recticul
I

3 Activity

I:E Manager

smart_room_server
Activity c2
Manager

tabletop_display

o EEE RecticUl

Figure 3. The deployment diagram for the setup in Figure 1.

Activity Managers

sgue (10.1.1.139)

3 cation: plTLak

trator (10.1.1.161)

Lo e pITLak

Figure 4. Details from the Activity View of ReticUI (Figure 8) showing a
list of activity managers available in this location (the ‘pITLab’). Each
activity manager has a color code, which is used to identify activities
from this activity manager.

the location of the wall and tabletop displays, as well as the
location of the tablet computer.

Information Management

The activity manager’s data model is shown in Figure 6. This
model organize all documents, resources, services, etc. that
are relevant for a human activity into a corresponding ‘Com-
putational Activity’, or just ‘Activity’. Each activity is com-
posed of a set of actions, each again holding a set of oper-
ations. Each operation points to a resource, such as a doc-
ument, a picture, html page, etc. Resources can also be ex-
ternal services, such as a device, like a printer, which can be
accessed through an operation. Each activity has a list of par-
ticipants, and only participants can access (resume/suspend)
the activity, and its actions and operations. Relationships al-
lows users to organize activities, actions, and operations in
different workflow structures. Such structures could be sim-
ple association links showing which activities are related, as
well as more complex workflow constraints specifying which
activities has to be done before another activity can be re-
sumed. Because of the overlapping properties between activ-
ities, actions and operations, they are abstracted into an en-
actment.

Dynamic Behavior

From a dynamic view, ReticularSpaces implements a dis-
tributed model-view-controller (AMVC) architecture. The ac-
tivity manager holds the activity model, which is replicated

aexo.component

ActivityController [ServiceRegistry [
+createActivity()
+cloneActivity()

-+ deleteActivity()

-+ resumeActivity()
+suspendActivity)
+registerClient()
+unregisterClient()
+login(

+logout()

+setState() ActivityManagerRegistry
. —

Participant

ClieniRegt |]

+initialize()

7 logged_in
!

ActivityModel

resumed_activity

=

Figure 5. The Activity Manager Class Diagram.

Enactment

Relationship

init()
finish()
resume()
suspend()

done:%

Action

&tivity

Operation

Figure 6. The ABC Ontology used in ReticularSpaces.

to each ReticUI client. On each ReticUI client, a standard
(local) MVC patterns keeps views updated, and manages
changes to the model. Data model replication and synchro-
nization is done using the event-based system in Aexo.

When a ReticUI client connects to the infrastructure it can
display and manipulate data elements like activities, actions,
operations, resources, and services. Changes to the client’s
replicated data model propagate to the distributed model and
updates other client models. To render resources and ser-
vices, ReticUI clients access an URI of the service and show
any data coming from that service, with a different rendering
component according to the data type.

This distributed model-view-controller pattern is also used
in the collaborative features of ReticularSpaces. Since, the
layout and location of certain Ul elements is part of the
data stored in the data model, the distributed model-view-
controller setup implies that the view of certain relevant part
of the ReticUI user interface is synchronized in real time
across multiple displays. This means that users working on
different devices on the same activity will see a synchronized
view similar to the WYSIWIS principle?.

% Acronym for “What I See Is What You See”, used for groupware
that guarantee that users see the same thing at all times.

272

Figure 7. Use of ReticUI on very large wall displays (top) and on mobile
devices in remote locations (bottom).

RETICULARSPACES USER INTERFACE

As described above, ReticularSpaces has adopted a com-
pletely new UI metaphor based on the principles of activity-
based computing [2]. This Ul — called ReticUI — is designed
to run on a wide range of interactive displays, and supports
different display features:

Size — ReticUI implements panning and zooming on an in-
definite canvas, and hence scales from small tablet displays
(12”), to tabletop displays (46”), to very large wall displays
(120” or more) — see Figure 7. In contrast to e.g. Exposé in
the Mac OS, or ScalableFabric [14], ReticUI widgets and
components can be interacted with in any scale.

Touch modality — ReticUI supports both pen-based interac-
tion, single-touch, and multi-touch. Depending on the type
of touch, various gestures implements different commands,
like zooming, panning, and action resume/suspend.

Video - if devices have a video camera, video connections
are automatically established during activity sharing ses-
sion of remotely located devices.

Commands — all commands in ReticUI are accessible
through gestures and/or pie menus. Since ReticUI can run
on very large displays, pie menus can be activated by click-
ing the background canvas in any place where the user may
be located in front of the display.

The UI of ReticUI is shown in Figure 8 and 9. The main
‘widgets’ in the activity-based computing UI metaphor are;
activities; actions; operations; resources; services and partic-
ipants. These widgets are organized according to the activity
ontology shown in Figure 6. ReticUI consists of two main

Activity Managers
sgue (10.1.1.139)

People

Programmer

Project Manager

Delivrable submission [A4]
| Submission Workflow

Belong to same project

Software Project [A2]
This contains all nesded for software including design, developmert,
documentation and test

A = Group work session [A3]

I‘(l ' i Meeting Activity

Figure 8. The Activity View showing a list of available activity managers, a list of users in this location, and the relevant set of activities from all mounted
activity managers. Each activity (the while box) can be expanded to show its list of actions and participants. Relationships between activities are shown
as lines with a text label.

& o

Controls hidden. Press ESC to show controls. E3 [

Jicomments okl dane
import java awt event ActionEvent;

Get me coffee Pellellll]

And candy

Hprogrammer comment

#This is a comment, ian er noob
fihaha

hello world hello

* <p>A state machine consists of a set of <i>states</i> and a set of <istransitions </i>
* Each transition goes from an input state to an output state (which can be the same),

" and is labeled by an <i>event</i>, an optional <i>guard</i> and an optional <i>action</|
*ToDo

“continue

*DONE

* Continue here general description

public abstract class StateMachine implements ActionListener, StateMachineListener {
-

K
public static String TME_OUT = "TimeOut';

Code documentation
- " Overview Mode
Overview [GEEERTY Closs Use Tree Deprecated

PREV PACKAGE NEXT PACKAGE ERAMES NOFRAMES A C

Documentation
Project Documentation

Package javax.swing ActionLog

Provides a set of "lightweight" (all-Java language) components that, to the max
degree possible, work the same on all platforms

The Action interface provides a useful exl
the Actionmistener interface in cases wi
same functionality may be accessed by sef
controls.

Defines the data model used by componer oo
Sliders and ProgressBars.

State Model for buttons.

This interface defines the methods any gel
editor should be able to implement.

The editor component used for JComboBoy

ComboBoxEditor
r components,
A data model for a combo box.

DesktopManager objects are owned by a
JDesktopPane object

4 small fixed size picture, typically used td
decorate components

ionManager |The interface that defines a Keyselectioy

Tdentifies components that can be used a)
stamps” to paint the cells in a JList.

This interface defines the methods compoi

BoundedRangeModel
ButtonModel

ComboBoxModel

DesktopManager

ListCellRenderer

x Resources x Participants
Default
Requirement List R4

Code documentation RS
™

UML Editor R3
te

Code docu
texthtmi

Figure 9. The Action View is displayed when a user resumes an action by clicking on it in the activity view. The action view shows the action’s operations
and the resource each operation links to; in this case a source code document and a web page showing Java documentation. The action view can show
various overview panels as shown at the bottom of the view. From left to right these are overviews of; all actions in the overall activity; all operations in
this action; available resources; and the participants. On the right side the collaboration windows are shown, including (from the top); the action log
and the remote video feeds. Users can switch between the activity and action views by suspending and resuming an action.

views; the Activity View (Figure 8) and the Action View. The
activity view provides an overview of all relevant activities
from mounted activity managers, as well as contextual infor-
mation about location, collocated users, and available activity
managers. Each activity (the while box) can be expanded to

show its list of actions and participants. Workflow relation-
ships between activities are shown as lines with a text label.
The Action View (Figure 9) is displayed when a user resumes
an action by clicking it in the activity view. The action view
shows the action’s operations and the resource each operation

273

links to, such as a text document or a web page. The action
view can show various overview panels as shown at the bot-
tom of the view. From left to right these are overviews of: all
actions in the overall activity; operations in this action; avail-
able resources; and the participants. On the right side the col-
laboration windows are shown, including (from the top); the
action log (which works as a instant messaging system when
users are engaged in online activity sharing) and the remote
video feeds. Users can switch between the activity and action
views by suspending and resuming an action.

SUMMARY

This paper has presented the software architecture and user
interface technology of ReticularSpaces. ReticularSpaces is
a smart space technology based on the principles of activity-
based computing. The core design goal of ReticularSpaces
was to provide a novel user interface for smart space tech-
nologies based on ‘activity’ as the core metaphor; to support
task-based information management across several displays
and locations; to support mobility inside a larger smart space
such as large factories, hospitals, or a campus; and to support
collaboration both collocated inside a smart room, as well as
between remotely distant locations. We are currently working
on improving the ReticularSpaces technologies. On the in-
frastructure level, a more robust and scalable infrastructure is
being designed by leveraging cloud technologies. On the in-
terface part, better support for learning this new UI metaphor
is needed and the workflow visualizations and usage needs
to be improved. The long term goal is to use ReticularSpa-
ces for projects within different domains, and for real-world
deployment.

REFERENCES
1. T. Bader, A. Heck, and J. Beyerer. Lift-and-drop:
crossing boundaries in a multi-display environment by
airlift. In Proc. of AVI 2010, pages 139-146. ACM,
2010.

2. J. Bardram, S. Gueddana, S. Houben, and S. Nielsen.
Reticularspaces: Activity-based computing support for
physically distributed and collaborative smart spaces. In
Proc. of CHI 2012. ACM, 2012.

3. J. E. Bardram. Activity-based computing for medical
work in hospitals. ACM Transactions on
Computer-Human Interaction, 16(2):1-36, 2009.

4. J. E. Bardram, J. Bunde-Pedersen, A. Doryab, and
S. Sgrensen. Clinical surfaces — activity-based
computing for distributed multi-display environments in
hospitals. In Proc. of INTERACT 2009, pages 704-717.
Springer-Verlag, 2009.

5. J. E. Bardram, J. Bunde-Pedersen, and M. Soegaard.
Support for activity-based computing in a personal
computing operating system. In Proc. of CHI 2006,
pages 211-220, New York, NY, USA, 2006. ACM Press.

6. J. E. Bardram, C. Fuglsang, and S. C. Pedersen.
Compute: a runtime infrastructure for device

274

10.

11.

12.

13.

14.

15.

16.

17.

composition. In Proceedings of the International
Conference on Advanced Visual Interfaces, AVI ’ 10,
pages 111-118. ACM, 2010.

. J. T. Biehl and B. P. Bailey. Aris: an interface for

application relocation in an interactive space. In Proc. of
GI 2004, pages 107-116, 2004.

. J. T. Biehl, W. T. Baker, B. P. Bailey, D. S. Tan, K. M.

Inkpen, and M. Czerwinski. Impromptu: a new
interaction framework for supporting collaboration in
multiple display environments and its field evaluation
for co-located software development. In Proc. of CHI
2008, pages 939-948. ACM, 2008.

. J. Bunde-Pedersen. Distributed Interaction for

Activity-Based Computing. PhD thesis, Computer
Science Department, University of Aarhus, Denmark,
2009.

J. A. Gallud, R. Tesoriero, J. Vanderdonckt, M. Lozano,
V. Penichet, and F. Botella. Distributed user interfaces.

In Proceedings of the 2011 annual conference extended
abstracts on Human factors in computing systems, CHI

EA 11, pages 2429-2432. ACM, 2011.

R. Grimm. One.world: Experiences with a pervasive
computing architecture. I[EEE Pervasive Computing,
3(3):22-30, July 2004.

C. K. Hess, M. Roman, and R. H. Campbell. Building
applications for ubiquitous computing environments. In
Proc. of Pervasive 2002, pages 16-29. Springer-Verlag,
2002.

B. Johanson, A. Fox, and T. Winograd. The interactive
workspaces project: Experiences with ubiquitous
computing rooms. [EEE Pervasive Computing, 1:67-74,
April 2002.

G. Robertson, E. Horvitz, M. Czerwinski, P. Baudisch,
D. R. Hutchings, B. Meyers, D. Robbins, and G. Smith.
Scalable fabric: flexible task management. In

Proceedings of the working conference on Advanced
visual interfaces, AVI °04, pages 85-89. ACM, 2004.

N. A. Streitz, J. GeiBler, T. Holmer, S. Konomi,

C. Miiller-Tomfelde, W. Reischl, P. Rexroth, P. Seitz,
and R. Steinmetz. i-land: an interactive landscape for
creativity and innovation. In Proceed. of CHI 1999,
pages 120-127. ACM, 1999.

L. Terrenghi, R. May, P. Baudisch, W. MacKay,

F. Paterno, J. Thomas, and M. Billinghurst. Information
visualization and interaction techniques for collaboration
across multiple displays. In Extended Proc. of CHI
2006, CHI ’06, pages 1643-1646. ACM, 2006.

M. Weiser. The Computer for the 21st Century.
Scientific American, 265(3):66-75, September 1991.

	Introduction
	ReticularSpaces Technical Architecture
	Activity Manager
	Information Management
	Dynamic Behavior

	ReticularSpaces User Interface
	Summary
	REFERENCES

