
Tutorial for the Java Context Awareness

Framework (JCAF), version 1.5

Jakob E. Bardram
Centre for Pervasive Healthcare

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark

bardram@daimi.au.dk

DRAFT – April 2005
Date: 2005/06/20 21:07:14 | RCSfile: jcaf.tutorial.v15.tex,v | Revision: 1.7

Contents

1 Introduction 2

2 Installing and Running JCAF 3
2.1 Deploying new Classes . 4

3 Context Modelling 5
3.1 The Entity . 5
3.2 The Context . 6
3.3 The contextChanged() method 7

4 The Context Service 8
4.1 Contacting a Context Service . 8
4.2 Getting and Setting Context Information 8

5 Context Clients 10
5.1 The AbstractContextClient class 10
5.2 Context Monitors . 10
5.3 Context Actuators . 12
5.4 Entity Listeners . 12

6 Security 14

7 Peer-to-Peer Context Services 15
7.1 Setting up P2P Context Services 15
7.2 Looking up Entities in a P2P Network 15

8 Examples 17

1

Chapter 1

Introduction

This tutorial contains basic information on how to run and program JCAF ver-
sion 1.5. The theoretical thoughts behind JCAF is described in the PERVASIVE
2005 paper [3]. More technical details of the design of JCAF is described in the
technical report on JCAF [1]. Please read these documents as a background
for this tutorial. JCAF has been used to implement different context-aware
applications and architectures [5, 2, 4].

JCAF version 1.5 is build on Java 1.4. JCAF relies on Java RMI for its
distribution. Therefore, knowlegde and programming experience in Java RMI
is needed before using JCAF.

2

Chapter 2

Installing and Running
JCAF

JCAF is deployed in a zip file called jcaf.v15.zip. This archive contains the
following files:

File Description

java.policy The Java policy file. Currently this file sets permission
to java.security.AllPermission. But this file can be
edited for more restrictive permission settings.

jcaf.v15.jar The JCAF version 1.5 jar file with all the core JCAF classes.
jcaf.examples.jar Examples for the JCAF version 1.5 distribution.
ContextService.bat Executable bat file for MS Windows starting a context

service.
ContextService Executable SH file for Unix.
runRegistry.bat Executable bat file for MS Windows starting the RMI

Registry. This is optional. Under normal circumstance
the ContextService will start the RMI Registry if not
already running on this machine.

runRegistry Executable SH file for Unix.

To deploy JCAF simply extract this zip file. A context service is started by
using the ContextService command with the following parameters:

ContextService name [peer]

where,

• name – the name of this context service

• peer – the URI of a peer context service (optional)

The peer context service should be running when starting a context service.
An example is:

ContextService aware_service rmi://snaps.daimi.au.dk/base_service

3

2.1 Deploying new Classes

Under normal circumstances, the JCAF ContextService should be able to dy-
namically load new classes on runtime without restarting the service. This is
part of the standard dynamic classloading in Java using the codebase property.

For some unknown reason, however, I have not been able to make this work
in connection with JCAF. Therefore, in order to deploy and load you own classes
– like your own implementations of new kinds of entities and context items –
you need to add these classes to the classpath of the Context Service. The
most convinient way to do this is to make a jar file, place it in the deploy
directory, and add this jar file to the classpath property in the startup script
(ContextService or ContextService.bat) before restarting the context service.
This is done by the jcaf.examples.jar file.

4

Chapter 3

Context Modelling

JCAF uses a pure Java-based object-oriented approach for modelling context
information. The core modelling abstraction in JCAF is the interfaces and
classes: Entity, Context, Relationship, and ContextItem. An UML diagram
of the relationships between these classes and interface can be found in the
JCAF Technical Report [1].

3.1 The Entity

The basic modelling concept in JCAF is the Entity interface. This interface
defines an entity in the real world that we want to model in order to keep track
of its context. Objects implementing this interface is hence the main object
in the context service. An entity is a small Java program that runs within a
context service on some host. Entities receive and respond to requests from
clients, usually using Java RMI. Furthermore they are notified if their context
change, because an Entity extends the EntityListener interface.

This interface defines methods to initialize an entity, to service requests,
and to remove an entity from the context service. These are known as life-cycle
methods and are called in the following sequence:

• The entity is constructed, then initialized with the init() method.

• When the entity’s context is changed the contextChanged() method is
called.

• The entity is taken out of service, then destroyed with the destroy method,
then garbage collected and finalized.

In addition to the life-cycle methods, this interface provides the getEntityConfig()
method, which the entity can use to get any startup information, and the
getEntityInfo() method, which allows the entity to return basic information
about itself, such as author, version, and copyright.

To implement this interface, you can write a generic entity that extends
dk.pervasive.jcaf.GenericEntity. A simple example of the implementation
of a Person entity is listed below:

5

public class Person extends GenericEntity {

private String name, location, note;
private byte[] publicKey;

public Person() {
super();

}

public Person(String id) {
super(id);

}

public Person(String id, String name) {
super(id);
this.name = name;

}

public String getEntityInfo() {
return "Person entity";

}

public String getName() {
return name;

}

// other setters and getters
}

3.2 The Context

Once you have an entity object you can acces its context using the getContext()
method. An entity has one Context, which contains a set of ContextItem
objects indexed by Relationship objects as keys1. Please note that an Entity
also implements the ContextItem interface. Hence, one entity can be in the
context of another. For example, if a person A and a place P both are entities,
then P can be in A’s context.

Because context information is communicated using Java RMI, entities and
their context need to be serializable. Hence, when you implement entities,
relationships, and context items you must make sure that they are serializ-
able. This also includes to make no-argument constructors to be used in the
de-serialization. All of these classes also implements the XMLSerializable in-
terface and you hence need to provide a toXML() method for each of them.
Serialization to XML is very convinient in many situations and is incorporated
for future use where a SOAP-like remote method invocation is planned.

1A Context is implemented using the Hashtable class in Java.

6

3.3 The contextChanged() method

Entities in a context service’s EntityContainer is notified when changes to their
context happens. The entity container calls the contextChanged() method on
the entity. For example, the following code could be part of the Person entity
above:

public class Person extends GenericEntity {
...
public void contextChanged(ContextEvent event) {
String new_location = null;
if (event.getRelationship() instanceof Located) {
if (event.getItem() instanceof Location) {
new_location = ((Location) event.getItem()).getLocation();

}
if (event.getItem() instanceof Place) {
new_location = ((Place) event.getItem()).getId();

}
}
if (new_location != null) {
if (event.getEventType() == ContextEvent.RELATIONSHIP_ADDED)
this.setLocation(new_location);

else
this.setLocation("Unknown");

}
}
...

}

This method keeps an entity location variale up-to-date when events occur.
The method checks if the relationship is of type Located in which case the new
location should be extracted from the context information. There is two ways
in which location can be changed – either by adding a Location context item
to the context or to add a Place entity in the context. Both cases are handled
in the example above.

7

Chapter 4

The Context Service

4.1 Contacting a Context Service

The ContextService interface is the main interface to a running context ser-
vice. A context service is a RMI Remote interface and a stub can hence be
accessed using the static lookup() method on the java.rmi.Naming class. For
example, the following method looks up a context service in the utility class
AbstractContextClient located in the dk.pervasive.jcaf.util package:

protected ContextService getContextService() {
if (service == null) {
try {
System.out.println("Connecting to Context Service...");
System.out.println(" uri : " + getURI());
service = (ContextService) Naming.lookup(getURI());

} catch (NotBoundException e) {

...

}
}

return service;
}

The getURI() method return the URI for the context service to lookup. The
fomat is:

rmi://<hostname>:<port>/<context_service_name>

4.2 Getting and Setting Context Information

To add an Entity to a context service use the addContextEntity() method.
For example, the code

Person person = new Person("ole@acm.org", "Ole Hansen");
getContextService().addContextEntity(person);

8

adds a Person to the context service. This method asumes that an entity
does not exist already, creates a new Context for this entity, and calls the init()
method on the entity, thereby providing the entity with a EntityConfig object.

In contrast, the setEntity() method only changes the entity stored in the
context service and not its context. This methods does no initiate a new life
cycle. Hence the call

person.setName("Ole B. Hansen");
getContextService().setContextEntity(person);

merely updates the entity information and do not change the context infor-
mation already in the context service.

Various methods for getting Entity objects exists. The getEntity() method
gets an entity based on its id. The getAllEntityIds() method returns an ar-
ray of all entity ids. The getAllEntities() method returns an array of all
entities. This may be a rather large data set and this method should hence be
used with causion. The getAllEntitiesByType() method returns an array of
all entities of a specific type, e.g. Person.

When the removeEntity() method is called, the destroy() method on the
Entity is called before it is removed from the context service.

Context information for entities are added and removed by using the addContextItem()
and removeContextItem methods on the ContextService interface. For exam-
pel, the following code updates location context information for a person:

Location office = new Location("hopper.333");
Located test = new Located("tutorial_code");
getContextService().addContextItem(person.getId(), test, office);

The variable office is a Location, which is a context item containing lo-
cation information. The variable test is a Located, which is a relationship
containing information on the source (the name "tutorial code") of this rela-
tionship1.

Calling the addContextItem() and removeContextItem methods will cause
the context service to notify the relevant entity using the contextChanged()
method. If several entities are in each other’s context the whole chain will be
notified. In version 1.5 there is no detection of cycles in event chains – hence
care should be taken no to create complex networks of entities in each others
context in order to avoid potential cycles. Later version of JCAF will incorporate
detection of cycles.

1Better examples of relationship modelling is providen in chapter 5 when discussing context
clients.

9

Chapter 5

Context Clients

All programs accessing a context service is in principle a context client. However,
two special types of clients exists, namely a context monitor and a context
actuator.

5.1 The AbstractContextClient class

The AbstractContextClient class in the dk.pervasive.jcaf.util package
provide a simple abstract class to be used when developing context clients. It
main method is the getContextService() which helps lookup a context service
based on a specified URI.

5.2 Context Monitors

Two types of context monitors can be created: asynchronous and synchronous
monitors. Asynchronous monitors reports context items to a context service as
the monitor sense it. Synchronous monitors provide context information when
asked by the context service to acquire (sense) up-to-date information.

A simple asynchronous monitor would be a location monitor that reports
location based on RFID tags. The implementation would look something like
this:

public class RFIDMonitor extends AbstractMonitor
implements RFIDScannerListener {

private Located rfid_located = null;

public RFIDMonitor(String service_uri) {
super(service_uri);
rfid_located = new Located(this.getClass().getName());

}

...

public void tag(RFIDScanEvent event) {

10

...

if (event.getMethod() == RFIDScanEvent.TAG_SCANNED) {
rfid_located.resetTime();
getContextService().addContextItem(

event.getId(),
rfid_located,
new Location(event.getScannerName()));

}
if (event.getMethod() == RFIDScanEvent.TAG_LEFT) {
getContextService().removeContextItem(

event.getId(),
rfid_located);

}
...

}
}

The method tag() from the RFIDScannerListener interface is called by an
RFID scanner – the details are omitted here. When an RFID tag is scanned, this
tag is added as a Location context item to the entity with the same id as the
tag. When the RFID tag has left the scanner, this relationship is removed again.
Note the use of the Located relationship. It is initialized with some locator
identification (the RFID scanner) and the time of location is reset everytime
the tag is scanned.

A synchronous monitor would implement the RemoteContextMonitor inter-
face, which consists of one method, monitor(). Hence, a monitor looking into
an online calendar to check what a user is doing currently would look something
like:

public class MeetingMakerMonitor extends AbstractMonitor {
public synchronized void monitor(String entity_id)

throws RemoteException {

// Only using the id before the ’@’ in an email address
final String cid = id.substring(0, id.indexOf(’@’));
System.out.println("Trying to get MM appointment for ’" + cid + "’");
MMThread thread = new MMThread(cid);
thread.start();

}
}

This example extends the AbstractMonitor utility class which has con-
vinient methods for accessing a context service, etc. Note that the monitor()
method returns nothing – it starts a new thread, which tries to access the on-
line calendar, and then returns. Later the MMThread thread will report back
the calendar information once this has been retreived from the MeetingMaker
server.

A synchronous monitor can be registered to a context service using the
addContextClient() method on the ContextClientHandler interface, which
is implemented by the context services. The signature of this methods is:

11

public void addContextClient(int type,
Class relation_type,
RemoteContextClient client);

The type indicates if this is a monitor or an actuator. The relation type
described what kind of Relationship types this monitor or actuator can han-
dle. For example, Located for location monitors or Booked for online calendar
monitors. Hence, our MeetingMaker monitor above would register using the
following lines of code:

getContextService().addContextClient(RemoteContextClient.TYPE_MONITOR,
Booked.class,
this);

This monitor is called when an entity’s context is to be refreshed (which hap-
pens when somebody tries to get it from the service) and this context contains
a relationship of the relationship type specified. Hence, in this example: if a
person has a relationship of type Booked and this person’s context is requested,
then the MeetingMaker monitor would be called to refresh its information on
this person. Please note, however, that the context information returned by
using the getContext() method has not been refreshed by invoking monitors.
This happens afterwards and the client hence needs to listen to the changes to
the entity. Details are in the technical report [1].

5.3 Context Actuators

Context actuators are made by implementing the RemoteContextActuator in-
terface. This interface has only one method:

public interface RemoteContextActuator extends RemoteContextClient {
public void contextItemChanged(ContextEvent event);

}

Context actuators register at a context service using the same method as the
context monitors described above. A context actuator is called when a context
information type it has registred for is changed in the context service. For
example, if a context actuator listen for location events by registrering interest
in the Located relationship type, then this actuator would be notified everytime
some entity’s located relationship is changed. This can be used to maintain an
active map, for example.

5.4 Entity Listeners

Entity listeners listen to changes in an entity. As already described entity lis-
terners contain the contextChanged() method. Most (remote) context clients
need to implement the RemoteContextListener interface. JCAF has a small
utility class to wrap such remote context listeners into local ones. Hence an
entitylistener can be made as:

12

public class ContextTester implements EntityListener {
...
private RemoteEntityListenerImpl listener;

public ContextTester() {
super();
try {
listener = new RemoteEntityListenerImpl();
listener.addEntityListener(this);

} catch (RemoteException ignored) {}
}

private void test() {
getContextService().addEntityListener(listener, Person.class);
...

}

public void contextChanged(ContextEvent event) {
System.out.println(event.getEntity().toXML());

}
}

The RemoteEntityListenerImpl wraps remote entity listeners The purpose
of this small exercise is to allow you to implement the EntityListener interface
instead of the RemoteEntityListener interface. In this way you do not need
to RMI compile you class.

13

Chapter 6

Security

Version 1.5 of JCAF incorporates limited support for security. More specificly, it
supports context monitors to authenticate themselves to a context service. Such
authenticated monitors are called ‘secure context monitors’ and can provide
‘secure’ context information. The ContextItem interface has a isSecure()
method which returns true if this item has been provide by a secure context
monitor.

The following code gives an example:

...
PrivateKey key = // get this client’s private key
byte[] data = this.getClass().getName().getBytes();
Signature sig = Signature.getInstance("DSA");
sig.initSign(key);
sig.update(data);
byte[] signature = sig.sign();

// Authenticate to the context service
secureCS = getContextService().authenticate(

this.getClass().getName(),
data,
signature);

System.out.println("Got a secure connection to the server : " + secureCS);

// Adding a secure location context item to the person’s context
secureCS.addContextItem(person,

located,
new Location("loc://daimi.au.dk/hopper.333"));

JCAF uses the standard java.security packages and the security mecha-
nisms in JCAF can hence be extended. How the PKI infrastructure is managed
– e.g. how public and private keys are generated and distributed – is not part
of JCAF.

14

Chapter 7

Peer-to-Peer Context
Services

JCAF enables context services to cooperate in a federated network of peers.
This is typically used to divide responsibility amongst different context services.
For example, in the AWARE architecture [4] a special-purpose context service
is used to manage context information for users subscribed to its awareness
service. A context service can have multiple peers.

7.1 Setting up P2P Context Services

As described in chapter 2 one peer context service can be specified on startup.
On runtime, peer context services can be added and removed from a context ser-
vice by using the addContextService() and removeContextService() meth-
ods on the PeerHandler inteface. Peer context services are indexed by their
URI.

7.2 Looking up Entities in a P2P Network

Entities can be searched in a peer-to-peer network of context services by using
the lookupEntity() method on the PeerHandler inteface. The signature for
this method is:

public void lookupEntity(String id,
int hops,
RemoteDiscoveryListener dl);

The call is non-blocking. Hence a RemoteDiscoveryListener callback ob-
ject must be specified. The method searches for the entity specified by ‘id’ and
hops across ‘hops’ peers.

The RemoteDiscoveryListenerImpl is a convinient wrapper implementa-
tion for a RemoteDiscoveryListener. This is similar to the RemoteEntityListenerImpl
wrapper discussed in section 5.4. The following piece of code illustrates how en-
tities can be searched:

15

public class PeerTester implements DiscoveryListener {
...
private RemoteDiscoveryListenerImpl dl;

public PeerTester() {
super();
try {
dl = new RemoteDiscoveryListenerImpl();
dl.addDiscoveryListener(this);

} catch (RemoteException e) {}
...

}

private void test() {
...
getContextService().lookupEntity("ole@acm.org", 3, dl);

}

public void discovered(DiscoveryEvent event) {
System.out.println("Entity found at " + event.getURI());
System.out.println(event.getEntity().toXML());

}

}

In this example, the entity with id ‘ole@acm.org’ is searched in default
context service and 3 hops away from it. If found, the methods discovered()
is called back. If the entity is in more than one context service, this call returns
the first which is found. The DiscoveryEvent contains the serialized entity
object and an URI to the context service in which it was found.

16

Chapter 8

Examples

The zip file comes with some examples in the jcaf.examples.jar file. This
file also contain an ANT build script (build.xml) which can be used to build
the examples and can be a basis for creating a build script for other JCAF
applications.

17

Bibliography

[1] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) –
A Service Infrastructure and Programming Framework for Context-Aware
Applications. Technical Report CfPC Technical Report 2004–PB–61, Cen-
tre for Pervasive Computing, Aarhus, Denmark, 2003. Available from
http://www.pervasive.dk/publications.

[2] Jakob E. Bardram. Applications of ContextAware Computing in Hospital
Work – Examples and Design Principles. In Proceedings of the 2004 ACM
Symposium on Applied Computing, pages 1574–1579. ACM Press, 2004.

[3] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) –
A Service Infrastructure and Programming Framework for Context-Aware
Applications. In Hans Gellersen, Roy Want, and Albrecht Schmidt, editors,
Proceedings of the 3rd International Conference on Pervasive Computing
(Pervasive 2005), volume 3468 of Lecture Notes in Computer Science, pages
98–115, Munich, Germany, May 2005. Springer Verlag.

[4] Jakob E. Bardram and Thomas R. Hansen. The AWARE architecture: sup-
porting context-mediated social awareness in mobile cooperation. In Pro-
ceedings of the 2004 ACM conference on Computer supported cooperative
work, pages 192–201. ACM Press, 2004.

[5] Jakob E. Bardram, Rasmus E. Kjær, and Michael . Pedersen. Context-Aware
User Authentication – Supporting Proximity-Based Login in Pervasive Com-
puting. In Anind Dey, Joe McCarthy, and Albrecht Schmidt, editors, Pro-
ceedings of UbiComp 2003, volume 2864 of Lecture Notes in Computer Sci-
ence, pages 107–123, Seattle, Washington, USA, October 2003. Springer
Verlag.

18

