
Non-anonymous user interaction
on tabletop displays

Master thesis
by

Thomas Berglund Michael Thomassen
(090773-berglund) (040685-mtho)

Supervisor:
Professor Jakob E. Bardram

1 August 2011
IT University of Copenhagen, Denmark

IT University of Copenhagen
Rued Langgaards Vej 7, DK-2300 København S, Denmark
Phone +45 72185000, Fax +45 72185001
itu@itu.dk
www.itu.dk

Abstract

Contemporary tabletop computers lack the ability to natively link an
action to the identity of its originator in a way that allows applications
to discriminate between simultaneous users.

This thesis proposes a solution that allows developers to build tabletop
applications that depend on non-anonymous user interaction.

In comparison with prior research projects, this work integrates with
the tabletop without requiring special gestures, is secure, and uses stan-
dard hardware.

The results are that it is possible to design and implement a framework
for non-anonymous user interaction that is secure and uses standard hard-
ware. The framework features a user experience design, a set of identified
events, and a set of UI controls. A security analysis establishes that the
framework also must feature a customisable authentication mechanism.

The evaluation shows that the framework can be used for building
non-trivial applications, and the main results of a usability test are that
users quickly learn and accept the features of the framework, and users’
comments have led to five design guidelines that can help leverage the
quality of an application when using the framework.

The thesis concludes that the NAI framework solves the problem of
having non-anonymous user interaction on tabletop displays, and thereby
allows personalised user experience in future tabletop applications.

Acknowledgements

First and foremost, we would like to thank Professor Jakob Bardram, IT
University of Copenhagen, Denmark (ITU), for guiding us through the
art of writing a master thesis.

Next we thank Mads Frost, Ph.D student, ITU, for good advice on
how to design and conduct a usability evaluation, and all the people
volunteering for participating in the evaluation.

Finally, we thank the people associated with pITlab (The Pervasive
Interaction Technology Lab) at ITU. In particular, for the many support-
ing and helpful comments and Sebastian Büttrich for letting us borrow
the hardware.

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Context and motivation 1
1.2 Problem statement . 3
1.3 Research methods . 3
1.4 Results . 4
1.5 Thesis overview . 5

2 Related work 7

3 The NAI framework 13
3.1 General user experience design 13
3.2 Usage . 14
3.3 Setup . 25

4 Security analysis 33
4.1 Area 1: Non-anonymous user interaction 33
4.2 Area 2: Tabletop – smartphone communication 35
4.3 Area 3: Tag recognition 35
4.4 Area 4: Pairing tag with smartphone 36
4.5 Summary . 37

5 Implementation 39
5.1 States . 39
5.2 Communication . 40
5.3 Tabletop . 42
5.4 Smartphone . 51

6 Using the NAI framework for application building 57
6.1 Restaurant of the future 57

7 Evaluation 63
7.1 Parameters . 63
7.2 Method . 64
7.3 Test sessions setup . 66
7.4 Participants . 66
7.5 Results . 67

vi Contents

8 Discussion 71
8.1 User experience . 71
8.2 Framework implementation 73
8.3 Security . 74

9 Conclusion 75
9.1 Future work . 76

References 79

A Framework source code 81

B Evaluation material 83
B.1 Test scenarios . 83
B.2 Semi-structured interview - prepared questions 84
B.3 ITU newsletter advertisement 85

C Responsibilities 87
C.1 Thesis . 87
C.2 Code . 87

Chapter 1

Introduction

1.1 Context and motivation

Today, people use many types of computers, not just a desktop or laptop
computer. They differ in size, capabilities, and the way you interact
with them. For example, a smartphone is a small hand-held computer
powered device, where the display typically doubles as input as well as
an output device. This also applies to the increasingly popular tablet
computers, that have a larger screen than a smartphone, but are not used
for telephony. At the same time the laptop still relies on a keyboard, a
mouse pointer, and a conventional display.

In the future, the multitude of devices of an ordinary user will possibly
also cover tabletop computers (hereafter just tabletop). That is, computer
connected tables equipped with a display and an input system that allow
direct manipulation upon the display using finger or hand gestures.

While the smartphone, tablet, and the laptop in essence are personal
devices, tabletops are being designed for collaborative multi-user settings.
In this sense, the display can be seen as a shared, or public, space and
there might not be a natural orientation of the screen as the users gather

Figure 1.1: A Microsoft Surface supporting guests at a Sheraton Hotel.

2 Introduction

around the table (see figure 1.1). It is features like these that make this
type of device distinctly different from the personal devices. The case
studies for the Microsoft Surface1 (hereafter MSS) reflect public settings
like tourist guide planning at hotels (as depicted in figure 1.1) and social
activities at bars like Hard Rock Café and iBar in the Rio All-Suite Hotel
& Casino.

In general, contemporary tabletops do not have the ability to discrim-
inate the touch of one user from the touch of another. This thesis is about
adding support for non-anonymous user interaction to tabletop displays.
It will allow developers to build applications for a tabletop, like the MSS,
that have access to the identity of the user carrying out an action.

Presently, tabletop computers are not a commodity. Not until Jeff
Han in 2005 [6] showed how a tabletop can be build with relative cheep
means, were such tabletops widely deployed in research departments [13].
The MSS, first released in 2007, is one of the first serious attempts at
creating a complete commercial product targeted end users. Because the
price tag is very high, and the set of available applications for it are limited
such a device is not something people stumble upon everyday. Besides
the hardware, Microsoft has developed a complete Software Development
Kit (SDK) including a Surface API that extends Windows Presentation
Foundation (WPF), so that developers have easy access to the features.

The work presented in this thesis is targeted for use on a MSS, and
it is therefore natural that the solution is implemented as a framework
thats builds on top of the Surface API. Because a framework must be ex-
tendable and flexible enough to be applied in a large variety of settings,
it is designed to be secure. Since the identity of the user is essential to
the framework, it includes a customisable user authentication mechanism
that supports varying user authentication requirements.

Research in discrimination of the users actions on a tabletop is ba-
sically motivated by two sets of problems. The first set of problems is
related to access control. For example, a basic malice and fraud scenario
where person A attempts at deleting or manipulating objects that per-
son B owns, or while person B is away, person A tries to send messages
in the name of person B to a third party [15]. Ringel et al. [14] envi-
sions a meeting scenario, where access to data, like digital documents,
is controlled by specific gestures in combination with the knowledge of
who is manipulating the object. Schöning et al. [21] imagines a scenario
where a single large interactive surface acts as a shared control unit for
dispatching emergency units after a flooding. Although using a shared
display, critical commands can only be executed by the person with the
right authorisation.

The second set of problems is related to dynamically customising the
user interface. IdLenses [20] uses the user identity to create a person-
alised clipboard for copying content independent of other users actions, or
automate repeated actions like entering credentials to a website. The iD-
widgets by Ryall et al. [16] enhance the functionality of standardised GUI

1http://www.microsoft.com/surface/en/us/default.aspx (as of 29 June 2011)

1.2 Problem statement 3

elements with the notion of who is using it. In a multi-user setting, this
allows for reuse of a widget by having personalised views or customised
functionalities. In addition, it reduces clutter and saves screen real estate.

1.2 Problem statement

Contemporary tabletop computers lack the ability to link an action to
the identity of its originator. This challenge tabletop applications where
access control and a dynamically customised user interface is part of the
user experience.

We ask, is it feasible to build a system that allows for non-anonymous
user interaction on tabletop displays?

In particular we ask:

• Can the system be used for building UI controls?
• Can the system be implemented as a framework for others to use?
• Can the framework be made secure?

In addition to these question we ask if the system can run on stan-
dard hardware, such as the Microsoft Surface and an Android powered
smartphone?

1.3 Research methods

The questions asked in the section above, will be answered using a number
of methods. There will be

• an investigation of non-anonymous user interaction in relation to
tabletop displays and surfaces,

• a user experience design,
• an analysis of the security threats,
• an implementation as a framework,
• a proof-of-concept by showing how to use the framework for pro-

gramming a non-trivial application, and
• a usability test of the framework.

In order to keep the project manageable, the framework will only
support single touch events. Multi-touch events are available both on the
Android powered devices, as well as on the Microsoft Surface, so it might
be possible to extend the framework to support multi-touch events in the
future.

In addition to this, the framework will only feature a simple automatic
tabletop discovery process, leaving more advanced and robust methods
to be implemented in later interations.

4 Introduction

1.4 Results

The main contribution of this thesis is the NAI framework, that allows
for non-anonymous user interaction with tabletop displays using standard
hardware like the MSS and Android powered smartphones. The smart-
phone acts as a two-way mediator between the user and the MSS when
it is placed on the tabletop surface. On the one hand, the area of the
MSS that is covered by the phone is projected on to the display of the
phone, and on the other hand, the users’ touch events on the display of
the phone are forwarded to the tabletop.

The source code has been made public available and appendix A de-
scribes where to find it.

The investigation into prior work shows that the work presented here
is unprecedented. Specifically, the user experience design integrates with
the tabletop and does not require special gestures, it is secure, and it uses
standard hardware. Three features that in combination distances this
from related work.

The security analysis establishes that a secure system is indeed possi-
ble, but there is a separation of concern. The framework handles security
threats by using a secure data connection and requires a pairing procedure
for pairing a secure connection to a physical phone. A developer using
the framework must implement a sufficient authentication mechanism in
accordance with the requirements of the application, and the end user
must make sure no other persons use the phone while it is connected to
the tabletop.

The framework features some UI controls, three sets of identified
events, and a customisable authentication mechanism. For example,
the IdentifiedSurfaceButton extends the functionality of a normal
SurfaceButton by being able to react to the identity of the user touch-
ing, and the IdentifiedViewport can hide and reveal information from
smartphones hovering over the control based on the identity of the smart-
phone users. Developers using the framework can use identified touch
events, identified hover events, and identified person events to build their
own controls and functionality.

The framework is used for building a non-trivial application for the
restaurant of the future. The application takes advantage of the identified
events by integrating the framework UI controls IdentifiedViewPort,
IdentifiedSurfaceButton, and PersonalizedView with UI controls
of the Surface API, and thereby allowing automated ordering and pay-
ment.

Besides the simple fact that the framework does operate as intented,
the evaluation establishes that users quickly learn to use features of the
framework. The most significant evaluation result is a list of five design
guidelines. Based on the comments of users, this list can help leverage the
quality of an application. For example, it is better to lessen the number
of times the phone is moved, by moving an item to the phone, instead of
moving the phone to the item. Another example is, that an application
must feature visual clues to where to use the phone, especially when

1.5 Thesis overview 5

using the PersonalizedView control. Otherwise users might overlook
the functionality.

1.5 Thesis overview

The remainder of this thesis has been structured as follows:
Related work (chapter 2) investigates prior work in relation to non-

anonymous user interaction on tabletop displays and surfaces.
The NAI framework (chapter 3) describes the user experience design

as well as how to use the framework for building applications.
The Security analysis (chapter 4) describes the security threats. This

have affected the Implementation (chapter 5) that describes in details the
important aspects of how the system has been built.

Using the NAI framework for application building (chapter 6) docu-
ments that the framework can be used for building a non-trivial appli-
cation, and the Evaluation (chapter 7) documents a usability test of the
framework.

The thesis ends with a Discussion (chapter 8) of the results, and a
Conclusion (chapter 9) that summarises the results.

6 Introduction

Chapter 2

Related work

Research in co-located user interaction is not a new thing. Even before
large surface displays were widely adopted by the research groups inves-
tigation into multi user settings were conducted. For example Steward et
al. [22] shared a drawing application on a single display, and users were
represented by a mouse pointer. Bier et al. [1] also allowed users to regis-
ter to a mouse pointer and perform personalised interaction. The Pebbles
project [11] used a number of PDAs as input devices to a shared display.
Each PDA representing its user had the RemoteCommander application
running that allowed turn-based control of the shared PC, but essentially
it was a remote control. The PebblesDraw was a shared drawing applica-
tion that investigated the challenge of having different PDAs operate on
a shared experience. The weight of this kind of research has been put on
the investigation of the interaction itself. That is, an investigation into
how a user interface could be designed when moving beyond the single
user environment of PC into a collaborative setting. More recent research
adds to this area as Ryall et al. [16, 17] try to overcome

user interface challenges such as access control, preference op-
timisation, reach, and surface clutter

when operating with tabletops and multi user surfaces with the concept
of IdWidgets.

Although these studies are all important, this thesis has another fo-
cus. We provide a technical solution as a framework that allows for non-
anonymous user interaction on tabletop displays. Therefore the remainder
of this chapter will discuss previous work on the technical aspects of how
non-anonymous user interaction for wall-sized surfaces and tabletop has
been solved hitherto.

The DiamondTouch MultiTouch [4] by Dietz et al. is an important
contribution. Being a touch sensing surface only (it is not a display in
itself) it is required that the displayed image is projected upon it. The
DiamondTouch consists of a horizontal and a vertical aligned array of
antennas with electrically conductive material. To protect them from
direct touch and the environment, these are covered with an insulating

8 Related work

layer, that in return allows liquids to be spilled and even fire to be lit
during operation.

When a user touches the DiamondTouch a capacitative coupled cir-
cuit is completed. The transmitter sends a unique signal through each
and every antenna, and when a user touches a subset of antennas, the sig-
nals travels through the user and back to the receiver via a capacitative
connector in the chair. The receiver interprets the signals, and transform
them into a personal touch coordinate. This research is further extended
by Dietz et al. [3] to include physical objects like buttons, levers, and even
a resistive touch screen that allows identified single-touch operations on
a LCD display.

Apart from the problems raised by the fact that the image is projected
from above, and hence is easily obstructed, the real challenge lies in that
this solution “only” allows for a discrimination between the users seated
around the table, i.e it can distinguish user 1 from user 2, but it cannot
uniquely authenticate a person. In essence you are where you sit, and
nothing more. Other measures must be done in order to pair the seat to
an identity. Because the identifying signals travel through the body the
identification mechanism is easily challenged. If user 1 touches user 2
while touching the surface, the touch is detected as being performed by
both, and if user 1 lifts himself from the chair while touching user 2, the
touch will be interpreted as originating from user 2 only. In a scenario
where an amount of security is needed, this is much too insecure, while
gaming scenarios might fit perfectly.

Instead of embedding the identification into the touch technology it-
self, other projects have taken another approach by utilising computer
vision. That seems to integrate nicely with surface displays that registers
touch events by processing the images captured by video cameras because
the hardware, and possibly software, is already present.

HandsDown [19] is a research project by Dominik Schmidt et al. that
can identify the user touching the tabletop by recognising the hand-
contour. For example placing a stretched out hand on a digital item
on the tabletop associates it with the user. Likewise the user can un-tag
the digital item again by replacing the hand.

The simplicity of the user interaction is at the same time both an
advantage and a drawback. The advantage is the simplicity itself by not
requiring any extra devices. The drawback of such an approach is that
identified interaction with the tabletop must adapt to the notion of plac-
ing your hand with spread fingers in order to let the surface detect the
identity of the user. It may result in an unnatural or limited interaction
when extending its usage beyond the exemplifying scenarios of the article.
Extending the usage scenarios to hospitals or other places where actual
authentication is a requirement, using only a hand contour is simply not
viable. The hand contour can be reproduced without much effort, and
other authentication factors are needed as well, but that will ruin the sim-
plicity. Imagine the user had to enter a PIN code every time he placed

9

his hand on the surface.

Other research projects are centered around specialised hardware or
objects that must be worn or used, in order to detect a personalised touch.
This gives a more freely interaction than for example HandsDown.

The The IR Ring [15] by Volker Roth et al. is a good example of this
other approach. Inspired by the Java Ring, the IR ring should be worn
when interacting with a multi-touch display. Each ring transmits a pseudo
random bit sequence via IR that is recognised by the capturing system
of the tabletop. Because the system knows the bit sequence it allows
the otherwise anonymous touch events to be associated with an unique
user. Although the IR signal was not encrypted, the authors argue that
it could be encrypted for increased security, but they are in general aware
of the trade-off between strict security policies, computational resources
and usability.

In a setting where you need two-factor authentication, or even more
strict authentication mechanisms, the otherwise simple interaction with
the tabletop becomes cumbersome. For example if the system requires
you to enter a PIN code every time the IR ring is used for a personalised
touch event, that will quickly become a major obstacle when using it.

A similar project to the IR ring is IdWristbands by T. Meyer and D.
Schmidt [9]. It uses Arduino based LilyPads controller boards attached
to a wristband. The board controls two LEDs sending IR light in order
to identify the user interacting with a MSS. This project was aiming for
differentiating the users in contrast to the IR ring, that ultimately wants
to be able to authenticate its users.

Taking the IR light even further the pPen [12] research project uses
a pressure sensitive pen identified by an IR light emitter at the tip, and
a RF module that sends data to the system. A user is authenticated
to the system (or really the pen) by having the user re-write a pass-
word that was entered previously. The computer compares the pressure
variance of the handwriting to the database and authenticate if a match
can be made. Undoubtedly an elegant solution, it relies on probability
when comparing the pressure variance to the database. A 100% match
is not likely, therefore the solution needs to set a threshold that is less
in order to find a match. False positives may increase as the user base
increases. While this may be sufficient in some settings, it can be insuffi-
cient in others. Our solution relies on encrypted wireless connection with
a completely customisable authentication mechanism, without requiring
specialised hardware. In addition to this, the pPen rely on pressure events
of the tip. Our solution have, besides the touch event also a hover event,
and hence provide a larger set of interaction possibilities for the UI de-
signer.

10 Related work

Fiduciary-tagged gloves by Marquardt et al. [8], are gloves decorated
with special tags supplied as a part of the API to the MSS. Tags are
put on every finger, palm, top of hand, and on the side. This allows for
a highly differentiated set of touch possibilities, while operating with a
clear distinction between the users (or gloves as it is). This does call
for novel interaction design, but it is not useful in a setting with even a
small degree of security, as there is no way a touch can be authenticated
by itself. Even though a glove may be owned by a person, the tags can
easily be replicated.

Mobile phones, and especially smartphones, of today are capable of
much more that making a phone call. These capabilities have been ex-
ploited in research projects that pair up a phone and a surface computer in
a way that allow for identified and potentially authenticated interaction.
Furthermore, targeting hardware like a mobile phone have the advantage,
that users are not burdened with extra hardware. Users of today already
own a mobile phone, and it is just a matter of extending its functionality
by installing software to allow the phone to be used in new settings.

In the PhoneTouch [18] project, a smartphone is used to identify the
touch of a user. By tapping the corner of a phone on to a tabletop right
next to the touch of a user, the computer associates the identity provided
by the phone to the touch event of the user. The phone itself detects
the tap using the build-in accelerometer, and sends a timestamp to the
tabletop via a wireless connection. The optical system of the computer
detects the tap and records the timestamp and pairs the tapping event
with the event sent from the phone.

The interaction possibilities of PhoneTouch is restricted by the fact
that you need to tap with your phone whenever an identified action is
wanted. Smartphones of today have enough CPU power to be able to
supply a strong authentication and a secure connection to a computer, but
in this setting the authentication will be questioned by the uncertainty of
using timestamps and associating taps to touch events by probability. As
the number of simultaneous users increases, the uncertainty will increase
as well.

Schöning et al. [21] have designed a system that allows for sponta-
neously authentication and interaction with a multi-touch surface wall.
It is designed to allow smaller regions of a large surface to be associated
with an authenticated user, hence adding support for multi-touch appli-
cation in a critical setting like an emergency control room. The system
requires a user to tap and hold a mobile phone on to the surface. The mo-
bile phone detects the tap either via the build in accelerometer or using
the microphone. Then it initialises the authentication with the surface
computer by connecting via Bluetooth while lighting up the flash. The
surface computer pairs the flash signal to the Bluetooth signal, and if both
signals are received within an acceptable time frame and no ambiguity
from other signals are disturbing, that area or that control the flash light
is pointing to is associated with the authenticated person. Any conven-

11

tional touch in that area will be controlled by the authenticated person.
Detection of the flashes requires an additional camera that operates in
the visual spectrum of light to be set up behind the surface wall.

Although this solution allows a more freely interaction than for exam-
ple PhoneTouch, the interaction is not completely fluent. The interaction
is obstructed whenever a control requires an authentication before it can
be activated.

To summarise, prior work differs internally in a number of ways. Some
projects requires specialised hardware to be able to detect the identity of
a user [12, 4, 3, 9, 15]. The PhoneTouch [18] project utilises a standard
smartphone, but interaction is restricted to tapping with the corner of the
phone on the tabletop. HandsDown [19] requires a special hand gesture to
operate, but does use other hardware than the tabletop itself. Schöning
et al. [21] uses a standard mobile phone equipped with a flash, with
the potential of having a strong user authentication, but authentication
must be performed every time a user wants to use a control, somewhat
obstructing a fluent user experience.

In comparison to prior work, our work have been designed so that
the user experience integrates with the tabletop and does not require
special gestures. In particular, it is implemented as a framework, and is
secure. In addition to this, an important detail is that the framework
uses standard hardware.

12 Related work

Chapter 3

The NAI framework

A MSS tabletop cannot natively link an action to the identity of its orig-
inator. The NAI framework provides a solution to this problem, which
tries to be as close to the user experience of a tabletop display as possible.
The idea is not to require the users to learn new interaction schemes or
use specialised hardware. Section 3.1 describes the general user experi-
ence design which is the foundation of the NAI framework. Section 3.2
walks through the developer API provided by the NAI framework and for
each component in the API, explains the user interaction design as well
as how to use the component as a developer. Section 3.3 describes the
required setup procedure for the smartphone before identified interaction
is possible.

The framework features described in the following sections are also
illustrated in a video found here:

http://www.youtube.com/watch?v=H9n6vRNgNR8

3.1 General user experience design

The idea behind the NAI framework is to use a smartphone to mediate a
user’s interactions with the tabletop. The mediation is two-way, meaning
that the smartphone does both present output as well as accepting input.
Output is presented on the smartphone display when it is placed on the
tabletop. The phone displays the segment of the tabletop screen which the
phone covers. This gives a glass like effect where you can “see through”
the phone, see figure 3.1(a). If the phone is moved over some input
accepting control on the tabletop, like a button, the user may click the
button on the smartphone display. That click event is sent to the tabletop
computer, where it is treated as an identified event, because the tabletop
assumes that it is the smartphone user who clicked the button, see figure
3.1(b). Besides clicking the screen, the user can interact by moving the
smartphone. Moving the smartphone closely resembles moving a pointing
device like a mouse.

http://www.youtube.com/watch?v=H9n6vRNgNR8

14 The NAI framework

(a) The smartphone screen behaves
like a piece of glass when placed on
the the tabletop.

(b) The smartphone’s touch screen
is used for identified inputs, like
clicking a button.

Figure 3.1: The smartphone acts as a two-way mediator between the
tabletop and the user.

3.2 Usage

The NAI framework encapsulates the complexity of the identified interac-
tion design introduced above in a developer API with a set of components.
The API can be used to create new tabletop applications that rely on and
utilise user identification. Most of the components in the API are related
to the tabletop, where applications are written in WPF (Windows Pre-
sentation Foundation), which is a mixture of XAML and C# code. The
Surface API is built on top of WPF, and the NAI framework is built
upon the Surface API. On the smartphone the programming is done on
top of the Android software stack. A diagram overview of the developer
API of the NAI framework is depicted in figure 3.2. Components below
the dashed line represent the code that makes the framework operate,
and components above the dashed line constitute the developer API. The
following list summarises the available components in the developers API:

Name Type Platform
IdentifiedInteractionArea Items control MSS
IdentifiedSurfaceButton Control MSS
IdentifiedViewport Control MSS
PersonalizedView Content control MSS
Identified events Event set MSS
Custom authentication Mechanism Both

The first five components are described further below. Custom au-
thentication is related to the setup procedure and is hence described in
section 3.3.

3.2 Usage 15

Figure 3.2: Developers view of the NAI framework.

3.2.1 IdentifiedInteractionArea

The key to the NAI framework is the IdentifiedInteractionArea.
It is the required, logical container that make identified controls work.
Identified controls are any custom controls or UI element that make use
of the identified events provided by the NAI framework.

3.2.1.1 User experience design

The control in itself is not visible to the user, because it is basically an
empty container. Figure 3.3 shows an example of an application where the
right side of the tabletop display contains an IdentifiedInteraction-

Area with some identified controls inside. The coloured borders are added
to illustrate that the IndentifiedInteractionArea only covers the
right side of the tabletop.

Figure 3.3: An IdentifiedInteractionArea filling the right side of the
tabletop display.

16 The NAI framework

3.2.1.2 Developer API

The IdentifiedInteractionArea component is an Items control, with
the same basic property as the WPF class ItemsControl: It presents
a collections of items. The control is special, because it is an ancestor
control, which enables identified interaction on the elements placed as
descendants of the control.

The IdentifiedInteractionArea control must be placed as an
outer element in the element tree and must only be declared once. Even
though it is recommended to let the IdentifiedInteractionArea con-
trol fill the entire tabletop display area, it is not required. In the example
application shown in figure 3.3, the IdentifiedInteractionArea con-
trol only fills the right side of the surface display. The XAML code for
that application is:
<Grid>

...
<Border Grid.Column="0" BorderBrush="Red"

HorizontalAlignment="Stretch" VerticalAlignment="Stretch">
</Border>

<Border Grid.Column="1" BorderBrush="Green"
HorizontalAlignment="Stretch" VerticalAlignment="Stretch">
<id:IdentifiedInteractionArea>

...
<!-- Identified Controls -->
...

</id:IdentifiedInteractionArea>
</Border>

</Grid>

3.2.2 IdentifiedSurfaceButton

The IdentifiedSurfaceButton is an extended version of the Surface-
Button from the Surface API, which again is an extended version of
the Button from WPF. Hence the name becomes IdentifiedSurface-
Button. The control is suitable in scenarios where the user must choose
or confirm something important, that requires an identified event.

3.2.2.1 User experience design

Since the button extends the SurfaceButton from the Surface API, the
look and feel are not different. The button is depicted in figure 3.4.

3.2.2.2 Developer API

The XAML code for an IdentifiedSurfaceButton looks like this in its
most simple form:
<id:IdentifiedSurfaceButton IdentifiedClick="OnIdentifiedClick">

Click me!
</id:IdentifiedSurfaceButton>

The IdentifiedSurfaceButton have been designed so the usage
resembles that of a SurfaceButton. A SurfaceButton raises its own
Click event when pressed, and an event handler is added by using the

3.2 Usage 17

Figure 3.4: The IdentifiedSurfaceButton control with a smartphone
on top.

Click property. The IdentifiedSurfaceButton raises its own Iden-

tifiedClick event when pressed via the screen of a connected smart-
phone, and an event handler is added by using the IdentifiedClick

property. The code below shows the event handler registered above.
...
private void OnIdentifiedClick(object sender,

RoutedIdentifiedEventArgs e)
{

...
}
...

The RoutedIdentifiedEventArgs type contains the inherit event
arguments, but also information about the identity of the user. This al-
lows the developer to use the identified event and customise the behaviour
accordingly. More information on events and event handling can be found
in section 3.2.6.

As mentioned above the IdentifiedSurfaceButton is an speciali-
sation of the SurfaceButton and the inherit Click event still remains
active. A developer can therefore distinguish between un-identified and
identified click events.

The un-identified event can be blocked by setting the property Block-
ClickEvent to True. It prevents both the Click event from being raised
and the animation from being activated when a user presses the button.
The following example shows a button with where un-identified events
will be blocked.
<id:IdentifiedSurfaceButton

IdentifiedClick="OnIdentifiedClick"
BlockClickEvent="True">

Click me!
</id:IdentifiedSurfaceButton>

3.2.3 IdentifiedViewport

The IdentifiedView control is used to hide information from specific
users.

18 The NAI framework

3.2.3.1 User experience design

The idea is, that a solid shape covers an area of the tabletop display
and only certain users can, by placing their smartphone on top of it, see
what is behind the solid shape. The control is illustrated in figure 3.5. A
customisable filter function delegate determines which users are allowed
to see through the shape, and the layout of the shape is specified by the
developer using the control.

(a) A secret text to be
hidden.

(b) The identified
viewport hides the
secret text.

(c) An authorised
smartphone reveals the
secret text.

Figure 3.5: The IdentifiedViewport control.

3.2.3.2 Developer API

In the example shown in figure 3.5 the yellow IdentifiedViewport hides
the text. The XAML code below shows how to create such a viewport:
<id:IdentifiedViewport x:Name="MyIdentifiedViewport" Fill="Yellow">

<id:IdentifiedViewport.Base>
<RectangleGeometry Rect="0,0,700,500" />

</id:IdentifiedViewport.Base>
</id:IdentifiedViewport>

The Base property defines the shape of the covering area, and the Fill
property the colour. The colour is an instance of a Brush and more
advanced colouring possibilities exists by adding custom brushes in the
code-behind file to the Fill property. In the example above the covering
shape is a rectangle, but it can be any shape as long as it is a specialisation
of the Geometry type from the WPF framework.

By default, any connected smartphone can see through the Identified-
Viewport, but a filtering delegate function can be added for customised
behaviour.

Example Adding a customised filter delegate to the IdentifiedViewport
in the code behind file:
...
MyIdentifiedViewport.FilterDelegate = new

IdentifiedViewportFilterDelegate(UserFilter);
...
private bool UserFilter(RoutedIdentifiedHoverEventArgs e){

if (e.ClientId.Credentials.UserId.Equals("berglund@itu.dk")
return true;

return false;
}
...

3.2 Usage 19

This authorises only users with the user id berglund@itu.dk to see through
the viewport, and thereby see the hidden information. The filtering func-
tion can be set at any time during runtime.

Applications built for a tabletop display typically allow the visual el-
ements to move, rotate, and/or scale based on users interactions. Moving
an IdentifiedViewport will invalidate its layout. For example when
considering figure 3.5(c), moving the yellow rectangle while not mov-
ing the phone, will not close the viewport. Whenever an instance of
IdentifiedViewport is moved, the method Moved must be called. That
will update the layout and place the port holes correctly.

3.2.4 PersonalizedView

The image displayed on the smartphone is considered as being private to
the owner of the phone. This gives the opportunity to display information
targeted a specific user. That functionality is called a PersonalizedView
within the NAI framework.

3.2.4.1 User experience design

A PersonalizedView can be any visual element, like a text, a picture
or even a small dialog with buttons, and it can for example be added to
a user’s phone display during the handling of an identified event. Figure
3.6 shows an example, where users get a small personal colour palette
to choose the colour of an ellipse. The two smartphones have different
colour palettes.

Figure 3.6: A PersonalizedView can be used to give a differentiated
user experience. Here is an example where two users get different colour
palettes.

A PersonalizedView is not projected directly onto the screen of the
phone, instead it is displayed underneath the phone directly on the table-
top display. If the phone is moved, the PersonalizedView automatically
follows along.

20 The NAI framework

3.2.4.2 Developer API

A PersonalizedView is a Content control type, with the same basic
property as the WPF class ContentControl: It holds a single piece of
content. That piece of content must be a specialisation of the WPF class
UIElement.

In the example application in figure 3.6 the PersonalizedViews are
added and removed based on whether the phones hover over the ellipse.
The identified hover events, introduced in section 3.2.6, are used to achieve
this. Different users get different PersonalizedViews. The C# event
handling code which adds and removes the PersonalizedView colour
palettes looks like this:
private void Ellipse_HoverOver(object sender,

RoutedIdentifiedHoverEventArgs e)
{

if (e.ClientId.Credentials.UserId.Equals("berglund@itu.dk")
{

e.ClientId.PersonalizedView.Add(
new ColourPickerCMY(MyEllipse));

}
else
{

e.ClientId.PersonalizedView.Add(
new ColourPickerRGB(MyEllipse));

}
}

private void Ellipse_HoverOut(object sender,
RoutedIdentifiedHoverEventArgs e)

{
e.ClientId.PersonalizedView.Remove();

}

The RoutedIdentifiedHoverEventArgs instance provides access to the
identity of the originator of the event (e.ClientId) containing an in-
terface to add and remove a PersonalizedView. In the example, user
berglund@itu.dk gets a different PersonalizedView than everybody else.
More information about the events, event handling and the identity of the
user follows in the following sections.

3.2.5 User identity

Within the NAI framework, a user’s identity is represented via an in-
stance of the class ClientIdentity. As can be seen from the diagram in
figure 3.7, it contains references to an instance of TagData and Client-

Credentials as well as an interface to add and remove a Personalized-
View.

In order for the NAI framework to operate it is required that a small
tag is stuck onto the back of the smartphone. The instance of TagData
represents this visual marker that is used to track the movements of the
phone. Section 3.3, Setup, and chapter 5, Implementation give more
in-depth information on the usage of the tag.

An instance of ClientCredentials represents the information the
framework knows about a specific user. Different applications have dif-
ferent requirements. The developer has complete control of the type of

3.2 Usage 21

information needed, but the framework requires ClientCredentials to
contain at least a user id. How the developer obtains the control is ex-
plained in section 3.3.2.

The identity of the user is bound to the events that the user causes.
That is, an instance of ClientIdentity is sent along to the event handler
when ever the users trigger an identified event. Developers can then use
this information to personalise the user experience.

3.2.6 Identified events

The NAI framework raises events related to identified interaction, and
these can be used in many ways. The events may be used to create
sophisticated controls, like the IdentifiedViewport or may be used
alone in more simple identified interaction scenarios.

The set of identified events in the NAI framework falls into three
classes. First, a set of identified touch events which is related to finger
based input on the smartphone. Secondly, a set of identified hover events
which is related to what the smartphone screen is displaying. Finally,
a set called identified person events, which is related to the presence of
users (represented by their smartphones) at the tabletop. All event types
of the framework are placed in one single class IdentifiedEvents.

A detailed overview of the three sets of identified events in the NAI
framework is depicted in figure 3.7. Like in WPF, all identified events
related directly to user input are raised in pairs. One tunneling and one
bubbling event. WPF convention prefix names of tunneling events with
Preview-. In the diagram (figure 3.7) as well as in the following sections,
the listing and explanation of the tunneling events have been omitted, as
they are identical to bubbling events. Tunneling events are used in some
of the code examples.

Figure 3.7: Overview of the identified events

22 The NAI framework

3.2.6.1 Identified touch events

The identified touch events are normal touch events augmented with the
identity of its originator. As for normal touch events, an identified touch
raises a series of identified touch events in a specific order1. The events
are:

IdentifiedTouchEnter Raised once on every element the user starts
touching.

IdentifiedTouchDown Raised once on the first element the user starts
touching.

IdentifiedTouchMove Raised every time the user moves the finger on
elements the user already is touching.

IdentifiedTouchUp Raised once on the last element the user touched
after the touch has ended.

IdentifiedTouchLeave Raised once on every element the user no longer
touches.

Figure 3.8: Example application showing the usage of the identified touch
events.

Example Figure 3.8 shows a simple application that uses identified
touch events to position, re-position, and remove coloured balls. When
a finger touches the smartphone display, a ball coloured with the user’s
favorite colour appears underneath his finger. If the finger is moved, the
ball follows along, and if the finger is lifted the ball disappears. An ex-
ample of how this can be implemented is listed below. The XAML code
that defines the basic layout looks like this:
...
<Border Name="myBorder" Background="Transparent">

<Canvas Name="MyCanvas"/>
</Border>
...

1http://msdn.microsoft.com/en-us/library/ms754010.aspx (as of 11 July 2011)

3.2 Usage 23

The event handler of three identified touch event are added to the
Border in the constructor of the code behind file:
...
MyBorder.AddHandler(IdentifiedEvents.PreviewIdentifiedTouchDownEvent,

new IdentifiedEvents.RoutedIdentifiedTouchEventHandler(
OnIdentifiedTouchDown));

MyBorder.AddHandler(IdentifiedEvents.PreviewIdentifiedTouchMoveEvent,
new IdentifiedEvents.RoutedIdentifiedTouchEventHandler(

OnIdentifiedTouchMove));

MyBorder.AddHandler(IdentifiedEvents.PreviewIdentifiedTouchUpEvent,
new IdentifiedEvents.RoutedIdentifiedTouchEventHandler(

OnIdentifiedTouchUp));
...

The implementation of the three event handlers for the coloured ball
application look like this:
...
private void OnIdentifiedTouchDown(object sender,

RoutedIdentifiedTouchEventArgs e)
{

Brush favoriteColour = GetFavoriteColour(e.ClientId);
Ellipse elip = CreateEllipse(favoriteColour);
SetCenterPosition(elip, e.Point);
MyCanvas.Children.Add(elip);
ellipsesInUse[e.ClientId] = elip;

}

private void OnIdentifiedTouchMove(object sender,
RoutedIdentifiedTouchEventArgs e)

{
SetCenterPosition(ellipsesInUse[e.ClientId], e.Point);

}

private void OnIdentifiedTouchUp(object sender,
RoutedIdentifiedTouchEventArgs e)

{
MyCanvas.Children.Remove(ellipsesInUse[e.ClientId]);
ellipsesInUse.Remove(e.ClientId);

}
...

The OnIdentifiedTouchDown handler for the PreviewIdentified-
TouchDown event creates an ellipse with the user’s favorite colour. The
identity of the user, the ClientIdentity instance is supplied by the
RoutedIdentifiedTouchEventArgs and is used to get the correct fa-
vorite colour via the GetFavoriteColour method. The ball is positioned
on the canvas based on the Point value also supplied by the Routed-

IdentifiedTouchEventArgs. For future event handling, the ellipse is
stored in a dictionary indexed by the instance of ClientIdentity.

3.2.6.2 Identified hover events

Moving a smartphone across the tabletop display is similar to moving a
classic computer mouse pointer across a computer monitor. As for the
mouse pointer, the NAI framework uses a set of hover events to indicate
what the smartphone is hovering over. This set of events is not derived
from or related to any existing events on either of the platforms involved.
The identified hover events in the NAI framework are identity augmented

24 The NAI framework

(a) The rectangle is red when no smart-
phone hovers over it.

(b) The rectangle turns green and shows
a greetings message when a smartphone
hovers over it.

Figure 3.9: Example application showing the usage of the identified hover
events.

versions of the normal set of hover events which are applicable for hover
enabled input devices like a computer mouse. The computer mouse uses
hover events a bit different, because it by design only hovers over a single
XY coordinate at any given time. In comparison, the smartphone hovers
over the area covered by its display. This affects when the identified
hover events are raised. The NAI framework defines a smartphone as
being hovering over an element if any point of the smartphone display
hovers over the element. The set of identified hover events are:

IdentifiedHoverOver Raised once on elements the smartphone starts
to hover over.

IdentifiedHoverMove Raised every time the smartphone moves on el-
ements the smartphone is already hovering over.

IdentifiedHoverOut Raised once on elements the smartphone is no
longer hovering over.

Example Figure 3.9 shows a simple application that takes advantage
of the identified hover events. A red rectangle changes colour, and shows
a personalised greeting when a connected smartphone completely hovers
over the rectangle. The following code shows one way of implementing
this behaviour. The event handler is setup directly in the XAML code,
just as you can with events specific for WPF or Surface API:
...
<Border Background="Red" Name="MyBorder"

ide:IdentifiedEvents.IdentifiedHoverOver="OnIdentifiedHover"
ide:IdentifiedEvents.IdentifiedHoverMove="OnIdentifiedHover"
ide:IdentifiedEvents.IdentifiedHoverOut="OnIdentifiedHover">
<TextBlock Name="MyTextBlock" Visibility="Hidden"/>

</Border>
...

The logic for the event handler is declared in the code behind file:

3.3 Setup 25

...
private void OnIdentifiedHover(object sender,

RoutedIdentifiedHoverEventArgs e)
{

if ((e.RoutedEvent == IdentifiedEvents.IdentifiedHoverOverEvent ||
e.RoutedEvent == IdentifiedEvents.IdentifiedHoverMoveEvent) &&
IsRectangleInsideBorder(e.HoveringRectangle))

{
MyBorder.Background = Brushes.Green;
MyTextBlock.Text = "Hello, " + e.ClientId.Credentials.UserId;
MyTextBlock.Visibility = Visibility.Visible;

}
else
{

MyBorder.Background = Brushes.Red;
MyTextBlock.Visibility = Visibility.Hidden;

}
}
...

The RoutedIdentifiedHoverEventArgs instance passed along when
handling identified hover events includes a rectangle, called HoveringRect-
angle, that is sized and rotated to exactly mark the smartphone display.
The method IsRectangleInsideBorder (not implemented) can use the
rectangle together with the VisualTreeHelper from the WPF frame-
work to determine whether or not the rectangle is completely hovering
over the Border. As shown in figure 3.9(b), the smartphone display must
be placed completely within the Border before the colour changes and
the UserId becomes visible.

3.2.6.3 Identified person events

The fact that users connect their smartphones to the tabletop in order
to do identified interaction, allows the tabletop to keep track of who is
connected, and hence who is present around or near the table. Two event
types are raised when users arrive at or leave the tabletop:

IdentifiedPersonArrived Raised once when the user has successfully
completed the pairing of the smartphone tag with the tabletop (step
3 in section 3.3.1).

IdentifiedPersonLeft Raised once when the user’s smartphone discon-
nects from the tabletop.

These events are not directly related to user input, so they are only
raised once in a bubbling version. The events are always raised on the
IdentifiedInteractionArea control. There is no example of how these
events are used, as adding and declaring an event handler resembles the
examples from above. The base class RoutedIdentifiedEventArgs is
sent via the event handler which only provides access to the instance of
ClientIdentity.

3.3 Setup

The smartphone runs a special application, which is part of the NAI
framework. The application must be installed before identified interac-

26 The NAI framework

tion with a NAI framework application on the tabletop is possible. The
current implementation of the NAI framework only includes an applica-
tion for Android powered phones, version 2.1 or newer. Furthermore, the
phone is required to have a MSS tag stuck on the back in order to let
the tabletop computer detect the presence of the phone on the tabletop
surface as well as its position and rotation. The tag must preferably be
placed in the middle of the back, and oriented towards the top of the
phone. An ideal position is depicted in figure 3.10.

Figure 3.10: A MSS tag stuck on the back of an HTC Desire.

3.3.1 Smartphone application startup procedure

When the smartphone application is started, it tries to automatically
discover a tabletop computer on the same network and establish a secure
(SSL) connection to it. The tabletop must have a SSL certificate installed
in the local key store in order to successfully complete the SSL handshake.

The current implementation of the NAI framework only provides a
minimum implementation of automatic tabletop discovery and SSL con-
nection setup. It is not an objective of this thesis to provide a nice
customisable developer interface to these areas of the framework.

Once the connection has been setup, there is a mandatory two or three
step setup procedure the user must go through to prepare the phone to
be used for identified interaction on the tabletop. The steps are:

1. User authentication

2. Smartphone and tag pairing

3. Smartphone calibration [Only the first time]

Each step is explained below. When the steps have been completed,
the smartphone begins displaying the tabletop segment it covers and it
accepts touch inputs.

3.3 Setup 27

3.3.1.1 Step 1: User authentication

The first thing the user sees is an authentication dialog on the smart-
phone. The NAI framework allows users to use any smartphone as long
as they are able to provide the necessary credentials to be successfully
authenticated.

The authentication mechanism in the NAI framework is customis-
able, meaning that the type and amount of credentials required to be
authenticated may differ. It is part of the developer API of the frame-
work that the authentication mechanism can be customised and scaled
to different application contexts and security requirements. Section 3.3.2
describes how a custom authentication mechanism can be implemented
and plugged into the framework.

The framework provides a minimum default authentication mecha-
nism implementation where the user simply enters a user id, see figure
3.11.

Figure 3.11: User authentication. The user provides the necessary cre-
dentials.

3.3.1.2 Step 2: Smartphone and tag pairing

When the user is successfully authenticated, it is time to pair the smart-
phone with the tag. At this point the tabletop has established a secure
connection for communication and has recognised the tag on the back of
the smartphone, but for security reasons, it may not assume an associa-
tion between a connection and a tag (see chapter 4 for more).

The pairing procedure is depicted in figure 3.12. The tabletop displays
a PIN code on both sides of the phone, but it is only revealed if the user
press and holds the button next to the PIN code area. When the user has
entered the correct PIN code on the smartphone, the pairing is completed.

3.3.1.3 Step 3: Smartphone calibration

The last step in the setup procedure is calibration of the smartphone. The
purpose is to tell the tabletop how big the smartphone is to allow the right
screen segment to be transmitted and displayed on the smartphone. The

28 The NAI framework

Figure 3.12: Pairing procedure. The user enters the PIN code, shown on
the tabletop, on the smartphone.

calibration step is only necessary the first time the smartphone is used
on the tabletop, because calibrations are saved by the tabletop.

The calibration step is depicted in figure 3.13. A special calibration
control is displayed on the tabletop where the user has to place the phone
in the center and adjust the four dashed lines to mark the size of the
smartphone display. The calibration is completed when the user taps on
the smartphone display and the calibration is saved.

Figure 3.13: Smartphone calibration. The user places the smartphone in
the center and adjust the dashed lines to mark the size of the smartphone
display.

3.3 Setup 29

3.3.2 Custom authentication mechanism

In order to support deployment into most settings the NAI framework
have a flexible authentication mechanism. The framework comes with a
very basic authentication mechanism, but it can be customised to almost
any needs, as the developer can have complete control over the UI on the
Android client, and the credentials used for authentication, as well as the
implementing how the server side accepts these credentials. Note, that
authentication is a requirement. At least some minimal authentication
mechanism must be executed to verify the identity of the user.

3.3.2.1 Tabletop

The tabletop framework API provides a simple pluggable interface that
a developer must use to create his own authentication mechanism. The
interface to implement is called IAuthenticationHandler and is illus-
trated in figure 3.14. The interface uses any specialisation of the Client-
Credentials class. It is up to the framework developer to decide which
credentials his application requires from the user.

Figure 3.14: Class diagram of the customisable authentication mechanism
on the tabletop.

The IAuthenticationHandler interface requires the developer to
implement two methods:

ParseCredentialsMessage Given a byte array (sent from the smart-
phone) containing the user credentials, parse and return an instance
of the self-defined specialisation of the ClientCredentials class.

Authenticate Given an instance of the self-defined specialisation of the
ClientCredentials class, decide whether the smartphone user is
authenticated.

The following code shows the implementation of IAuthentication-
Handler that the framework uses:

30 The NAI framework

public class BasicAuthenticationHandler : IAuthenticationHandler
{

public ClientCredentials ParseCredentialsMessage(
byte[] messageBody)

{
string userId = Encoding.UTF8.GetString(messageBody);
return new BasicClientCredentials(userId);

}

public bool Authenticate(ClientCredentials credentials)
{

// Accept everyone!
return true;

}
}

The AuthenticationState class (see figure 3.14) has a static refer-
ence to an IAuthenticationHandler instance that is used every time
a smartphone tries to authenticate its user. The framework developer
has access to replace this IAuthenticationHandler instance via the
runtime settings of the framework in class RuntimeSettings in the
NAI.Properties namespace. For example:
...

NAI.Properties.RuntimeSettings.AuthenticationHandler = new
MyCustomAuthenticationHandler();

...

When a smartphone user is authenticated, the ClientCredentials
object instance created by the authentication handler is available to the
developer when handling identified events. The ClientIdentity in-
stance provided by the RoutedIdentifiedEventArgs has the reference
to the specialisation of the ClientCredentials object (see section 3.2.6).

3.3.2.2 Smartphone

The smartphone side of the authentication is handled quite differently
than the tabletop side. Besides sending the customisable credentials in
a byte array to the tabletop, the developer must also be able to cus-
tomise the user interface, thus allowing the user to submit any kind of
credentials. The class diagram in figure 3.15 shows the core classes and
the implementation of the default authentication mechanism in the NAI
framework.

BaseActivity is the basic class controlling the application, and it
requires a specialisation of the abstract class AuthenticationHandler
to handle the authentication. By default the application uses Basic-

AuthenticationActivityHandler. This class requests a launch of the
BasicAuthenticationActivity, a simple activity that allows the user
to enter a username. Both of these can be replaced by the developer.

The abstract AuthenticationHandler class requires the developer
to implement four abstract methods:

requestCredentials When the BaseActivity is launched and a secure
connection to the tabletop has been established, the user must be
prompted for credentials. The most versatile solution is to use an
activity, but a simple dialog may also be used. To launch an activity

3.3 Setup 31

Figure 3.15: Class diagram of the customisable authentication mechanism
on the smartphone.

to prompt the user for credentials, the protected method start-

ActivityForResult must be used. In the default authentication
implementation, the BasicAuthenticationActivityHandler launches
the BasicAuthenticationActivity that allows the user to enter
his or her username (a screenshot is provided in figure 3.11).

onActivityResult If requestCredentials launched an activity, re-
sults from that activity are returned to the handler via onActivity-
Result. An instance of the ClientCredentials must be returned
to the BaseActivity. Notice, that the developer must implement
a specialisation of the ClientCredentials class. The default im-
plementation BasicClientCredentials requires only a user id.
BaseActivity sends the credentials to the tabletop2.

onAuthenticationRejected If the tabletop rejects the credentials, the
handler is notified via this callback method, and the developer
should take the appropriate actions. In the case of the Basic-

AuthenticationActivityHandler the BasicAuthentication-

Activity is relaunched.

onAuthenticationAccepted When the tabletop accepts the creden-
tials, this method is called, allowing the developer to use that infor-
mation. For example, for logging, or to store information for easier
authentication the next time.

The implementation of BasicAuthenticationActivityHandler is
shown below, and is used as the default authentication mechanism in the
NAI framework:

2Communication to the server goes via a SSL connection and is therefore encrypted.
There is no immediate need for further encryption of the credentials, but it is of cause
optional.

32 The NAI framework

public class BasicAuthenticationActivityHandler extends
AuthenticationHandler

{
public BasicAuthenticationActivityHandler(BaseActivity context)
{

super(context);
}

public void requestCredentials()
{

startActivityForResult(BasicAuthenticationActivity.class);
}

public ClientCredentials onActivityResult(int resultCode, Intent
data)

{
if (resultCode == Activity.RESULT_OK)
{

String userId = data.getExtras().getString(
BasicAuthenticationActivity.INTENT_EXTRA_USER_ID);

if (userId != null && userId.length() > 0)
{

return new BasicClientCredentials(userId);
}

}
// Fall back - close the application.
context.finish();
return null;

}

public void onAuthenticationAccepted() {}

public void onAuthenticationRejected()
{

Toast.makeText(context, "Authentication rejected", Toast.
LENGTH_SHORT).show();

requestCredentials();
}

}

A developer can easily plug in a customised authentication mecha-
nism. Assuming that the entry point of the Android application is the
Main class, the authentication handler is set in the constructor, as shown
below.
public class Main extends BaseActivity
{

public Main()
{

setAuthenticationHandler(
new BasicAuthenticationActivityHandler(this));

}
}

Any new activities must be declared in the Android manifest as normal.

Chapter 4

Security analysis

Designing a framework for others to safely build applications upon, re-
quire a careful analysis of potential security threats. Especially in the
case of the NAI framework, where identity and authenticity of users are
important. This security analysis explains the security threats to the
framework and specify the measures that have been taken in the design
of the framework.

A system design overview, figure 4.1, states four areas (marked with
numbers) where the system is vulnerable to different attacks. The fol-
lowing sections treat each of these four areas with an explanation of the
possible threat(s) as well as providing a solution for mitigation or com-
plete elimination:

4.1 Area 1: Non-anonymous user interaction

The basic idea behind the NAI framework is to provide a way to link an
action to the identity of its originator. This predominant feature is called
non-anonymous user interaction. All of the security related requirements
of the NAI framework discussed in this security analysis originate from
this feature.

Non-anonymous user interaction is the same as identified user inter-
action. The word identified is the adjective version of the noun identi-
fication, which some may confuse with authentication. Even though the

Figure 4.1: A security threats overview of the NAI framework.

34 Security analysis

two words are closely related, they are fundamentally different. Stephen
Downes [5] states the difference very clearly with his definition of the two
words, quoting:

Identification is the act of claiming an identity, where an identity is a
set of one or more signs signifying a distinct entity.

Authentication is the act of verifying that identity, where verification
consists in establishing, to the satisfaction of the verifier, that the
sign signifies the entity.

If these definitions are translated to the context of the NAI frame-
work, with Bob as an example, then Bob is a distinct entity. The signs
to signify him is the smartphone he uses and the credentials he provides
during the initial user authentication. Every time Bob uses his smart-
phone to create an identified event in the NAI framework, his identity
is associated with the event. The problem is, that when such an event
occurs, the smartphone alone signifies Bob as a distinct entity. Another
person could impersonate Bob, by using Bob’s smartphone to create an
identified event, because the framework then would associate Bob’s iden-
tity with the event. This is because the individual identified events are
not authenticated. The argument for not doing this narrows down to a
discussion about the tradeoff between security and usability. It would be
annoying and obstructive for the users interacting with the tabletop if ev-
ery identified event required a password to be entered, but it would on the
other hand be very secure. So the fact that events in the NAI framework
are only identified, and not authenticated, introduces a security threat
regarding impersonation. It is up to the application developers using the
NAI framework to decide the severity of this threat in their application
context.

The NAI framework authenticates users only one time during the
startup procedure of the smartphone application. In here lies the as-
sumption, that once the tabletop has established that Bob is the user of
his smartphone, then Bob is the only one using his smartphone for inter-
action with the tabletop application throughout the application session.
This is equivalent to other computer systems, where users are required to
log in on startup, and log out when they are finished.

Authentication is, as stated above: “. . . verification to the satisfac-
tion of the verifier. . . ”, which basically means that how authentication
is done depends on the application context. Possible applications for the
NAI framework include the emergency room control unit for dispatching
emergency units after a flooding [21], and an order and payment system
for a restaurant, where the guests order and pay their meal without in-
volving a waiter (see chapter 6). The level of authentication required in
those two applications are different, because of the consequences of the
actions carried out by users. So the real verifier in the authentication
process must be the application running on top of the NAI framework.
At the application level, it should be possible to specify a satisfactory
level of user authentication. The NAI framework does not use the iden-

4.2 Area 2: Tabletop – smartphone communication 35

tity of users – it only provides the identity. So the framework does not
care how Bob is authenticated – just that he is authenticated.

4.2 Area 2: Tabletop – smartphone communica-
tion

Communication between smartphones and the tabletop computer is done
over a Wi-Fi connection as illustrated by the links (nr. 2) in the system
overview figure. The messages being transmitted back and fourth contain
sensitive information, like for instance a touch event being transmitted
from a smartphone to the tabletop or an image stream containing se-
cret information being sent from the tabletop to a smartphone. If the
communication is unencrypted, an eavesdropper may intercept secret in-
formation being transmitted and possibly execute a man-in-the-middle
attack, for instance by altering a touch event message sent from a smart-
phone to the tabletop. This threat is challenging the underlying security
assumptions about identified interaction. The way to eliminate the threat
is to ensure that the communication channel provides both confidentiality
and integrity. Using a Secure Socket Layer (SSL) connection provides a
secure tunnel for the tabletop and smartphone to communicate through,
which ensures confidentiality and integrity, because communication is en-
crypted end-to-end. This is illustrated by the tunnel connection between
the tabletop and smartphone in the system design figure above. An SSL
connection requires the server, in this case the tabletop computer, to be
authenticated using a X509 certificate.

4.3 Area 3: Tag recognition

The tags supported by the Microsoft Surface platform allow movement
tracking of each smartphone on the tabletop surface by sticking a tag
on the back of each phone. The tags are optically recognised by the
infra red cameras underneath the tabletop surface. In some sense this
may be categorised as a (primitive) communication channel (nr. 3 in the
figure). While Microsoft has designed the identity tag series to potentially
allow every smartphone in the world to have its own unique tag, there
is a problem in using them for identification. The tags are supposed to
be unique, but they are not encrypted or secret, and may therefore be
duplicated by an adversary. If for example Bob had his tag from his
smartphone duplicated by an adversary, it could be used to trick the
tabletop computer to believe that Bob’s smartphone was at a different
position on the tabletop surface.

The solution to mitigate this threat is to only allow the tabletop com-
puter to recognise one of each unique tag at a time. Furthermore the
tabletop computer may not associate any sensitive information with a
given tag unless the tag has been, and still are, paired with a smart-
phone. This solution still allows an adversary to duplicate Bob’s tag and
trick the tabletop computer, but only if Bob’s smartphone is connected

36 Security analysis

and not laying on the tabletop surface. The adversary would still require
Bob’s smartphone to do any serious damage like impersonation, so this
attack is merely to be considered as a mild version of denial-of-service.
Another aspect of this threat is that both Bob’s smartphone, and hence
also Bob, and the adversary must be at or close to the tabletop computer
at the same time when the attack is carried out. This attack type is
therefore to be considered impracticable.

4.4 Area 4: Pairing tag with smartphone

Once a smartphone has a tag stuck on its back, it unifies the two commu-
nication channels mentioned in the previous two sections. The challenge
here is, how to securely tell the tabletop computer which tag belongs to
which smartphone. This act is called pairing and is illustrated by the
connection nr. 4 in the figure above. A pairing can only be done if both
communication channels have been established. That is, the smartphone
(with tag) is positioned on the tabletop surface and the SSL handshake
has been completed successfully. The tabletop computer performs a pair-
ing by a simple challenge-response scheme. The challenge is a unique
random generated PIN code which is associated with a recognised tag
and displayed on the tabletop display next to the tag. The response
comes via the SSL communication channel from the smartphone, where
the user enters the PIN code.

This pairing procedure is potentially vulnerable in three areas:

1. If the randomly generated PIN code is not unique, for example if
two persons are pairing their smartphones with their tags at the
same time and tabletop computer generates the same PIN code for
both of them. This could result in the two smartphones being paired
with the other person’s tag. This vulnerability is effectively avoided
if the tabletop computer does not allow the same PIN code to be
used in multiple simultaneous pairings.

2. An adversary may deliberately misuse another person’s PIN code.
If for example an adversary uses the PIN code associated with Bob’s
tag to pair with his own smartphone, Bob would then not be able to
complete his pairing and instead he would control what the segment
of the tabletop display is sent to the adversary’s smartphone. This
vulnerability is difficult to avoid, but it is also not very severe. The
adversary would not be able to impersonate or disclose any secret
information from Bob. The attack is merely a kind of denial-of-
service.

3. As mentioned before, tags can be duplicated, so an adversary may
choose to duplicate the tag Bob’s has stuck on his smartphone. If
the adversary pairs his smartphone with the tabletop before Bob
arrives, Bob would be unable to pair his smartphone. This attack
is closely related to nr. 2 and is also categorised as denial-of-service.

4.5 Summary 37

4.5 Summary

There is a separation of concern in regards to the security aspects sur-
rounding the NAI framework. Both the framework implementation, the
framework developer and the end user are involved in securing the NAI
framework. Most important is the framework implementation, because it
provides a secure environment for the framework developer to build appli-
cations for end users. Using the CIA properties of computer security [2]
as a basis, the framework implementation features:

Confidentiality Using SSL to secure the communication between the
smartphone and tabletop effectively ensures that no information is
disclosed to unauthorised individuals.

Integrity Same as for confidentiality.

Availability There are some minor threats regarding denial-of-service
possibilities surrounding the mandatory tags on the back of the
smartphones. However, the attacks can only be carried out if the
attacker and the victim are at the tabletop computer at the same
time which make the attacks impracticable.

The framework developer is responsible for the authentication of end
users. This is because the framework cannot decide the level of authenti-
cation required in the developer’s application context. Authentication is
scalable and should hence be customisable by the framework developer.

The interaction design in the NAI framework requires end users to
use smartphones to do identified user interaction. And furthermore, the
end users are assumed not to hand over their smartphones while inter-
acting with the tabletop. This makes the end users vulnerable to social
engineering, which is a non-technical threat. Some examples of social
engineering attacks include users who are persuaded to leave or forget
their smartphones at the tabletop, or users who are persuaded to disclose
information that was otherwise only meant to be shown to them. It is
difficult to quantify the severity of this threat, because it depends on
the application context. However, the chance of successfully executing a
social engineering attack is to be considered small, because it is like per-
suading a person to disclose the PIN code of his cash card, or persuade
him to forget the cash card at the ATM.

38 Security analysis

Chapter 5

Implementation

This chapter provides details on the NAI framework implementation on
the two platforms. The overview of the framework in figure 5.1 shows the
NAI Core which is the main focus here. The implementation on the two
platforms share some architectural similarities which are described first in
section 5.1 and 5.2, before implementation details for the two platforms
are described in the rest of the chapter.

Figure 5.1: An overview of the NAI framework implementation.

5.1 States

The time period where a smartphone (NAI client) maintains a secure
socket connection for communication with the tabletop (NAI server) is
defined as a client session. During a session, the NAI client is required
to pass through different states, which are authentication, pairing and
possibly calibration before reaching the streaming state where the user can
use the smartphone to perform identified interaction with the tabletop. In
other words, a client session is a simple state machine. The state diagram
in figure 5.2 depicts the states, with the two normal paths marked with
solid arrows. The dashed arrows cover scenarios where something goes
wrong, like a sudden lost socket connection.

To get to the streaming state, the NAI client must at least pass

40 Implementation

Figure 5.2: States in a client session

through the authentication and pairing state. The calibration state is
skipped if the smartphone has already been calibrated previously. How-
ever, the first time the smartphone is used with the tabletop, calibration
is mandatory.

The NAI server keeps track of the state of each client session. The
implementation of each state on the tabletop is discussed further below in
section 5.3. The NAI client does not have the same strict state machine
design, but is instead ready to react to any input coming from either the
user or the tabletop. The implementation details of the NAI client is
discussed further below in section 5.4.

5.2 Communication

The NAI client and NAI server use a custom communication protocol,
which is described here. They communicate over a normal TCP socket
connection. A TCP connection is not secure, because it does not pro-
vide confidentiality and integrity, and it is at the bottom line made for
sending and receiving bytes, which is rather primitive. Both of these
inconveniences are dealt with in the following.

5.2.1 Establishing and securing the TCP connection

The NAI client uses the UDP protocol to multicast a simple message
in order to automatically discover any NAI server residing on the same
wireless network. When the NAI server intercepts a discovery message
it responds via UDP with its IP address to the NAI client which can
then establish a normal TCP socket connection. The socket connection
is wrapped in a secure SSL tunnel. The NAI server requires a certificate
installed in the local key store to perform the SSL handshake and to
be authenticated to the NAI client. The SSL protocol supports client
authentication, but the NAI framework does not require it because of
its design. Authenticating a smartphone as device is not important, but
authenticating its user is important. The framework provides its own
customisable user authentication mechanism, see section 3.3.2.

Once the connection is made secure it is time to deal with the primi-
tive nature of the TCP socket capabilities. The standardised OSI (Open

5.2 Communication 41

Figure 5.3: The communication layers, as implemented in the NAI server.

Systems Interconnect) model for communication and protocol design1 is
the basis of the TCP/IP model2 used in most modern network setups
including the internet. By using the principles of the model, two commu-
nication layers have been designed and put on top of the primitive socket.
The two layers exist on both platforms, but have some small differences.
The implementation of the layers on the NAI server is illustrated in figure
5.3. The implementation on the NAI client is illustrated and described
further in section 5.4.2.

5.2.2 Socket layer

The secure socket is wrapped by the socket layer at the bottom of the
layered architecture. The socket layer maintains two threads, one sending
and one receiving. For the sending thread an interface is provided to send
simple arrays of bytes. For the receiving thread an interface for handling
incoming byte array messages is required. Before the socket layer sends a
byte array trough the socket, it prepends a four byte header to the array
which is an 32 bit integer value indicating the length of the byte array.
When the byte array is received at the other end, the header is read first,
in order to know how many bytes to read from the socket stream.

5.2.3 Message layer

The message layer provides a further abstraction of the socket layer, where
the byte arrays of the socket layer are translated to high level NAI frame-
work messages. The messages are implemented in classes with a dis-
tinction between IncomingMessage and OutgoingMessage. A message
may contain an arbitrary amount of data. The message layer provides
an interface to send an OutgoingMessage to the other party, and it
requires another interface to pass any IncomingMessage to. This de-
sign requires that an OutgoingMessage on one platform must have a
IncomingMessage counterpart on the other platform.

1http://en.wikipedia.org/wiki/OSI_model (as of 30 June 2011)
2http://tools.ietf.org/html/rfc1122 (as of 30 June 2011)

42 Implementation

When an OutgoingMessage is prepared for the socket layer, it is
transformed to a byte array with a one byte header prefix indicating the
type of message. The receiving part uses the header to correctly parse the
incoming byte array to the correct specialisation of IncomingMessage.

5.3 Tabletop

Before the NAI server implementation is explained, there is first a sec-
tion with a small introduction to specific areas of the Microsoft Surface
Platform which are important for the NAI server implementation.

5.3.1 Integration with MS Surface API

The Microsoft Surface (MSS) is a complete platform from hardware to
software designed by Microsoft. Version 1 of the platform, which the NAI
framework is built upon, is from 2007 and features a 30" inch 1024*768
pixels rear projected display enclosed in a big box. Inside the box rests
the projector for the display as well as 5 cameras for input detection.

The SDK for MSS includes two APIs for application development, one
for high-end graphics demanding applications based on Microsoft XNA,
and one for more normal Windows-like applications based on Windows
Presentation Foundation (WPF). The NAI framework uses the WPF
based API.

5.3.1.1 Contacts

The MSS platform handles up to 52 touch inputs at a time, which may
come from various different input sources. Any kind of physical interac-
tion on the tabletop screen is called a Contact. The underlying vision
system is based on infrared cameras and is able to detect any sized objects
placed on the screen, as long as they reflect infra red light. Recognised
objects are analysed by the tabletop computer and the type of Contact
is derived. There are three different Contact types:

Finger Any human finger.

Tag The MSS recognises certain tags, which can be used to identify and
distinguish specific objects. Tags play an essential role in the design
of the NAI framework and are discussed further below.

Blob Any object not recognised as a finger or tag.

A Contact instance also provides geometrical information such as size,
orientation and position of the recognised object.

The Contact type is used when raising events whenever something
interacts with the tabletop screen. Typical interaction events are when
an object is being placed, moved or lifted from the screen.

Conceptually, an event triggered by input from a finger is called a
touch event. Since a smartphone is only able to detect touches from fin-
gers, the identified touch events in the NAI framework are called “Touch”
and not “Contact”.

5.3 Tabletop 43

(a) Byte tag (b) Identity
tag

Figure 5.4: Example of the two tag types that Microsoft Surface detects.

5.3.1.2 Tagged objects

The MSS vision system is able to detect two kinds of tags, Byte and
Identity tags. The difference between the two types are the number of
distinct tags available. For Byte tags the total number of unique tags
is 256 (hence the name Byte), and for Identity tags the number is
2128, represented as two 64 bit numbers. The two numbers are meant
to represent a series identifier and a value identifier. Both tag types are
designed to allow the tabletop computer to determine the orientation of
the tag when placed on the surface. Examples of the two tag types are
depicted in figure 5.4.

Internally, a tag is simply a Contact and may be dealt with by the
normal Contact events raised when the tag is detected. However, a more
sophisticated way of working with tagged objects in a MSS application
is to use the TagVisualization control. It is a special MSS platform
control which uses the primitive Contact events raised by tags in a clever
way. The control presents a view underneath a tag at a fixed distance and
angle when it is recognized by the tabletop computer. Furthermore, the
TagVisualization control has the special property, that the presented
view automatically follows and rotates according to the movement of the
tag it visualises. The view is initially empty, because it is meant to be
populated with visible content by the application developer. In order
to use the TagVisualization control, a container is required where the
individual TagVisualization instances can move around. This required
container is the TagVisualizer control.

5.3.2 The NAI server architecture

The state machine in figure 5.2 is the foundation of the architecture of
the state layer in the NAI server. It is implemented as the acknowledged
state design pattern3. An overview of the architecture with the state pat-
tern is depicted in figure 5.5. The state machine controller for a single
NAI client is the class ClientSession, which has access to the commu-
nication interface of the Message layer and thereby provides a way for
the different states to send messages to the NAI client. ClientSession
also receives all incoming messages sent from the NAI client to the NAI

3http://en.wikipedia.org/wiki/State_pattern (as of 30 June 2011)

44 Implementation

Figure 5.5: Class overview of the state layer in the NAI server

server, but these are just passed on to the current state of the client
session, because the different messages have different meaning depend-
ing on the state of the client session and hence they should be handled
locally at state level. Besides communication, the ClientSession also
keeps a reference to information about the client for the different states
to use. This information is kept in the two classes ClientIdentity and
TagData. All instances of ClientSession are registered in the global
singleton class ClientSessionsController.

The two paired states, CalibrationState and StreamingState has
access to ClientTagVisualization which is a view-class required for
the visualisation presented underneath the smartphone positioned on the
tabletop surface. The class is a specialisation of the Surface API class
TagVisualization, which is created when a tag is recognised. The
look and behavior of ClientTagVisualization changes according to
the current state of the client session.

The following sections describe some behavior and implementation
details of the four different states in the state machine:

5.3.3 Authentication state

The purpose of the authentication state is to authenticate the smartphone
user to the application and the NAI framework. As explained in the
security analysis, the framework does not care how the authentication
takes place, just that it is taking place. The authentication mechanism
is hence pluggable and defined by the framework developer as described
in section 3.3.2.

The authentication takes place after the secure SSL socket connection
has been setup, so the framework provides a secure environment without
security threats to the authentication. The NAI server has little respon-
sibility in the authentication procedure other than sending and receiving
messages to and from the NAI client. When some credentials are received,
the NAI server validates them by calling the Authenticate method of
the pluggable AuthenticationHandler (see figure 3.14). If the authen-
tication is successful, the NAI server moves to the pairing state.

5.3 Tabletop 45

(a) Before calibration (b) After calibration

Figure 5.6: How to calibrate the smartphone

5.3.4 Pairing state

The purpose of the pairing state is to associate a smartphone with its tag.
Because tags are easily duplicated, the NAI server cannot assume any
relationship between a specific tag and a smartphone and hence pairing
is mandatory for every client session.

The mechanism used is described in section 4.4. When a tag is recog-
nised and the PIN code has been generated it is presented via the Client-
TagVisualization class on both sides of the tag (see figure 3.12). This
required user involvement is meant to increase security.

When a valid PIN code is received from a smartphone, the Client-
TagVisualization instance representing the tag is put in the Client-
Session instance where the PIN code has been received. This completes
the pairing.

5.3.5 Calibration state

Initially, the NAI server does not know the screen size of the phone nor
does it know where the screen is positioned on the phone. These are two
key requirements in order for the NAI server to stream the right segment
of the tabletop display to be shown on the smartphone’s display. The act
of providing these parameters to the NAI server is called calibration.

When calibration starts, the view class ClientTagVisualization

for the tag changes its content to a calibration control the smartphone user
can manipulate with normal finger touch input on the tabletop surface.
The calibration control is identical to the sketch in figure 5.6. The only
thing the tabletop for sure is able to detect is the tag stuck on the back
of the smartphone, so it is used as an origin for the calibration. It works
as follows:

1. The starting point is figure 5.6(a), where the smartphone displays a
static image containing a center aligned cross with an arrow point-
ing at the center from one direction. The tabletop displays the

46 Implementation

calibration control which also contains a black cross and an arrow.
On the top and left side are two special range sliders with lines
forming a rectangle. The black cross will always be in the center of
the rectangle, no matter how the range sliders are adjusted.

2. The smartphone owner positions his smartphone on the tabletop
surface such that the two crosses align. The arrows also need to
point from the same direction on both devices. With this step
completed, the tabletop computer now knows the center position of
the smartphone screen relative to the tag position and orientation.
The arrow ensures that the smartphone and tabletop agree on what
is up and down on the smartphone.

3. Next step for the user is to adjust the red and blue range sliders so
they align with the edge of the smartphone screen. This alignment
tells the tabletop exactly how big the smartphone screen is.

4. With the sliders adjusted, the calibration is now complete as il-
lustrated in figure 5.6(b). The calibration is accepted when the
smartphone owner taps his smartphone screen and accepts the cal-
ibration. By putting the calibration acceptance on the smartphone
minimises the risk of someone accidentally interfering with the cal-
ibration.

The five calibration parameters recorded from a calibration are saved
to a file, because the smartphone user then only have to calibrate during
his first session. The data is stored in a simple XML file with the tag value
as a key, because the calibration is bound to the device, and the device is
bound to its tag. Although the security analysis (chapter 4) states that
it is not safe to associate any information with a tag, the calibration data
is considered as low value data, because the worst thing that can happen
is an adversary changing the calibration. The user can always initiate a
new calibration.

5.3.6 Streaming state

Once authentication, pairing and possibly calibration are completed, the
client session moves to the streaming state, where the NAI server can
start sending the picture stream of the segment of the tabletop display
covered by the smartphone. When the picture streaming has started,
the NAI server is ready to raise identified events caused by moving the
smartphone or by touching its display.

The view associated to the tag on the smartphone, the ClientTag-
Visualization, changes to a transparent rectangle which is sized and
positioned based on the calibration to exactly mark the display of the
smartphone. The purpose of the rectangle is threefold (covered in details
below):

1. Mark the area to be screen captured for the picture stream to the
smartphone.

5.3 Tabletop 47

(a) Initial (b) Step 1: Capture screenshot

(c) Step 2: Apply transformations (d) Step 3: Crop image

Figure 5.7: Steps in screenshot algorithm

2. Mark the area for hit testing for raising identified hover events.

3. Container for PersonalizedView.

5.3.6.1 Streaming pictures to smartphone

The transparent rectangle in the view class continuously marks the area to
be screen captured and send to the smartphone. The Windows operating
system and the .NET framework only provide a mechanism for capturing
a rectangular screenshot without rotation, so an algorithm is needed to
capture a non-rotated bounding box screenshot, rotate and crop it to
perfectly fit area marked by the transparent rectangle and hence the area
underneath the smartphone’s display.

The algorithm has three steps, which are easiest explained by a con-
crete example of how one single screenshot is captured and manipulated.
The example is illustrated in figure 5.7 and explained below:

Initial The smartphone is positioned on the tabletop surface and the
smartphone display covers the rectangle marked with the red square (fig-
ure 5.7(a)). So the red square is marking the otherwise invisible transpar-
ent rectangle in the ClientTagVisualization class. Given the smart-
phone’s tag and the its calibration, the tabletop computer is able to tell
the exact location and rotation of the red square.

48 Implementation

1. Screenshot The non-rotated screenshot mechanism available in
Windows requires an initial larger screenshot to be captured. The cap-
tured screenshot is the bounding box marked with the green square in fig-
ure 5.7(b), which is calculated using the WPF class VisualTreeHelper.
This helper class provides different methods for transforming coordinates
of local coordinate systems of visual elements to coordinate systems of
visual elements elsewhere in the visual tree using matrix transformations
from linear algebra. In this case, the transformation needed is from the
ClientTagVisualization (the red square) to the root of the visual tree
which is the SurfaceWindow enclosing the application. Fullscreen win-
dows are used by default by MSS applications and hence their coordinate
systems are the same as used in the native screenshot mechanism in Win-
dows OS.

2. Transformation When the screenshot marked by the green square
has been captured, it is rotated to become parallel with the the screen.
The VisualTreeHelper class provides the matrix transformation needed
to rotate the captured screenshot the appropriate angle. WPF allows
multiple transformation matrices to be concatenated into one matrix by
multiplying them. For the screenshot this means that three transforma-
tions are applied in one step. First, a translation transformation to put
the center of the screenshot in the origin of the coordinate system and
hence make it the pivot point for the rotation. The second transformation
is the rotation. The third transformation is a translation, which moves
the origin to the top left corner of the red square and thereby prepares the
screenshot for final cropping. After applying the three transformations
the screenshot is as marked by the blue square in figure 5.7(c).

3. Cropping The last step is to crop the image to cut away the excess
screenshot parts between the red and blue square. The final picture is in
depicted in figure 5.7(d) and is ready to be send. The picture is JPEG
encoded before it is sent to the smartphone.

The streaming process is computation intensive, and hence it runs in its
own thread. This is all encapsulated in the class StreamingProcessor
which again is controlled by the state class StreamingState. To get the
glass-like effect of the smartphone screen, the pictures streamed to the
smartphone must be produced at a high rate, about 15 frames per sec-
ond (FPS). In comparison, television operates with a frame rate around 25
FPS. A captured JPEG encoded screenshot for a 3.7 inch smartphone dis-
play is about 12 kB. If three smartphones are connected simultaneously
to the tabletop computer running at 25 FPS, the network bandwidth
requirement is 7,03 Mbit/s which is low compared to the 54 Mbit/s (the-
oretical) capacity of the IEEE 802.11g protocol the MSS tabletop sup-
ports. The default frame rate in the NAI framework is 15 FPS, but it
can be changed in the config file on the tabletop. However, increasing
the streaming frame rate also increases the CPU load on the smartphone,
which drains the smartphone battery faster.

5.3 Tabletop 49

5.3.6.2 Raising events

The second purpose of the streaming state is to raise identified events
when they are applicable. The set of events are listed in the API speci-
fication (section 3.2.6). By convention in WPF, input related events are
raised in pairs with a tunneling event followed by a bubbling event. The
NAI framework follows this convention and has two versions of each the
identified touch and hover events. The identified person events are only
raised in a bubbling version.

The three classes of identified events are raised in different ways:

Touch events are triggered by the smartphone user when the display of
the smartphone is touched. The smartphone sends special touch
event messages to the NAI server with the relative coordinate of
the touch event on the smartphone. The VisualTreeHelper class
in WPF helps to first transform the relative local coordinate to
the global coordinate system of the tabletop computer display, and
second to perform hit testing using the global coordinate. The first
visual element to get hit by the hit testing gets the appropriate
identified touch event pair raised.

Hover events are triggered when the smartphone is moved. The table-
top continuously tracks the movement of all tags positioned on its
display, and every time a tag moves, a hit test is performed on the
area covered by the transparent rectangle in the view to raise the
appropriate identified hovering events on the visual elements found
in the hit test.

Person events are raised when a smartphone is successfully paired, or
a smartphone drops its connection to the tabletop. The events are
bubbling and raised on the mandatory outer control Identified-
InteractionArea.

5.3.6.3 PersonalizedView

The ClientIdentity instance provided by the RoutedIdentified-

EventArgs class which is passed along when an identified event is raised,
provides an interface to add or remove a PersonalizedView. A Personalized-

View can be any specialisation of the WPF class UIElement and is
added as a child element of the transparent rectangle in the Client-

TagVisualization class in the element tree. The PersonalizedView

is then displayed on the tabletop display exactly where the screenshots
are captured and streamed to the smartphone and hence the smartphone
gets a personal view.

5.3.7 Identified controls development

The identified events can be used to create new controls which use iden-
tified input. They can also be used to extend existing controls in the

50 Implementation

MSS API or WPF, which for example is the case with the Identified-
SurfaceButton control in the NAI framework. When naming new iden-
tified controls, it is recommended to use the same naming convention as
used for naming the four current NAI framework specific controls. That
is, put “Identified” as a prefix of the name.

There are some considerations and pitfalls to be aware of when ex-
tending existing controls or creating new ones that use identified events:

5.3.7.1 Handling normal touch events

The identified touch event set does not replace the native Contact event
set of the MSS API. So if an existing control that uses normal touch
input, is extended, it is important to consider what should happen with
the normal touch events.

Example The IdentifiedSurfaceButton (ISB) control extends the
functionality of the SurfaceButton control. So the developer must
choose whether or not normal touch clicks on the button are accepted.
The ISB has a bool property BlockClickEvent that, if set to True, en-
sures that normal touch clicks are not allowed. The way it is implemented
is to catch the tunnel PreviewContactDown and mark it as handled be-
fore it reaches the ISB. The event handler to catch the tunnel event is in
the mandatory IdentifiedInteractionArea, because it is always the
case that the IdentifiedInteractionArea precedes all other elements,
so it is safe to catch the event in that class. The following XAML code
snippet shows an example of an ISB that does not accept clicks by normal
touch:

...
<id:IdentifiedInteractionArea>

...
<id:IdentifiedSurfaceButton BlockClickEvent="True">

Click Me!
</id:IdentifiedSurfaceButton>
...

</id:IdentifiedInteractionArea>
...

The IdentifiedInteractionArea has a public method that can be
used to register elements where PreviewContactDown events should be
blocked. The ISB invokes this method in its constructor:

public class IdentifiedSurfaceButton : SurfaceButton
{

public IdentifiedSurfaceButton()
{

if (BlockClickEvent)
IdentifiedInteractionArea.KillEventsForIdentifiedUIElement(

this);
...

}
...

}

5.4 Smartphone 51

5.3.7.2 Moving objects

Controls like the ScatterView and LibraryBar in the MSS API are ex-
amples of container controls for moving objects. This type of controls is a
problem for identified hover events, because those events are only raised
when the smartphone is moved. So it is possible to move an element,
e.g. a ScatterViewItem into the smartphone display area without hav-
ing identified hover events being raised on the elements contained in the
ScatterViewItem.

Example This problem has been addressed in the IdentifiedViewport
control in the NAI framework, where it is a key property that information
can be hidden from certain users.

The IdentifiedViewport control uses the WPF control Combined-
Geometry to create a custom shape that covers some area, but at the same
time contains holes where smartphones are allowed to see through. This
is done with the GeometryCombineMode property set to “Exclude” and
thereby having the set of rectangles underneath the smartphone displays
hovering over the control excluded from the base geometry shape. If one
of the smartphones are moved, the control takes care of updating the
exclude-set via the identified hover events. If the entire Identified-

Viewport control is moved, for example when being contained inside a
ScatterViewItem, it requires a forced update by invoking the method
Moved from the outside. This method does, among other things, invoke
the public UIHelper class to get a list of current smartphones hovering
over the control which are used to analyse which identified hover events
to raise. The UIHelper class is useful when developing new controls that
use identified hover events.

5.4 Smartphone

The NAI framework client is implemented on the Android platform. A
high level view of the core components can be seen in figure 5.8. The fig-
ure has been cleaned for details, showing only the most important classes
and packages. Starting from below the most important classes from the
Android API that are needed for the application to function are described
in section 5.4.1. The UI package contains components related to the user
interface. That is all the specialisations of the Activity class. The au-
thentication package contains classes related to user authentication, which
have been covered in section 3.3.2. Finally, the communication compo-
nent covers all the communication, and its implementation is described
in section 5.4.2.

5.4.1 Basic Android building blocks

An Android application can be made of a number of basic components,
that when combined allows an application to operate as intended. The
components are represented as classes and they are very different in na-
ture, and usage. To use them, you need to extend the class and implement

52 Implementation

Figure 5.8: Overview of central components for implementation for the
Android client. The diagram has been simplified in order to avoid clutter.

the application specific logic4. A list of the ones used in the framework
can be seen below.

Activity An Activity5 represents a single screen with a user interface,
and even simple applications typically consists of multiple activi-
ties. A gallery may have one activity showing a list of pictures,
but showing a single picture in a detail view could start another
activity. While the user experience will be coherent, the applica-
tion itself will be firing separate activities during operation. In
figure 5.8, the most important classes that extends the Activity

can be seen. BaseActivity being the most important as it is the
entry point of the NAI client.
When an Activity starts, it is placed on a stack. Android only
allows one Activity to be running at a time, pausing or killing
the rest. When an activity ends, the next in the stack is activated.
This forces the application to handle this volatile environment by
saving state information when paused. In the NAI framework, the
NAI client establishes a connection to a NAI server when started,
and that connection must be kept alive, if other activities is placed
on top of the stack. For example, when the phone rings. Since
an Activity will be paused, and hence the connection is lost, the
Service component must be used to control the connection.

Service Unlike an Activity a Service6 does not provide a user in-
terface. A Service is used for long-running operation like playing
music while doing something else, or keeping a network connection
alive. Activities that need access to a Service must bind to it,
and start it, if it isn’t started yet. As can be seen from figure 5.8,
the CommunicationService extends the Service class in order to

4For a quick overview of basic components in Android look at
http://developer.android.com/guide/topics/fundamentals.html (as of 2 July 2011)

5Activity: http://developer.android.com/guide/topics/fundamentals/activities.html
(as of 2. July 2011)

6Service: http://developer.android.com/guide/topics/fundamentals/services.html
(as of 2 July 2011)

5.4 Smartphone 53

keep the connection to the NAI server alive.
There is no guarantee that Android will not kill the service. If re-
sources are low, and the OS needs the resources, the service can be
killed as well. Contrary to an Activity, Android will try to keep
services running as long as possible.

Intent Because an Activity is only running when placed at the top
of the view stack, and the operating system is in charge of what
should be active, there can’t be a direct reference to other activities.
In stead, communication between basic Android components like
activities and services are wrapped in an Intent class. This defines
what should be started, and it contains the resulting data if an
activity must supply a response to the calling activity. Figure 5.8
includes the Intent class in the diagram but the association lines
have been omitted to avoid cluttering up the diagram.

An Activity does not represent the view in a model-view-controller
pattern by itself. The Android environment allows developers to define
the visual components and textual content in separate XML-documents.
In general, it is considered best practice to separate the concerns, but
Android allow exceptions. Views can be created and manipulated dy-
namically directly within the activity itself. The NAI client have sepa-
rated the view into xml-files, leaving the activities to handling events and
transitions between activities. Activities can be found in the UI package
because an activity controls and defines the user interface.

5.4.2 Communication layers

The NAI client implements the shared communication model as described
in section 5.2, with its distinct separation of socket layer and the message
layer. But the client implementation has some differences. First, it is
obvious that what is incoming messages on the server is outgoing messages
on the client, and vice versa, but more importantly, the client must be able
to support interactions with the user. The user can take the initiative to
setup a connection in two different ways, and the user must be prompted
to act when the automatic lookup service fails to find the NAI server, or
the connection is lost.

Figure 5.9 shows the client version of the communication layers. Be-
cause of the extended responsibility of handling connection events and
user issued commands as well as handling messages, a more general nam-
ing has been chosen.

The socket layer is centered around the CommunicationHandler class.
It uses the UdpComm class to automatically find the NAI server, and the
TcpComm class to setup and handle the TCP connection to the server.
As described in section 5.2 the NAI client initially tries to find the NAI
server by broadcasting a special message via UDP. If not an identical
UDP response is received from the server within a short time, the at-
tempt is failed, and the failure event is being sent upward through the

54 Implementation

Figure 5.9: Class overview of the communication components of the An-
droid client. It is a augmentation of the model seen in figure 5.3

layers. Eventually, the user will be prompted to take action. If a response
from the server is received, then a TCP connection can be established via
the TcpComm class, and the success will equally be reported up through
the layers. It is also possible to connect to the NAI server directly with-
out the automatic lookup, but it must be issued by the user. Hence
a connectDirect(IP, port) command is forwarded down the layers
until the CommunicationHandler.

5.4.3 Solutions to accommodate the environment

In general, it is a very different programming experience to program for
the Android environment, than for example for a conventional desktop
environment. In the sections above it is mentioned that an Activity can
be paused and killed at any time. When comparing to standard laptop or
desktop computers of today, CPU, RAM, screen size, and energy are all
limited resources on a mobile device. The operating system environment
tries to save power, and computations quickly rise to a level where it
become a problem if the developer does not handle it. The following
shows two examples from the implementation of the NAI framework client
where issues like these come into play.

5.4.3.1 Wake lock

By default, an Android device tries to avoid using too much power. It
does that by shutting down the processor and turning off hardware as
soon as the device is unused7. This means that if you leave the device
unused for a period of time the screen will turn off, and the application
put on pause. Even if an application is running.

7The time-out for this is completely configurable by the user, but the user typically
want to have the devices going into sleeping mode as soon as the device is left alone

5.4 Smartphone 55

In the case of the NAI framework, it is obvious that the screen has to
stay on, and remain lit while connected to the NAI server. In order for the
device to do that, you need the permission of the user. The following code
shows the AndroidManifest making the permissions explicit. When the
application is installed the user is prompted to accept that permission
request:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
....

<uses-permission android:name="android.permission.WAKE_LOCK" />
</manifest>

After requiring the permission, the following code shows how to acti-
vate it:
public class BaseActivity extends Activity implements

ICommunicationServiceCallback, OnTouchListener {
...
public void onCreate(Bundle savedInstanceState) {

...
PowerManager pm = (PowerManager) getSystemService(Context.

POWER_SERVICE);
wakeLock = pm.newWakeLock(PowerManager.FULL_WAKE_LOCK |

PowerManager.ACQUIRE_CAUSES_WAKEUP, "NAIClient");
wakeLock.setReferenceCounted(false);
...

}
...
private void acquireWakeLock(){

if (wakeLock != null)
wakeLock.acquire();

}

private void releaseWakeLock(){
if (wakeLock != null)

wakeLock.release();
}
...

}

The type of wake locks are optional, but we need the screen to be lit all
the time during operation.

5.4.3.2 Asynchronous calls in and out of UI threads

Every Activity run in its own thread. The thread is locked in the sense
that other threads are not allowed to manipulate any fields or object in the
so called UI thread. The body of method calls coming from other threads
should be wrapped in an instance of the type Runnable, and queued on
the UI thread with the special method runOnUiThread(Runnable) that
Activity class implements. This forces the developer to make methods
calls asynchronous when calling methods on the UI thread. Otherwise,
the UI would not be running fluently.

Although the NAI client application does not have many UI elements,
there is a lot of updates of the single ImageView element attached to
BaseActivity, and the user must be able to invoke the options menu at
any time. Picture frames comes at approximately 15 frames per second,
and they must be processed and inflated on to the ImageView for the user
to see. While incoming method calls must be asynchronous, also outgoing

56 Implementation

calls from the UI thread must be asynchronous, to allow the UI to be
updated as fast as possible. That is why the CommunicationService

has a list of tasks of the type Runnables, so that incoming messages from
the communication can be delivered to the UI thread without blocking
the socket connection as well as BaseActivity can deliver messages to
the server asynchronously via the task pool of CommunicationService
without blocking the UI thread.

5.4.4 Android versions and device types

At present, Android has been released in a number of versions8. Every
release has a slight change in the API’s adding new features, support
for different hardware types, or performance improvements for every re-
lease. Up to this point older applications are supported by newer Android
releases.

Currently the 3.1 Honeycomb is the latest release from Google, but it
is only targeted tablet devices, and 2.3.X is called Gingerbread and is the
latest release targeted smartphones. Only the most recent phones have
this version installed.

Application development must target a specific API version and for
the NAI framework, version 2.1 Eclair has been chosen in order to be able
to support more than 95%9 of already existing Android devices, while
still utilising the benefits of the improvements over the 1.X versions, like
performance, and a better API.

8http://www.android.com
9According to http://developer.android.com/resources/dashboard/platform-

versions.html (as of 2 July 2011). Data was collected during a 14-day period ending
on June 1, 2011.

Chapter 6
Using the NAI framework

for application building

This chapter provides an example of a fully implemented non-trivial ap-
plication illustrating the use of the NAI framework. Code examples are
provided where specific framework components have been used. The ap-
plication is also used as part of the evaluation of the interaction design
and framework features in chapter 7.

6.1 Restaurant of the future

The scenario is a restaurant, which has replaced all dining tables with
interactive tabletops. The tabletops are running a special ordering and
payment application which has been built using the NAI framework, so
the customers can order and pay their food and beverages directly at the
table using their smartphones. For simplicity reasons the restaurant visit
is divided into three states: ordering, dining and checkout.

6.1.1 Ordering

This is the initial state, where the guests arrive. The restaurant appli-
cation uses the basic authentication mechanism of the NAI framework
where users only have to enter their names. The restaurant application
presents a menu (figure 6.1) and an order summary (figure 6.2). When
the restaurant guests have completed pairing during the setup procedure,
their names automatically appear in the order summary. This function-
ality is made possible by the IdentifiedPersonArrived event. The
menu contains a set of dishes and beverages with special order buttons
(+ and -), which may only be clicked via a smartphone. The XAML
code for the buttons must hence block normal click events and have an
IdentifiedClick handler. The XAML code for the add item button
(+) is:
<id:IdentifiedSurfaceButton BlockClickEvent="True"

IdentifiedClick="AddItem">+
</id:IdentifiedSurfaceButton>

When finished ordering, the guests move their smartphones to the
center of the tabletop screen to confirm their orders. The confirmation

58 Using the NAI framework for application building

Figure 6.1: The menu in the restaurant application. The order buttons
on the right are only clickable via a smartphone.

Figure 6.2: The order summary in the restaurant application. Automat-
ically updated based on different identified events.

6.1 Restaurant of the future 59

Figure 6.3: The confirm order PersonalizedView in the restaurant ap-
plication. A personal dialog only visible on the smartphone display.

happens through a small personal confirm dialog appearing on the smart-
phone display when it is near the center of the screen (figure 6.3). The
confirm dialog is a PersonalizedView and appears when an Identi-

fiedHoverOver event is raised on the red ellipse in the center. The C#
event handling code which adds and removes the PersonalizedView

looks like this:

private void Ellipse_HoverOver(object sender,
RoutedIdentifiedHoverEventArgs e)

{
e.ClientId.PersonalizedView.Add(new ConfirmOrderPersonalView());

}

private void Ellipse_HoverOut(object sender,
RoutedIdentifiedHoverEventArgs e)

{
e.ClientId.PersonalizedView.Remove();

}

The RoutedIdentifiedHoverEventArgs instance provides access to
the identity of the originator of the event where the IPersonalizedView
interface is used to add a PersonalizedView. If the smartphone is
moved away from the center, the PersonalizedView is removed again
by the IdentifiedHoverOut event handler.

6.1.2 Dining

When finished ordering the guests wait for their food and beverages to
arrive. At this state the tabletop is passive and waits for the guests to
finish eating. The guests may proceed to checkout by confirming with
their smartphone in the middle of the tabletop screen the same way as
for ordering.

60 Using the NAI framework for application building

(a) The total amount is by default
not visible.

(b) The bill owner’s smartphone
may reveal the total amount.

Figure 6.4: The personal bill in the restaurant application.

6.1.3 Checkout

At this state the guests are presented with a personal bill containing
the items ordered initially (figure 6.4(a)). Only the owner of the bill
is able to see the total amount of the bill at the bottom, by placing the
smartphone on top of the area (figure 6.4(b)). To create this functionality,
the IdentifiedViewport control is extended:
public class PrivateIdentifiedViewport : IdentifiedViewport
{

...

public ClientIdentity ClientId
{

get { return (ClientIdentity)GetValue(ClientIdProperty); }
set { SetValue(ClientIdProperty, value); }

}

public PrivateIdentifiedViewport()
{

base.FilterDelegate = new IdentifiedViewportFilterDelegate(
Filter);

}

private bool Filter(RoutedIdentifiedEventArgs e)
{

if (ClientId == null) return false;
return e.ClientId.Equals(ClientId);

}
}

This new class has an ClientIdentity dependency property which
is a reference to the owner of the bill. The property is used in the Filter
function that is set up to only allow the bill owner to see through. In the
XAML code for the bill, which is a ScatterViewItem from the Surface
API, the PrivateIdentifiedViewport is set up to be a small white
rectangle, just big enough to cover the total amount. Data binding is

6.1 Restaurant of the future 61

used to set the owner of the bill. A simplified version of the XAML code
for the bill with the PrivateIdentifiedViewport looks like this:
...
<s:ScatterViewItem ScatterManipulationDelta="onSMD">

...
<id:PrivateIdentifiedViewport x:Name="TotalAmountVP"

ClientId="{Binding Path=ClientId}" Fill="White">
<id:PrivateIdentifiedViewport.Base>

<RectangleGeometry Rect="5,0,30,13" />
</id:PrivateIdentifiedViewport.Base>

</id:PrivateIdentifiedViewport>
...

</s:ScatterViewItem>
...

The ScatterViewItem has a handler for the ScatterManipulation-

Delta event. The event is raised every time the bill is moved, scaled
or rotated. The handler must ensure that when the bill is moved, the
PrivateIdentifiedViewport over the total amount is notified, so it
can hide the total amount if the bill moves outside the display area of
the bill owner’s smartphone. The handler calls the Moved method on the
PrivateIdentifiedViewport, which updates the layout of the view-
port:
...
private void onSMD(object sender, ScatterManipulationDeltaEventArgs e)
{

TotalAmountVP.Moved();
}
...

A guest may transfer another guest’s bill by clicking the Transfer button
with his smartphone at the bottom of the bill (figure 6.4). The button
is an IdentifiedSurfaceButton that has a small picture of a pad lock
to hint that this button requires an identified click. The XAML code for
the button is:
...
<id:IdentifiedSurfaceButton x:Name="BtnTransfer" BlockClickEvent="True"

IdentifiedClick="Transfer_Click">
<StackPanel Orientation="Horizontal">

<Image Source="/Restaurant;component/Resources/SecureLock.png"
Margin="0 0 5 0" Height="15" />

<TextBlock VerticalAlignment="Center">Transfer bill</TextBlock>
</StackPanel>

</id:IdentifiedSurfaceButton>
...

The IdentifiedClick event handler in the C# code-behind file has ac-
cess to the owner of the bill as well as the data model of the restaurant,
where the new payer is retrieved from, based on his identity (e.ClientId):

...
private void Transfer_Click(object sender, RoutedIdentifiedEventArgs e)
{

Person oldPayer = this.Owner;
Person newPayer = Restaurant.GetPerson(e.ClientId);
Restaurant.PayForPerson(oldPayer, newPayer);

}
...

62 Using the NAI framework for application building

The bill is payed by placing the smartphone on the center of the
tabletop screen and confirming the total amount in the personal dialog
on the smartphone display (figure 6.5). The dialog is a Personalized-

View similar to the confirm dialogs in the ordering and dining state. The
only difference in this dialog is that the total amount is displayed above
the confirm button.

When all bills have been paid, the restaurant visit, and hence the
application ends.

Figure 6.5: The confirm payment PersonalizedView in the restaurant
application. The dialog is personal and shows the amount to be paid.

Chapter 7

Evaluation

The way a smartphone is used for non-anonymous interaction in the NAI
framework is unprecedented, so the question of the level of usability in
this new way of interacting with a tabletop is interesting and important to
investigate. It has been one of the goals with the interaction design that
the required involvement of the smartphone does not introduce special
gestures, but instead resembles normal tabletop interaction to allow end
users a seamless and quick adaptation. If end users accept this new way
of interacting, it helps in convincing tabletop application developers to
adopt and use the NAI framework.

The only way to run an evaluation with end users is to build an appli-
cation using the NAI framework. This makes it difficult to get qualified
feedback from users on the underlying features of the NAI framework
without including the application context, but it is nevertheless the pur-
pose of this evaluation.

The evaluation involves two applications built using the NAI frame-
work. The first is a technical warmup application only containing the
main UI features of the NAI framework, like the IdentifiedSurface-
Button, IdentifiedViewport and PersonalizedView. The second
application is the restaurant introduced in chapter 6, because it is built
around a familiar scenario, a restaurant visit, and it utilises all the com-
ponents in the NAI framework.

7.1 Parameters

Three main aspects are covered in the evaluation: technical, adaptation,
and experience.

The technical aspect operates with trivial questions like does the frame-
work operate as intended? Exposing the NAI framework to end users may
uncover shortcomings or limitations of the framework design which has
not been thought about previously.

More interestingly is it to see how the users adapt to the framework.
How quickly do they figure out the new interaction design? Do they find
it difficult to use?

The experience is about how the users interact when they have adopted
the design. Do they figure how to use the new UI features provided

64 Evaluation

by the NAI framework, the IdentifiedSurfaceButton, Identified-
Viewport and PersonalizedView?

7.2 Method

To get qualified data to answer the evaluation parameters, test sessions
involving participants have been conducted. The idea of having user
identification in applications on a tabletop computer is more interesting if
there is some distinction between simultaneous users like in the restaurant
application, so the participants are coupled in pairs.

At a more scientific level, the purpose of the test sessions is to generate
and gather data to answer the evaluation parameters. The data is the
test participants’ opinions and experiences.

7.2.1 Generating data

To generate data, the participants go through two test scenarios, one
exploratory and one guided.

Exploratory The participants are in turn shown the technical warm-
up application containing some standard MSS features as well as the
features of the NAI framework which the test participants may interact
with freely. If the participants are not used to interacting with a tabletop,
this application also serves well as a playground. The participants do this
in turn because they are not supposed to give each other ideas on how to
using the smartphone for interaction with the tabletop. The application
as such, has no other purpose than showing the different features from
within one screen, allowing the user to explore the interaction possibilities.
The participants are given only a brief introduction to the framework
so they know what to use the smartphone for. This part of the test
gives a unaffected view of how users initially perceive the interaction
design and the NAI framework features. The data generated here is the
most valuable, because it gives an idea of whether users are interacting
as expected by the NAI framework design. After a couple of minutes
the exploratory parts ends. Figure 7.1 shows an image of the warm-up
scenario from one of the test sessions.

Guided The test persons are taken through the restaurant application
that implements the features of the NAI framework. The scenario puts
the two participants into a host and a guest role. The restaurant visit in-
volves ordering, eating (only simulated) and payment. The participants
are guided by a narrator introducing the three steps in the restaurant
visit as well as telling them exactly what to do and in which order. The
guide scenario in the test session is to ensure completeness, so after the
restaurant visit, the participants have experienced some mandatory fea-
tures which give them the foundation needed for providing a truthful view
of the interaction experience and the NAI framework features. Figure 7.2

7.2 Method 65

Figure 7.1: A test participant interacting with the warm-up application.

shows an image of the guided scenario from one of the test sessions.

The detailed scenario descriptions that have been used in the evaluation
sessions can be found in appendix B.1.

7.2.2 Gathering data

To conclude a test session, a semi-structured interview is conducted with
each of the test participants. An interview is preferred over a survey, be-
cause it allows the participants to talk more or less freely about their ex-
periences. The semi-structured interview includes some questions which
focus on how easy it was to adapt to the interaction design, and how the
user experienced using it. If the participant has other relevant comments
or has done something other that expected during the test scenarios,
there is a chance to dig further into this. The questions can be found in
appendix B.2.

One shortcoming of conducting interviews is that they suffer from
problems of recall [7]. The participants are reporting on experiences
they remember, and that is one step away from reality. If the interview
is conducted during the test scenarios, for example when sitting in the
restaurant, the answers would probably be different. To overcome this
shortcoming, researchers suggest to use observations in combination with
interviews. Observations help to understand the relationship between
what the participants say and what they do: “ look at behavior, listen to
perception” (Miller and Crabtree [10]). In the evaluation of the NAI
framework, observations are gathered by recording the test sessions with
a video camera.

66 Evaluation

Figure 7.2: Two test participants ordering food in the restaurant appli-
cation. The narrator sits in the background.

7.3 Test sessions setup

The MSS tabletop is set up in a cosy and comfortable meeting room at
ITU without any chance of interruptions during the test sessions. Two
HTC Desire smartphones running Android 2.2 are used. The required
authentication of the smartphone user, and the pairing and calibration of
the smartphone are carried out before the phones are handed over to the
participants.

The area around the tabletop surface is recorded on video during all
test sessions to afterwards be able to look closer at how the users interact.
Also still images are captured during the sessions. The interviews con-
ducted in the end of the sessions are all voice recorded for later analysis.
The setup for the test sessions is depicted in figure 7.3.

7.4 Participants

Recruiting the right participants for a human–computer interaction (HCI)
test is a delicate task. Choosing a set of participants which closely resem-
ble the characteristics of the final end users of the product is crucial for
the validity and usability of the evaluation results. For the NAI frame-
work, the potential end users are anybody, or at least anybody with a
smartphone. The restaurant application introduced in chapter 6 is a good
example of a setting where a wide variety of users will encounter the NAI
framework. So the amount of experience with computers and technology
for the end users is expected to be varying, and it should preferably be
reflected by the choice of participants in the test sessions.

7.5 Results 67

Figure 7.3: The setup for the test sessions.

As stated earlier, tabletops are not a commodity, and hence not some-
thing people stumble upon everyday. So in order to avoid making the test
sessions an education and training in tabletop use, only people with in-
terest and experience in technology have been recruited to participate.

Researchers in HCI argue differently for the number of participants
needed in a user interaction evaluation. Virzi [23] has shown that as
few as 4-5 participants can be enough to uncover 80% of the usability
problems in an application.

In this evaluation 17 persons have participated in total. They are
divided into 7 pairs and 3 individuals. A dummy plays the role of the
guest in the restaurant scenario for the 3 individuals. In total 10 test
sessions. 4 of the 17 participants have been recruited by advertising in
the weekly edition of the IT University newsletter (see appendix B.3) and
the rest are first or second hand associates of the pITLab at ITU.

7.5 Results

The ten test sessions have generated a lot of data. The video recordings
and interviews have been analysed to report on tendencies and common
opinions. The results are divided in the three areas of interest:

7.5.1 Technical

In general, the NAI framework worked as intended. On the positive side,
the framework supported the different usage patterns observed when the
smartphones were moved around during the sessions. The smartphones
were either slid directly over the surface or lifted from place to place.

68 Evaluation

When lifted, the smartphone temporarily loses its image stream, because
the tabletop cannot detect the tag, but the socket connection between the
tabletop and smartphone is persisted, so the image streaming is resumed
almost instantly when the phone again is placed on the tabletop surface.

On the negative side there was a problem with the back of the smart-
phones which is related to the infrared vision system of the tabletop. The
back of an HTC Desire is almost non-reflective, but it has a small shiny
metal frame around the camera which is detected by the tabletop and
sometimes results in a Blob Contact event. Some test participants visu-
ally experienced these unwanted events, because they led to the phone
could be used to move objects around on the tabletop screen.

7.5.2 Adaptation

When asked whether the system was difficult to use, more than 90% of the
participants agreed that there is a small learning curve. One participant
said “When you got used to it, it was pretty clear what to do”. Words like
“simple”, “intuitive” and “straight forward ” were used to described the
initial experience.

There were also some more critical comments. First, several partici-
pants could foresee problems in elderly people using the system. Second,
about one third of the participants could see potential security and pri-
vacy problems in using the smartphone for personalised interaction, for
example when putting the phone on the table, you do not have the same
control over it, as when it is in your pocket.

7.5.3 Experience

The UI features of the two applications were not all equally successful.
For the IdentifiedSurfaceButton, in 60% of the test sessions, the first
person to order food in the restaurant tried to click the order buttons with
normal finger touch, even tough it was visually hinted with a padlock (as
depicted in figure 6.1) that the smartphone was required. On the other
hand for the IdentifiedViewport, 86% instantly figured how to use the
smartphone to reveal the total amount on the bill in the restaurant. The
PersonalizedView got a generally bad reception. Many participants
commented that it was difficult to know when they would emerge.

The interviews have provided a lot of comments about the UI design
in relation to the test applications. For example, “The dish title was sepa-
rated from the order button, so it was difficult to choose the right button”
and “. . . the middle had no indication that you had to put your phone there
to confirm”. Even though these two comments are related directly to the
restaurant application, it is possible to extract the fundamental usability
problems from them. This strategy has been used for many of the com-
ments and have resulted in a set of general design guidelines which are
useful when developing applications with the NAI framework:

List of choices When having a list of choices (like a restaurant menu),
it should be very easy to see what item you are choosing with the

7.5 Results 69

smartphone. The small displacement caused by the height difference
between the surface display and the smartphone screen may make
it difficult to distinguish the individual list items from each other if
not designed correctly.

Visual clues For the user it is difficult to know when a Personalized-
View emerges. Some visual clue indicating where to put the phone
to get the view is important. The same goes for the Identified-
Viewport control.

Screen real estate Balance the number of objects on the tabletop with
the interaction area of the tabletop surface. There needs to be
enough room for the phone(s) to operate, as well as for other inter-
action.

Lessen the movements Lessen the number of times the phone should
be moved. Users care about their phone, and do not like to slide it
along the surface, and get tired of lifting the phone from place to
place. For example, a solution could be to allow users to order items
from a restaurant menu via normal finger touch on the tabletop, but
submit the order items by using the phone. Another scenario could
be to place the phone at a certain spot, and then drag items to the
phone via normal touch on the tabletop.

Unintended touch When people move their phone across the tabletop
screen, they may unintendedly touch the surface display underneath
with their fingers. A thin smartphone increases the chance, because
it is more difficult to grab. The problem may be minimised by UI
design, if not all visual elements are made moveable and touchable
by normal touch input.

70 Evaluation

Chapter 8

Discussion

In contrast to a personal device, devices designed for shared user expe-
riences call for a different way of implementing applications. A tabletop
cannot natively link an action to the identity of its originator. This ren-
ders it impossible to implement multi-user applications for tabletops that
rely on access control or dynamically customises the user interface.

This thesis has changed that, by presenting a framework that allow
developers to build applications for tabletop displays that can utilise non-
anonymous user interaction, and by using standard hardware like an An-
droid powered smartphone.

The framework has been implemented on the basis of a user experience
design and a security analysis, and in order to qualify the work presented,
the framework has been used for building a non-trivial application and a
usability test has been conducted.

The following discusses the work presented in this thesis. The first
thing that is relevant to discuss is the user experience of non-anonymous
user interaction on tabletop displays using smartphones. Secondly, it is
also relevant to discuss how the technical solution performed, and finally,
it is relevant to discuss whether the security aspects were fulfilled.

8.1 User experience

As described earlier in this thesis, the Android powered smartphone func-
tions as a two-way mediator between the tabletop display and the user.
The smartphone screen functions both as output and input. The output
is the screen showing a segment of the tabletop display, and the input is
the user’s actions by touching and moving the phone.

Using standard hardware like a smartphone has the benefit, that users
may already own such a device and know how to operate it. A modern
smartphone is a highly personal device and the evaluation established
that the users found it was natural to use it for representing themselves.

Prior work has mostly tried to implement non-anonymous user in-
teraction by using customised hardware, but Schöning et al. [21] and
PhoneTouch [18] uses standard mobile phones. They do so by restricting
the interaction to a tap with the phone, or an obstructing authentication
every time a visual element has to be associated with an identity. The

72 Discussion

HandsDown project avoids using other hardware than the tabletop itself,
but instead requires that the user has a hand with spread out fingers
fixed on the tabletop during interaction. We have chosen an approach
that integrates with the gestures normally used on a tabletop display. A
user must only make sure that the smartphone is placed over the object
that needs to be touched.

During the evaluation several test participants tried to perform multi-
touch gestures like pinch-and-zoom on the display of the smartphone, with
the expectation that the object below would scale accordingly. This shows
two things. First, it shows that even though multi-touch was excluded
from the work for simplification reasons, it is clearly relevant for future
work. Secondly, and more important, the fact that people intuitively ex-
pected and performed gestures known from touch enabled devices, indi-
cate that we have designed a user experience that integrates with gestures
normally used on tabletops.

The tabletop does not have hover events natively. When moving the
phone around on the tabletop, it resembles the usage of a conventional
mouse pointer, except from the fact that the phone hovers over an area,
whereas the mouse pointer points to a single XY-coordinate. This is con-
trasted by prior work. As mentioned above, prior work tends to restrict
the interaction possibilities to special gestures. Our solution enhances the
set of interactions.

The evaluation participants were deliberately chosen among people
with a strong knowledge of IT. The goal was to be able to skip the ed-
ucation and training in using the smartphone and tabletop, in order to
keep focus on the features of the framework as such. But this raises the
question, can the NAI framework features be targeted people without a
strong knowledge of IT? Almost all, more than 90% of the test partic-
ipants agreed that it was intuitive to use with a small learning curve.
Not all had tried a tabletop before. Based on that, we find it safe to
assume that non-IT people can use the framework features, for example
at a restaurant, but it is of cause required that they know how to use a
smartphone, and have an idea of what a tabletop is.

The NAI framework features a number of UI controls. They were
incorporated into the test applications, and used for access control and
dynamically customising the user interface. The evaluation showed that
the UI controls were not equally successful. 60% of the test participants
instantly figured out to use the IdentifiedSurfaceButton, and 86%
the IdentifiedViewport. The PersonalizedView gave the test par-
ticipants problems, as it was not clear that hovering over a certain field
would show a personalised view. These results point at a fundamental
problem of evaluating a framework like the NAI framework. The test
participants react to the user experience design in the context of the test
applications, while the goal of the evaluation was to quantify the usability
of the framework in isolation from the context. Nevertheless, the many
comments pointing at the limitations of how the framework was incor-
porated into the design of the test applications have been summarised
in a set of five design guidelines. The guidelines are listed in the evalu-

8.2 Framework implementation 73

ation results, but one example could be, that test participants found it
obstructive if the phone was to be moved all the time. It is therefore
recommended that designers of future applications lessen the movements,
by allowing users to move objects to the phone, rather than moving the
phone to the objects.

8.2 Framework implementation

We have used all the components in the developer API to build the non-
trivial restaurant application and the evaluation has shown that the com-
ponents work and operate as intended.

The evaluation pointed at one weakness in the current implementation
of the framework. If the back of a smartphone is able to reflect IR light,
the tabletop may recognise the phone as a Blob and raise Blob Contact
events. Several test participants experienced this phenomenon and were
confused, because the smartphone some times accidentally moved ele-
ments around. This inconvenience is however a matter of implementation,
and can be fixed if Blob Contact events raised in the area underneath
the phone are suppressed.

To get the glass effect on the smartphone display, there is a strong
requirement for a reliable and fast connection between the smartphones
and the tabletop. This has been the primary reason for choosing the
primitive socket connection in the transport layer with communication
messages being converted to byte arrays. If we had chosen an application
layer protocol like HTTP or had wrapped the communication messages
in an XML based format, there would have been some extra payload to
each message. In the current implementation we can stream 60 frames
per second (FPS) to an HTC Desire smartphone. This is four times as
much as the required 15 FPS to get the glass effect on the smartphone dis-
play. The framework does therefore not have any problems in supporting
multiple simultaneous smartphones.

Once the connection between the smartphone and tabletop has been
established, it is persisted throughout the application session. It means
that if the phone rings or if the user lifts his phone from the tabletop,
the underlying Service running on the Android smartphones keeps the
connection alive. During the evaluation it was discovered that some users
tended to lift the phone when it should be moved around. However the
connection persistence meant that the image streaming was easily re-
sumed when the phone was put bag on the tabletop surface.

We have used the framework to build a non-trivial application for a
restaurant scenario. The application gives users the possibility to order
and pay for food and beverages using their smartphones. The imple-
mentation of the restaurant application has shown that using the NAI
framework resembles how traditional MSS applications are written based
on WPF. The framework only has a small footprint in the amount of code
lines needed to implement non-anonymous user interaction.

74 Discussion

8.3 Security

The separation of concern in regards to security which has been described
in the security analysis (chapter 4) is also the outset for this discussion.

The NAI framework uses the SSL protocol to secure the communi-
cation between smartphones and the tabletop. SSL effectively eliminates
threats like eavesdropping and impersonation from message forgery, be-
cause of the confidentiality and integrity properties provided by the pro-
tocol. Compared to related work, the HandsDown [19] and Diamond-
Touch [4] both suffer from being vulnerable to impersonation attacks. In
DiamondTouch impersonation can occur if users touch each other while
interacting with the tabletop. In HandsDown, the identity of users are
determined based on the contours of the users’ hands, which may be
duplicated by an adversary.

The required tag stuck on the back of the smartphone may easily be
duplicated. So the NAI framework does not assume any relationships
between particular tags and smartphones, but instead it requires every
smartphone to be paired with its tag at startup. Furthermore the tabletop
only allows one of each distinct tag to be recognised at a time.

The use of SSL and the strict tag management in the NAI framework
provide a secure environment for developers to build applications with
non-anonymous user interaction. The developers must however provide
their own user authentication mechanism that satisfies the security re-
quirements of their applications. The NAI framework has a pluggable in-
terface where the user authentication mechanism can be customised. We
have provided a basic authentication mechanism as an inspiration and to
show that the pluggable interface works. Our mechanism only requires
the user to enter a user id which is not very secure. But it can for example
be extended to a two-factor approach like the classic username-password
scheme.

The required user authentication on startup has not been part of our
evaluation of the NAI framework, since the procedure is somewhat trivial
and it resembles how users authenticate to other systems, for example on
the internet. We did however get feedback on some security aspects of
the NAI framework during the evaluation sessions. One user said that
he would feel uncomfortable in removing his phone from his pocket and
place it on the table. In regards to the social engineering threat the NAI
framework suffer from, this is a good comment. If users are persuaded
to leave their phones at the tabletop, the security of the NAI framework
may be compromised. But when a user says that he prefers having his
phone in his pocket, it means that he is not easily persuaded to leave
it behind. We think this expression of awareness and protection of the
phone come from the fact that it is a phone. The phone is a personal
device as described earlier, and it is becoming an ever larger part of our
everyday life. We use it for many activities all the time. This usage
pattern fits well with the assumption in the NAI framework that users
do not leave a paired phone behind at the tabletop and it provides further
proof of the NAI framework being secure.

Chapter 9

Conclusion

This thesis addressed the problem of linking an action to the identity
of its originator in a way that allows applications to discriminate be-
tween simultaneous users. The motivation originated from related work,
which stated problems of having access control [15, 14, 21] and dynamic
customisation of the user interface [20, 16] on tabletop displays without
non-anonymous user interaction. Prior work has solved these problems
by using special hardware or by introducing special gestures.

Our solution to the problem was to create a new user experience
design, where an Android powered smartphone is used as a two-way me-
diator between the user and a MSS tabletop. We implemented the user
experience design as a framework called the NAI framework1. It features
a set of identified events and some UI controls for developers to use for
application building. In a security analysis we showed that the framework
is secure and that it is necessary to delegate the responsibility of user au-
thentication to the framework developer. Hence we have implemented a
customisable user authentication mechanism in the framework.

The NAI framework builds upon the MSS API and has proven suc-
cessful for implementing a non-trivial application, an ordering and pay-
ment system for a restaurant. The application was used during a user
evaluation of the usability of both the novel interaction design with the
smartphone as well as the UI features provided by the NAI framework.
The evaluation showed that the framework operates as intended. The
users found the required use of the smartphone intuitive and easy to
learn, but was generally not happy about moving the phone around too
much. They also pointed at some shortcomings in the UI design of the
restaurant application. These user comments have been turned into a
valuable set of design guidelines recommended for developers using the
NAI framework to follow.

We feel comfortable to say that the NAI framework solves the prob-
lem of having non-anonymous user interaction on tabletop displays, and
thereby allows tabletop applications to feature access control and dynamic
customisation of the user interface.

1Appendix A describes where to find the source code.

76 Conclusion

9.1 Future work

During the development of the NAI framework, some ideas for future
work has emerged. The ideas span both improvements of existing func-
tionality as well as completely new features which can make the framework
even more powerful.

The framework does not support identified multi-touch on the smart-
phone. It was decided from the beginning not to include this functionality
for simplicity reasons. Both smartphones and the MSS tabletop support
it, so there are no technical limitations in implementing this functionality.

The evaluation showed that the current implementation of the frame-
work is dependent on the smartphones having a non-reflective back. Even
the small metallic ring around the camera is enough to cause unwanted
Contact events. This limitation can be eliminated by suppressing the
Contact events raised in the area underneath the phone. The tabletop
can determine the size of the smartphone by adding an extra step to the
calibration.

The current customisable authentication mechanism in the framework
is limited to only be used during the startup of the smartphone applica-
tion. Applications may very well require stronger authentication func-
tionality where some individual events, like a click on a button, requires
the user to be authenticated again.

The current pairing mechanism using PIN codes is somewhat cum-
bersome and requires the user’s attention. The pairing could however
be performed automatically, for example by using a pairing mechanism
where a unique colour sequence is displayed by the tabletop underneath
the phone and detected by the smartphone camera. The colour sequence
is then converted to numeric code by the smartphone and sent to the
tabletop for verification.

References

[1] Eric A. Bier and Steven Freeman. MMM: a user interface architecture
for shared editors on a single screen. In Proceedings of the 4th annual
ACM symposium on User interface software and technology, UIST
’91, pages 79–86, New York, NY, USA, 1991. ACM.

[2] Matt Bishop. Computer Security: Art and Science. Addison-Wesley,
2003.

[3] P. Dietz, B. Harsham, C. Forlines, D. Leigh, W. Yerazunis, S. Ship-
man, B. Schmidt-Nielsen, and K. Ryall. DT controls: adding identity
to physical interfaces. In Proceedings of the 18th annual ACM sym-
posium on User interface software and technology, pages 245–252.
ACM, 2005.

[4] P. Dietz and D. Leigh. DiamondTouch: a multi-user touch technol-
ogy. In Proceedings of the 14th annual ACM symposium on User
interface software and technology, pages 219–226. ACM, 2001.

[5] Stephen Downes. Authentication and identification. International
Journal of Instructional Technology and Distance Learning, 2(10):3–
18, October 2005.

[6] J.Y. Han. Low-cost multi-touch sensing through frustrated total
internal reflection. In Proceedings of the 18th annual ACM sym-
posium on User interface software and technology, pages 115–118.
ACM, 2005.

[7] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research
Methods in Human-Computer Interaction. Wiley Publishing, 2010.

[8] Nicolai Marquardt, Johannes Kiemer, and Saul Greenberg. What
caused that touch?: expressive interaction with a surface through
fiduciary-tagged gloves. In ACM International Conference on Inter-
active Tabletops and Surfaces, ITS ’10, pages 139–142, New York,
NY, USA, 2010. ACM.

[9] T. Meyer and Dominik Schmidt. IdWristbands: IR-based user iden-
tification on multi-touch surfaces. In ACM International Conference
on Interactive Tabletops and Surfaces, pages 277–278. ACM, 2010.

[10] W.L. Miller and B.F. Crabtree. Clinical Research: A Multimethod
Typology and Qualitative Roadmap. Sage Publications, 1999.

78 REFERENCES

[11] B.A. Myers, H. Stiel, and R. Gargiulo. Collaboration using multiple
pdas connected to a pc. In Proceedings of the 1998 ACM conference
on Computer supported cooperative work, pages 285–294. ACM, 1998.

[12] Yongqiang Qin, Chun Yu, Hao Jiang, Chenjun Wu, and Yuanchun
Shi. pPen: enabling authenticated pen and touch interaction on
tabletop surfaces. In ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’10, pages 283–284, New York, NY,
USA, 2010. ACM.

[13] Aaron Quigley. From GUI to UUI: Interfaces for Ubiquitous Comput-
ing, chapter 6, pages 237–284. Ubiquitous Computing Fundamentals.
CRC Press, 2010.

[14] M. Ringel, K. Ryall, C. Shen, C. Forlines, and F. Vernier. Release,
relocate, reorient, resize: Fluid techniques for document sharing on
multi-user interactive tables. Technical report, Mitsubishi Electric
Research Laboratories, April 2004.

[15] V. Roth, P. Schmidt, and B. Güldenring. The IR ring: Authen-
ticating users’ touches on a multi-touch display. In Proceedings of
the 23nd annual ACM symposium on User interface software and
technology, pages 259–262. ACM, 2010.

[16] K. Ryall, A. Esenther, K. Everitt, C. Forlines, Morris, M. R.,
C. Shen, S. Shipman, and F. Vernier. iDwidgets: Parameterizing
Widgets by User Identity. In Proceedings of IFIP INTERACT’05:
Human-Computer Interaction, Short Papers: Tools, pages 1124–
1128, 2005.

[17] K. Ryall, A. Esenther, C. Forlines, C. Shen, S. Shipman, MR Mor-
ris, K. Everitt, and FD Vernier. Identity-differentiating widgets for
multiuser interactive surfaces. IEEE Computer Graphics and Appli-
cations, 26(5):56–64, 2006.

[18] Dominik Schmidt, Fadi Chehimi, Enrico Rukzio, and Hans Gellersen.
PhoneTouch: a technique for direct phone interaction on surfaces. In
Ken Perlin, Mary Czerwinski, and Rob Miller, editors, UIST, pages
13–16. ACM, 2010.

[19] Dominik Schmidt, Ming Ki Chong, and Hans Gellersen. HandsDown:
hand-contour-based user identification for interactive surfaces. In
Ebba Hvannberg, Marta Kristin Lárusdóttir, Ann Blandford, and
Jan Gulliksen, editors, NordiCHI, pages 432–441. ACM, 2010.

[20] Dominik Schmidt, Ming Ki Chong, and Hans Gellersen. IdLenses:
Dynamic personal areas on shared surfaces. In ACM International
Conference on Interactive Tabletops and Surfaces, pages 131–134.
ACM, 2010.

[21] Johannes Schöning, Michael Rohs, and Antonio Krüger. Using mo-
bile phones to spontaneously authenticate and interact with Multi-
Touch surfaces. In AVI 2008: Workshop on designing multi-touch

REFERENCES 79

interaction techniques for coupled private and public displays, May
2008.

[22] J. Stewart, B.B. Bederson, and A. Druin. Single display groupware:
a model for co-present collaboration. In Proceedings of the SIGCHI
conference on Human factors in computing systems: the CHI is the
limit, pages 286–293. ACM, 1999.

[23] Robert A. Virzi. Refining the test phase of usability evaluation: how
many subjects is enough? Hum. Factors, 34:457–468, August 1992.

80 REFERENCES

Appendix A

Framework source code

The source code for the NAI framework has been released under an open
source license and is available at:

http://code.google.com/p/nai-framework/

The code base includes the two applications, Warm-up and Restau-
rant, which have been used in the evaluation of the framework.

The code is accompanied by some wiki articles on how to get started
with using the framework, and a video presenting the features of the
framework. The table of contents of the wiki pages are:

• What is the NAI framework?

• Install and run the demo applications

• Create your own applications

– Customising the framework to your needs

• Improving the NAI framework

http://code.google.com/p/nai-framework/

82 Framework source code

Appendix B

Evaluation material

B.1 Test scenarios

B.1.1 Scenario 1

The first scenario is unstructured. After a short introduction (see below),
the test persons can freely interact with a demo application that puts
forward all the features of the NAI framework. There are no guidance
by the supervisors.

B.1.1.1 Introduction read aloud

This evaluation is a part of a project that address the problem of having
a tabletop computer distinguish between its users and their actions. The
problems can be solved by using the screen of a smartphone.

For example like this [place the button control below the phone and
press the button via the phone. Point to the users name in the log].

This is the first of two applications that you are going to test. This is
a technical application, showing a set of interaction features, the second
application will be related to a real life scenario.

You can try it out yourself during the next couple of minutes. Please
go ahead, and say aloud what come to your mind.

B.1.2 Scenario 2

The second scenario is structured. The following states the test read
aloud, including the instructions for the test persons for what to do. This
scenario is simulating a real life scenario: Ordering, eating, and paying
for food or beverages at a restaurant.

B.1.2.1 Instructions

You are now sitting as guests in a restaurant. You are here because you
want something to eat. Person 1 (point him out) has invited a person
out for dinner. The restaurant has incorporated a new interactive dining
experience where tables are interactive surfaces, and orders are placed and
paid via a smartphone. A typical restaurant visit, like this one, involves

84 Evaluation material

three states which you are now going through. They are ordering, dining,
and checkout. I will tell you what to do. Let us get started...

Ordering state This is the Ordering state. The Summary shows you
what you and others have ordered. The state end placing your
orders via the center field (point to it).

1. Host: Choose from the menu a dish and one beverage for your-
self

2. Guest: Choose the same dish as your host, and a beverage of
your own choice.

3. Host: Wait for your guest to choose a dish and something to
drink.

4. Host: Cancel your dish, and choose another dish from the
menu.

5. Both: Place your order.

Dining state This is the Dining state. After a short while you will get
your food, and when you have finished eating it, please proceed to
checkout using the center button (point to it, give the participants
a little something to eat).

1. Both: Eat up and proceed to check out

Checkout state This is the Checkout state. Each person gets a bill
based on the items from the menu that he or she ordered. For
privacy reasons, the actual cost has been hidden. The scenario
ends when all persons have payed their bills using the center field
(point to it)

1. Guest: Check the bill for errors. Is the summation correct?

2. Guest: Announce the correctness and total amount of your bill
to your host

3. Host: Transfer the bill of your guest to yourself.

4. Host: Check the bill for errors. Is the summation correct?

5. Host: Pay your bill

B.2 Semi-structured interview - prepared ques-
tions

The prepared set of questions are split into two sections. First, questions
on adaptation. Secondly, questions related to the users experience.

B.2.1 Adaptation

Users evaluation of the difficulty in learning the interaction design. Learn-
ing curve.

B.3 ITU newsletter advertisement 85

• Did you find it difficult to use?
• Was it difficult in the beginning?
• Was it easier as the session progressed?
• Do you think it could be a challenge for other users to use applica-

tions like the one you just tried?
• Why not?/Why do you think that? (depending on the previous

answer).

B.2.2 Experience

Users evaluation of the framework features and two general questions in
the end.

• Do you remember the situation where you ordered something to
eat?

• Do you remember if that made you think?
• If YES: What?
• If NO: Do you have any remarks on that?

• Do you remember the situation where you checked the bill for sum-
mation errors? Do you remember if that made you think?

• if YES: What?
• if NO: Do you have any remarks on that?

• Do you remember the payment situation, where the total amount
was confirmed on the phone?

• Do you remember if that made you think?
• If YES: What?
• if NO: Do you have any remarks on that?

• Did you at any time find the required usage of the smartphone
obstructive?

• If YES: When? Why?
• If NO: Why is that, you think?

• Do you think it is a problem to use the mobile phone for personalized
interaction?

• Why?/Why not?

B.3 ITU newsletter advertisement

The advertisement from the weekly newsletter “readIT” in figure B.1.

86 Evaluation material

Figure B.1: The advertisement for evaluation participants in the ITU
weekly newsletter 1 June 2011

Appendix C

Responsibilities

C.1 Thesis

Chapter/section Responsible
1 Introduction Thomas Berglund
2 Related work Thomas Berglund
3 The NAI framework Thomas Berglund &

Michael Thomassen
4 Security analysis Michael Thomassen
5 Implementation

5.1 States Michael Thomassen
5.2 Communication Michael Thomassen
5.3 Tabletop Michael Thomassen
5.4 Smartphone Thomas Berglund

6 Using the NAI framework for . . . Michael Thomassen
7 Evaluation Michael Thomassen
8 Discussion Thomas Berglund &

Michael Thomassen
9 Conclusion Michael Thomassen

C.2 Code

C.2.1 Research and design

Task Responsible
Architecture Thomas Berglund &

Michael Thomassen
Pilot project: Controlling events Thomas Berglund
Pilot project: Data Binding Thomas Berglund

C.2.2 Smartphone (Android)

Weight Responsible
10% Michael Thomassen
90% Thomas Berglund

88 Responsibilities

C.2.3 Tabletop (Microsoft Surface)

Weight Responsible
90% Michael Thomassen
10% Thomas Berglund

C.2.4 Evaluation
Task Responsible
Warm-up application Thomas Berglund
Restaurant application Michael Thomassen

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Context and motivation
	1.2 Problem statement
	1.3 Research methods
	1.4 Results
	1.5 Thesis overview

	2 Related work
	3 The NAI framework
	3.1 General user experience design
	3.2 Usage
	3.3 Setup

	4 Security analysis
	4.1 Area 1: Non-anonymous user interaction
	4.2 Area 2: Tabletop – smartphone communication
	4.3 Area 3: Tag recognition
	4.4 Area 4: Pairing tag with smartphone
	4.5 Summary

	5 Implementation
	5.1 States
	5.2 Communication
	5.3 Tabletop
	5.4 Smartphone

	6 Using the NAI framework for application building
	6.1 Restaurant of the future

	7 Evaluation
	7.1 Parameters
	7.2 Method
	7.3 Test sessions setup
	7.4 Participants
	7.5 Results

	8 Discussion
	8.1 User experience
	8.2 Framework implementation
	8.3 Security

	9 Conclusion
	9.1 Future work

	References
	A Framework source code
	B Evaluation material
	B.1 Test scenarios
	B.2 Semi-structured interview - prepared questions
	B.3 ITU newsletter advertisement

	C Responsibilities
	C.1 Thesis
	C.2 Code

