
Activity-based Computing Support for Agile and Global
Software Development

Jakob E. Bardram
IT University of Copenhagen

Rued Langgaards Vej 7, DK-2300 Copenhagen S.
bardram@itu.dk

ABSTRACT
As part of globalization, offshoring and outsourcing, many
software organizations are adopting global software devel-
opment (GSD). Studies, however, show that among the top
ten risk factors to GSD, four of them is related to change
management and developer-user cooperation. In order to
embrace change and to foster close cooperation between de-
velopers and the users, state-of-the art within software engi-
neering is to recommend an agile approach. Agile software
development, however, rely heavily on co-located coopera-
tion and mutual awareness based on physical artifacts and
e.g. pair programming. This is especially difficult to achieve
in a globally distributed setting. In this position paper, I
suggest to approach this conflict using the principles from
activity-based computing, including creating support for ac-
tivity centered computing, activity suspend/resume and roam-
ing, activity sharing, and activity integration of the physical
and digital artifacts. As a hypothesis, we do not offer any ev-
idence that this should be a successful approach, but based
on our experience of developing activity-based computing
technologies for e.g. hospital work – similarly is distributed
in time and space – we hope this research path will reveal
new insight in supporting GSD in particular, and global pro-
cesses in general.

Author Keywords
Activity-Based Computing, Global Software Development,
Agile, eXtreme Programming, Globalization

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces

INTRODUCTION
As part of the current trend towards globalization, offshoring
and outsourcing, many software organizations are adopting
global software development (GSD) as a new mode of soft-
ware production [3, 1]. A core characteristic of GSD is that
software is developed by a geographically dispersed team of

Submitted to the CSCW 2008 Workshop on Supporting Distributed Team
Work.

software developers, who may belong to the same or differ-
ent organizations. For example, it is becoming increasingly
common for US based and European companies to offshore
the development of software to low-wage countries, such as
India. Another core characteristic of GSD is that users and
the development team is equally distributed. For example,
the users being located in the US or Europa, and the devel-
opers in India.

According to a recent survey, among the top 10 risk factors
to offshored and outsourced software development project,
four out of ten is related to requirement and change manage-
ment, user involvement, and communication [13]:

2 Original set of requirements is miscommunicated

4 Inadequate user involvement

6 Failure to manage end-user expectations

7 Poor change control

For researchers within software engineering, you feel a sense
of deja-vu when you see this list of challenges. These were
the exact same kinds of challenges which are associated with
the waterfall model of software development [15].

In order to mitigate these challenges and to create a better
environment for on-going requirement specification, change
control, and user-developer collaboration and calibration, state-
of-the art within software engineering has been to advocate
and adopt more light-weight, agile software development
processes [15]. Agile methods, such as eXtreme Program-
ming (XP) [8] and Scrum [16], operate on the principle of
just enough method. They emphasize the importance of pri-
oritize working code over comprehensive documentation, re-
sponding to change, and they advocate close co-located col-
laboration between people, including developers, stakehold-
ers, and users. To a great extend, agile methods have evolved
in response to increasingly changing business environments
and volatile (user) requirements.

Since agile software engineering practices advocate co-located
and close collaboration between developers and users, there
seems to be an inherent conflict between agile software en-
gineering and GSD. The many challenges of GSD are, per-
haps obviously related to the effects of increased distance
between people. Distance is, however, not only to do with
spatial separation and geographical distance, but also with

1



temporal distance (i.e. the dislocation in time experienced
by two actors wishing to interact) and socio-cultural distance
(i.e. a distance between actors understanding of other actors
values and normative practices) [1].

A core aim of CSCW is to design and research technologies
that enables distributed teams to collaborate. In this context,
is appropriate to ask how such collaborative technologies
can help distributed teams to collaborate in a global software
development process while maintaining an agile approach.
In other words, how collaborative technologies can be de-
signed to foster agile global software development.

In this position paper, I will outline our current work in sup-
porting agile global software development. I will do this by
first reviewing existing knowledge on agile software devel-
opment and XP, paying special attention to studies show-
ing what makes agile processes work in practice. The I will
discuss our ideas of using the activity-based computing ap-
proach to GSD. By doing so, I hope on the one hand to con-
tribute to the workshop an outline of a very important prob-
lem which we – as CSCW researchers – are in a position
to do something about, and on the other hand outline some
ideas for how to addresses the challenges. I hope this may
be of inspiration to others, and a source of discussion at the
workshop.

AGILE SOFTWARE DEVELOPMENT AND XP
The basic principles behind agile methods have been sum-
marized by the leading agile method thinkers in what has be-
come known as the agile manifesto1. The agile manifesto is
presented as a set of values and associated principles, where
especially two of them seem to be at odd with DSD:

• Business people and developers must work together daily
throughout the project.

• The most efficient and effective method of conveying in-
formation to and within a development team is face-to-
face conversation.

The most widely used agile development practice is eXtreme
Programming (XP). In XP ‘User stories’ are the mechanism
used to communicate user requirements to the development
team. They represent “units of customer-visible functional-
ity”, and have become a central focus of many agile teams.
User stories are captured on ‘Story Cards’ (an index card
typically no bigger than 5 by 7 in on which the users re-
quirements are written) and an area of physical space where
the story cards are organised and displayed which is called
‘the Wall.

The efficacy of story cards is supported by the teams envi-
ronment. In explaining the Informative workspace primary
practice, Beck [8] states “Make your workspace about your
work” and goes on to say that “An interested observer should
be able to walk into the team space and get a general idea of
how the project is going in 15 sec”. He mentions the fact
that many teams do this by putting story cards on the wall.
1http://agilemanifesto.org/

An ‘Information Radiator’ “displays information in a place
where passersby can see it”. It should have two characteris-
tics: information changes over time; and it takes very little
energy to view the display. Thus, a wall where story cards
are displayed in a public place conforms to the notion of an
information radiator

XP has also been tried in a GSD context and a ‘Distributed
eXtreme Programming (DXP) version has been proposed [14].
DXP suggests that eight of the XP practices (small releases,
metaphor, simple design, testing, refactoring, collective own-
ership, 40-hour week and coding standards) are independent
of team locality and can thus be applied also in GSD. The
remaining four practices (the planning game, pair program-
ming, continuous integration, and on-site customer), on the
other hand, depend on co-located team members and users,
and thus prove challenges to applying XP and agile methods
in GSD.

Studies of GSD projects, however, suggest that communica-
tion and coordination are substantially disrupted across dis-
tant sites [12]. And, based on interview with distributed pro-
grammers, Gutwin et. al [11] concludes that explicit com-
munication methods, like email and chat, were only effective
when programmers made a significant effort to stay commit-
ted to those tools.

It is also interesting to note that detailed studies of teams suc-
cessfully applying XP show, that co-ordination and collab-
oration activities are highly inter-related and co-located [2].
The kind of co-ordination that is undertaken by a team re-
sults in a situation where collaboration is made easy because
team members are very aware of others work, overall project
progress, and the state of the code base. Co-ordination and
collaboration are supported by two key artefacts: the Story
Card and the Wall. Hence, two physical objects work inside
a special team room in a sophisticated and complementary
manner and their physical nature is significant in underpin-
ning the highly collaborative and self-organising style of ag-
ile teams.

ACTIVITY-BASED COMPUTING FOR GSD
Summing up on the issues discussed above, there seems to
be a range of issues and/or challenges associated with the
creation of an agile environment in global software develop-
ment. These seems to be:

• Agile and XP teams rely on co-located work for ad-hoc
communication, coordination and co-located collaborative
work. For example, to easy settle open issues or questions
and to allow for pair programming. Precisely commu-
nication and coordination is substantial disrupted across
sites [12].

• Teams rely heavily on shared artifacts on public display
for mutual awareness. For example, the Story Cards are
displayed on the shared Wall, along with other important
design and project artifacts.

• Teams adapt their physical environment to fit the work,
c.f. the XP statement on “Make your workspace about

2



your work”. Hence, local adaptation and change is es-
sential while the project evolve.

• Close contact with clients, customers, and users is es-
sential. This issues entails two things. First, the project
should work with regular releases of working code which
is deployed to the users for use or assortment. Second,
clients and users should work together with the developers
by either visiting the team in the team room or by having
the developers come to the client site.

• The integration of physical artifacts and the physical space
with the digital environment will be essential. Even though
we might image that e.g. Story Cards might become dig-
ital, there is still a lot of material which offers great af-
fordances on paper of cardboard, which cannot be replace
with digital representations. For example, sketches and
mock-ups made together with users.

Based on our prior research, we have a couple of hypothesis
for creating support for distributed, global software devel-
opment teams. This is ongoing research in its initial phase,
and we hence do not have any evidence that these hypoth-
esis hold in reality. The aim in this context of the CSCW
workshop is to outline these hypothesis for further discus-
sion. Our hypothesis are based on our work with activity-
based computing (ABC), which to a large degree has been
focused on creating ubiquitous computing support for clin-
icans working in large hospitals. Focus has especially been
on support for mobile, collaborative, and time-critial work
that involve a lot of physical artifacts which cannot be digi-
talized (e.g. specimens, drugs, surgical instruments, and the
patient him- or herself). Clearly there is big difference be-
tween the working conditions inside a hospital and software
developers in a globally distributed team. Issues like mobil-
ity, for example, seem to play a minor role in GSD. But there
is also a set of issues which seems to be similar. For exam-
ple, support for intense collaboration, social awareness on
the progress of work, co-located work on shared artifacts,
and close integration between the digital and physical arti-
facts.

For this reason we will investigate activity-based comput-
ing support for GSD. Our overall hypothesis is that activity-
based computing support will help GSD. In order to investi-
gate this hypothesis, let us consider the six ABC principles
and relate them to GSD.

P1: Activity-centered aggregation of resources
The principle of ‘Activity-centered resource aggregation’ in
ABC entails two thing: First, it suggests that the computer
should model and maintain an understanding of the real world
human activities taking place. For example, instead of just
managing files and documents, the computers models the
human activity, which include information on the purpose
of the activity, who is participating, the history, and other
relevant information. Second, the principles suggest that re-
sources and services that are used in performing the activity
is bundled ‘into’ or linked to the activity. This include both
digital resources and services like documents and applica-
tions, as well as physical resources like real-world artifacts,

tools, and documents.

In a GSD the principle of activity-centered aggregation would
help us model the activities involved in the distributed work,
and all participants would share the motives, goals, and re-
sources of the different activities. In a GSD, a set of activi-
ties will continuously be created and maintain which would
cover work in the agile process, including the inception, elab-
oration, construction, and transitions phases. The activity
would specify the overall objective of each activity, a de-
scription of it, and list all the participants involved in it. It
would also bundle and link to all the artifacts which are part
of the activity. Resources include typical software develop-
ment documents, like the Unified Process artifact of vision
statement, use case model, UML diagram, glossary, require-
ment model, etc. But it would also contain links to more
ad-hoc material like pictures and video from the customer
site, design sketches, user interviews, persona descriptions,
etc.

The core benefit to GSD of this activity-centered principle
is primarily two thing. First, all participants of the different
activities share the same description of the overall activity
and is hence able to align their work to a shared representa-
tion of the work. Second, all participants have an overview
of the resources and artifacts associated with the activity, is
provided with an awareness of the status of the activity and
the resources (e.g. the state of the requirement specification),
and have easy access to all relevant resources and artifacts
for this activity.

P2: Activity Suspend/Resume
Activity suspend/resume was designed to help multi-tasking
in work, i.e. the ability to work on several activities at the
same time, and to be able to alternate between which activ-
ity is in focus. Activity suspend/resume is particular impor-
tant in a hospital environment where clinicians juggle many
concurrent patient cases simultaneously. In a GSD environ-
ment, this seems less urgent – after all, most developers often
work concentrated on a more focused development activity
for longer time period. Nevertheless, when looking at agile
methods, a core ideas is to prevent using the waterfall model
of development, but encourage developers to move back and
forth in the design and development process in order to con-
stantly ‘embrace change’ and to continuously update doc-
uments and other artifacts with these changes. Hence, it is
essential that developers can easily get access to the different
activities and resources which belong to other phases of the
development process. In this case, easy activity suspend and
resume would help developers to easily go back and forth in
the different activities. Thus, the argument is that activity
suspend and resume will help an agile approach to software
development. But this principle has little to offer the dis-
tributed nature of GSD. This is the target for the next ABC
principle; activity roaming.

P3: Activity Roaming
Activity roaming enables the user to move activities and their
related resources between devices, including mobile tablet
PCs, desktop computers, and large interactive horizontal or

3



vertical displays. Activity roaming is essential in support-
ing mobility and enable users to use appropriate devices in
the environment. In a GSD context, activity roaming is es-
pecially useful for two things. First, activity roaming allow
the different participants in the activity to retrieve and re-
sume the activity and its associated resource on their pre-
ferred work station. In a local environment, activity roaming
also support users to move an activity to a shared display
for shared problems solving or discussion. Second, activity
roaming enable distributed team members to access and re-
sume the activity. For example, activities and resources cre-
ated and used in one location like the team room in Europa
can be moved and resumed in the team room in Asia.

P4: Activity Sharing
An activity is shared among the GSD team. It has a list
of participants who can access and manipulate the activity.
Consequently, all participants of an activity can resume it
and continue the work of another user. In ABC we distin-
guish between three modes of activity sharing:

• In Asynchronous Activity Sharing, users take turn in work-
ing on the activity. Hence, only one team member has
resumed the activity and works on it.

• In Synchronous Activity Sharing, two or more users re-
sume the same activity at the same time on different de-
vices, potentially distributed in space. In this case, the
team members will engage in an on-line, real-time activ-
ity sharing session which mean that the state of the activity
and its associated resources are synchronized in real time.

• In Temporal Activity Sharing, users can share an activity
across distribution in time. One (or more) participant(s)
is able to capture their work in an activity and store if for
other members of the team to later access it.

Asynchronous and temporal activity sharing can help dis-
tributed team members to collaborate across time distribu-
tion. For example, team members in one time zone can work
on an activity, update and create artifacts and resources in
the activity, document their work as part of the activity log,
and suspend the activity at the end of their work shift. Other
members in a different time zone can resumed this activity
and continue the work. In temporal activity sharing the team
members can capture their work, which later can be accessed
by others for general review. For example, team members
in one time zone may host a workshop with end-users. This
workshop and the creation of artifacts may be captured using
e.g. video, audio, and the creation of different physical and
digital sketches and artifact. This captured activity record
may later be replayed and reviewed by other participants of
the activity.

Synchronous activity sharing can help bridge physical or ge-
ographical distances. For example, team members located
in different locations may be able to engage in pair pro-
gramming, where they have real-time sharing of an IDE like
Eclipse. With a video link, team members can engage in
same-time editing of source code.

P5: Activity Awareness
Maintaining an awareness of the progress of work within a
software development team is at the core of the recommen-
dations from the agile approach to software development.
The use of Story Cards and the Wall is a prime example of
this. The principle of activity awareness is targeted toward
helping the participant of an activity to maintain an aware-
ness of the overall progress and status of the activity. This
includes status information on the different artifacts and re-
sources included in the activity, as well as status information
on the participants of the activity (e.g. information on name,
current role, location, status, online status, etc.). For exam-
ple, in a GSD setup awareness information would include
content and status changes of the resources such as source
code, changes to documents and artifacts, and changes and
status information on participants.

Existing work on creating shared awareness within a devel-
opment team has focused on visualizing and tracking changes
to the shared code base (e.g. FASTDash [9] and Augur [10]).
The principle of activity awareness suggest to extend support
for awareness to include all parts of the activity, including all
artifacts, resources, documents, participants, etc.

P6: Activity Integration
Based on studies of successful XP teams and how they use
e.g. Story Cards and the Wall, Sharp & Robinson [2] argue
that

“A key danger of translating these mechanisms into an
electronic form is that activity may become hidden, and
less easily accessed by all.” (p. 516)

Activity integration denotes the principles that the computa-
tional activity co-exists and integrated closely with its real-
life counterpart, including the activity’s parts such as re-
sources, tools, participants, state, etc. Philosophically speak-
ing, the computational activity and the real-world activity
exist in a dialectical relationship. More specifically, this
means that ABC tries to maintain a linkage between the dig-
ital and physical world. For example, in the hospital envi-
ronment, the current ABC platform supports linking physi-
cal artifacts like drugs and surgical instruments to relevant
digital activities [5]. Similarly, we envision to be able to
link physical artifacts like Story Cards and design sketches
to relevant activities in the digital space. This would support
developers to continue to use physical artifacts as part of the
development process.

WRAPPING UP
In this position paper I have outlined some of the problems
which are associated with distributed, global software devel-
opment (GSD). The state-of-the art within software devel-
opment recommend more agile methods, like e’Xtreme Pro-
gramming (XP). Since agile methods encourage co-located
collaboration in a shared physical space, this approach is not
compatible with GSD.

I have proposed that activity-based computing (ABC) may
help mitigate the challenges of running a distributed soft-

4



ware development project. This includes supporting mod-
eling the development project as a set of activities which
evolve as the project progress, and which constantly bun-
dle the different resources and artifacts involved in the ac-
tivity. It also includes support for activity suspend/resume
and roaming, which would help the participants to juggle
several concurrent activities, and move these activities and
their resources between distributed sites. The support for
synchronous, asynchronous, and temporal activity sharing
seems to be especially well-suited for bridging physical and
temporal distances,

This paper has provided a very overall discussion of activity-
based computing support for global software development,
and has provided very little concrete examples or technolo-
gies of how this would actually take place. However, based
on out previous work on building technologies for activity-
based computing [5], we believe that the visions outlined
above is achievable. For example, we already have concepts
and technologies in place for activity-centered computing,
activity suspend/resume, and activity roaming in place for
the Windows XP operating system [7]; we have the under-
lying concepts and protocols in place for synchronous activ-
ity sharing [4], and we have recently developed and tested
a activity-based computing support for large interactive dis-
plays [6]. This said, however, there is still much research to
be done – part of it related to technologies for activity aware-
ness, sharing, and the integration of the physical and digital
artifact; and part of it related to investigating how activities,
tools, resources, and artifacts related to software develop-
ment may fit into the ABC approach.

Another important aspect to address in this research, is the
physical and digital equipment of the team room – or more
specifically the team rooms. We envision to create a virtual
XP team room, where the distributed team is virtually co-
located. This would include technologies for experiencing
virtual co-locate, i.e. that the room is divided into two halves,
each one in different physical location. The ABC technology
will be designed to run in an environment like this.

REFERENCES
1. P. Ågerfalk. Towards Better Understanding of Agile

Values in Global Software Development. In Exploring
Modeling Methods for Systems Analysis and Design –
EMMSAD. Via Nova Architectura, 2006.

2. H. S. andHugh Robinson. Collaboration and
co-ordination in mature eXtreme programming teams.
Int. J. Human-Computer Studies, 66:506–518, 2008.

3. W. Aspray, F. Mayadas, and M. Y. Vardi. Globalization
and Offshoring of Software: A Report of the ACM Job
Migration Task Force. Technical report, Association for
Computing Machinery, 2006.

4. J. E. Bardram. Activity-Based Computing: Support for
Mobility and Collaboration in Ubiquitous Computing.
Personal and Ubiquitous Computing, 9(5):312–322,
July 2005.

5. J. E. Bardram. Activity-based computing for medical
work in hospitals. ACM Transactions on
Computer-Human Interaction, 2008. Accepted for
publication.

6. J. E. Bardram, J. Bunde-Pedersen, A. Doyrab, and
S. Sørensen. MPAD - Activity-Based Support for
Distributed Multiple Display Environments. Technical
Report, IT University of Copenhagen. 2008.

7. J. E. Bardram, J. Bunde-Pedersen, and M. Soegaard.
Support for activity-based computing in a personal
computing operating system. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in
computing systems, pages 211–220, New York, NY,
USA, 2006. ACM Press.

8. K. Beck. Extreme Programming Explained.
Addison-Wesley, 2000.

9. J. T. Biehl, M. Czerwinski, G. Smith, and G. G.
Robertson. Fastdash: a visual dashboard for fostering
awareness in software teams. In CHI ’07: Proceedings
of the SIGCHI conference on Human factors in
computing systems, pages 1313–1322, New York, NY,
USA, 2007. ACM.

10. J. Froehlich and P. Dourish. Unifying artifacts and
activities in a visual tool for distributed software
development teams. In ICSE ’04: Proceedings of the
26th International Conference on Software
Engineering, pages 387–396, Washington, DC, USA,
2004. IEEE Computer Society.

11. C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. In
CSCW ’04: Proceedings of the 2004 ACM conference
on Computer supported cooperative work, pages
72–81, New York, NY, USA, 2004. ACM.

12. J. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally-distributed
software development. IEEE Transactions on Software
Engineering, 29(3):1–14, 2003.

13. C. L. Iacovou and R. Nakatsu. A risk profile of
offshore-outsourced development projects. Commun.
ACM, 51(6):89–94, 2008.

14. M. Kirscher, P. Jain, A. Corsaro, and D. Levine.
Distributed extreme programming. In Proc.
International Conference on eXtreme Programming
and Flexible Processes in Software Engineering, 2001.

15. C. Larman. Applying UML and Patterns : An
Introduction to Object-Oriented Analysis and Design
and the Unified Process. Prentice-Hall, Upper Saddle
River, NJ, 2nd edition, 2002.

16. K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice-Hall, Upper Saddle
River, NJ, 2002.

5


	Introduction
	Agile Software Development and XP
	Activity-Based Computing for GSD
	P1: Activity-centered aggregation of resources
	P2: Activity Suspend/Resume
	P3: Activity Roaming
	P4: Activity Sharing
	P5: Activity Awareness
	P6: Activity Integration 

	Wrapping Up
	REFERENCES 

