
Approximator: Predicting Interruptibility in Software
Development with Commodity Computers

Paolo Tell, Shahram Jalaliniya, Kristian S. M. Andersen,
Mads D. Christensen, Anders B. Mellson, Jakob E. Bardram

The Pervasive Interaction Technology Laboratory

IT University of Copenhagen

Rued Langgaardsvej 7, DK-2300 Copenhagen, DK

Email: {pate,jsha,mdch,ksma,anbh,bardram}@itu.dk

Abstract—Assessing the presence and availability of a remote
colleague is key in coordination in global software development
but is not easily done using existing computer-mediated chan-
nels. Previous research has shown that automated estimation of
interruptibility is feasible and can achieve a precision closer to, or
even better than, human judgment. However, existing approaches
to assess interruptibility have been designed to rely on external
sensors. In this paper, we present Approximator, a system that
estimates the interruptibility of a user based exclusively on the
sensing ability of commodity laptops. Experimental results show
that the information aggregated from several activity monitors
(i.e., key-logger, mouse-logger, and face-detection) provide useful
data, which, once combined with machine learning techniques,
can automatically estimate the interruptibility of users with a
78% accuracy. These early but promising results represent a
starting point for designing tools with support for interruptibility
capable of improving distributed awareness and cooperation to
be used in global software development.

I. INTRODUCTION

Globalization is an economical and societal trend that
has pushed industries to move from local to global markets
requiring practitioners to increasingly work in distributed ar-
rangements. This change of work environment has had signifi-
cant negative repercussions especially in extremely cooperative
workspaces like software development. In global software
development, many of the mechanisms that facilitates collabo-
ration in co-located arrangements are absent or disrupted [15]
and maintaining ‘workspace awareness’ (i.e., “the knowledge
about others’ interaction with the space and its artifacts” [12])
as well as supporting informal awareness (i.e., “the general
sense of who’s around and what they are up to” [12]) has
became challenging and yet increasingly important.

An awareness of team members’ presence is crucial in
facilitating social interaction [12] as it allows people to predict
whether interrupting a person at a specific time would be ap-
propriate or not. And according to a study by Fogaty et al. [8],
an ‘interrupter’ (i.e., the person provoking the interruption) is
able to process such decision with an accuracy of 77% by
simply observing the ‘interruptee’ (i.e., the person that is the
target of the interruption [18]).

However, since workspace awareness based on physical co-
presence is not an option in distributed software development,
remote team members often need to rely on alternative means
to compensate for the absence of such information. In 2003,

Herbsleb and Mockus recognized that “[j]udicious use of pres-
ence awareness technology has the potential to substantially
lower the difficulty and frustration associated with contacting
a remote colleague” [16].

A common approach to gauge the availability and spread
awareness information in distributed teams has been to utilize
status information in instant messaging systems [27], [6]. How-
ever, more advanced systems to provide automatic assessment
of distributed team members’ status have been investigated
(e.g., [3], [10], [18], [24], [32]). Nonetheless, most of these
systems rely either on external sensors, making the system
quite challenging to deploy, or on a configuration step of the
system, making the initial installation cumbersome and not as
straightforward as a user would hope for. Finally, these systems
do not expose information to external ones, making their use
limited to the user interface provided by the system itself.

In this paper, we present the design, implementation, and
evaluation of Approximator: a presence and interruptibility
sharing system for global software development that relies
entirely on the sensing ability of a commodity laptop to esti-
mate the interruptibility of its user. We present an experiment
that replicates the one by Fogarty et al. [8] in which the
accuracy achievable with Approximator is compared against
the one achieved by humans. This experiment shows that the
information aggregated from several activity monitors (i.e.,
key-logger, mouse-logger, and face-detection) provide useful
data, which, once combined with an adaptive algorithm, can
automatically estimate the interruptibility of users with a 78%
accuracy.

In the remainder of this paper, we will review in Section II
related technologies designed to predict availability and in-
terruptibility as well as review the work by Fogarty et al.
Section III will present Approximator, and Section IV will
detail the interruptibility decision models manually designed.
Section V presents the replication of the evaluation by Fog-
arty et al., and its quantitative results will be presented in
Section VI. Section VII presents a discussion of the system
and the results in the light of the theoretical framework
of interruptibility systems presented in [18]. The paper is
concluded in Section VIII.

II. RELATED WORK

Two types of research is related to Approximator and the
present study; (i) systems that have been designed to improve

2015 IEEE 10th International Conference on Global Software Engineering

978-1-4799-8409-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ICGSE.2015.16

90

informal awareness as well as to convey and predict availability
and interruptibility; and (ii) experimental studies on predicting
human interruptibility.

A. Awareness, Availability, and Interruptibility Systems

Even though it has been proven that people are able to
create ad-hoc practices to mitigate inappropriate interactions
when collaborating closely [14], early works on media spaces
technologies have investigated ways to improve such aware-
ness and sense of presence among physically distributed co-
workers to foster spontaneous interaction as normally seen
among collocated co-workers (e.g, Portholes [7]). Such media
space technologies have proven useful in fostering remote
awareness and are now being incorporated in commercial tools
like Google Hangout.

From these initial media spaces investigations, the focus in
designing presence awareness systems moved to more abstract
representation of such information. Possibly the first work in
such direction, the Peepholes system [11] provided information
about the presence of people and supported presence awareness
by means of iconic presence indicators. This work showed
that it was feasible to overcome most of the limitations and
concerns of media spaces and provided the foundation for a
new wave of systems. Contrary to the predecessors in fact,
the Peepholes system did not require expensive hardware and
high bandwidth to transfer video streams; and, maybe most
importantly, provided a solution to the concerns related to
privacy. However, the Peepholes system was only able to
indicate whether a person was present or not and, even though
crucial given the step forward in presence awareness systems,
this was not sufficient to properly support the decision making
process behind the establishment of a connection with a remote
colleague. Therefore, researchers investigated the concept of
interruptibility and the “tension between wanting to avoid
interruption and appreciating its usefulness” [20]. Systems
thereafter started to support both the manual1 (e.g., Rear View
Mirror [13] and ConNexus [30]) as well as the automatic
setting of users’ interruptibility levels. In the remainder of
this section, we will describe a set of systems representing
the latter group: availability-sharing systems that rely on an
automatic assessment of the interruptibility of users to model
their availability.

MyTeam [24] was one of the first attempts in automatically
assessing the availability of a user. A main motivator behind
this work was an early study by Whittaker [33], which showed
that over 60% of all business phone calls failed to reach the
intended party. MyTeam addresses this issue by providing
an overview of the automatically detected presence as well
as other relevant information of the users. This was done
by visualizing a stripe composed by tiles each portraying a
compact overview of a user (not necessarily running the client
application). The tiles presented information like the user’s
picture, location, activity, and status. The MyTeam system
collected primarily information from an active badge indoor
location system to automatically update presence as well as
from a keyboard and mouse activity-monitoring application on
the user’s primary computer. This automatically sensed status

1See [27] and [6] for an investigation of the use and role of instant
messaging systems in distribute teams.

information was shown by color-coding the user’s tile. Users
could also manually set two additional status updates as being
either ‘busy’ or ‘invisible/unknown’. These last two options
were fully controlled by the user and supported the integration
of additional textual information like ‘do not disturb’ or ‘gone
for the day’. The system was evaluated by 13 participants
during a four-week period with great success. However, two
main drawbacks were reported: (i) the stipe could not be
personalized and occupied a significant portion of the screen,
and (ii) the client did not allow initiating communications
directly from the user interface.

Lilsys [2] was designed to acquire data from sensors de-
ployed in the user’s office, which were aggregated to represent
his or her unavailability. But this information was not directly
exposed to all users of the system, thereby impacting on pri-
vacy concerns. The main sensing and data acquisition modules
of Lilsys were combined together in a physical device that
could be places on the user’s desk. Sensors included phone,
door, motion, and sound detectors as well as computer activity
monitors. This information was used to infer the unavailability
of the user. The physical device allowed users to turn it off,
to overview the outputs from the sensors through small lights,
and to temporarily override the inferred system status to the
maximum unavailability level. The system was deployed for a
seven months study in the office of 4 users. Results were very
promising and users reported high satisfaction insomuch that
some of them continued to use the Lilsys system after the study
was completed. Problems reported from the study ranged from
privacy concerns due to the quantity of sensors deployed in the
office, to the intelligibility of the unavailability representations
used in the user interface. Finally, users also reported the
system to be quite demanding in terms of interaction required
to access the unavailability information of users.

MyVine [10] was designed to obtain sensor data without
installing any additional hardware or sensing infrastructure.
The information detected by MyVine was speech though
a microphone, location via network information, computer
activity, and calendar entries. This information was used to
model availability that was shown to users connected to the
system. The system used continuous values (i.e., 0-100) to
report availability level and it allowed users seeking informa-
tion to gradually refine the information by interacting with
the contacts. As an additional feature to previous systems,
MyVine would suggest the most appropriate mean to initiate
communication. This was shown via three icons below the
picture of a user. MyVine was deployed in a four-week study
with 26 participants. Interestingly, participants used the system
chiefly as a presence indicator and less frequently to view the
availability level before engaging in communication (which
was typically done via another system, like IM).

Finally, InterruptMe [18]. The design of this system was
informed by a six-dimension design space on availability-
sharing systems, derived from an extensive review of existing
systems. InterruptMe was designed to balance the tensions
between interrupters and interruptees. The system differed
from previous systems by presenting availability information
to users on a per-colleague and per-communications medium
basis. Therefore, the data collected through both background
monitoring software as well as physical sensors deployed
around the office space of a user were filtered based on

91

user settings. The InterruptMe system was not subject to a
deployment study so no evidence exists on its effectiveness in
the wild.

B. Experimental Studies

Besides manipulating information that is most relevant
to their current task, knowledge workers like software de-
velopers need to manage multiple tasks and cooperate ef-
fectively among several colleagues to be successful [31]. In
distributed environments, in which such activities need to be
performed via computer-mediated means, the establishment
of the communication channel between the interrupter and
the interruptee required to engage in the activity can have
undesired repercussions due to the interruption happening at
an inappropriate time [26], [25]. Starting from a Wizard of Oz
feasibility study in 2003 [21], Fogarty et al. have presented
a series of studies (i.e., [9], [10], [8], [1]) in which they
thoroughly investigated the uses of a sensor-based system to
automatically assess the interruptibility of humans.

One of their studies [8] shows that humans reach 77%
accuracy when assessing whether or not a person is ‘highly
non-interruptible’, whereas an assessment based on a model
constructed on simulated sensors data is capable of making
this same distinction with an accuracy of 82%. It is important
to note that for both assessments, the baseline reachable by
simply stating constantly the opposite fact (i.e., ‘not highly
non-interruptible’) is 68%. The range of sensors used in this
experiment was very wide as their goal was to maximize the
accuracy of the models that could be constructed based on
the automatically collected data. Sensors included keyboard
and mouse activity monitors, calendar monitors, microphones,
cameras, location detection systems (based on network ip),
door sensors, motion sensors, phone sensors, etc.

Another study [9] also analyzed different reduced sensors
combinations. In particular, they considered the scenario of a
model based solely on data collected by the built-in micro-
phone and the computer activity of regular laptops. Clearly,
this scenario is extremely interesting, as it requires no physical
deployment of any kind and could permit a study based on a
larger deployment. The results were very promising but not
consistent across the subjects; one of the chosen candidates in
fact could not be assessed as accurately as the others, and the
model made no use of microphone data. In discussing this,
Fogarty et al. hint at the possibility that the issue could be
caused by noise due to the proximity of the microphone to the
laptop; however, we speculate that another explanation could
be related to the different working environment of the subjects.
The best results seemed to be obtained by managers who might
be working in a less crowded and noisy environment making
the data from a microphone good indicator of the subject
activity.

III. APPROXIMATOR

As discussed above, it has been shown that the sensing
ability of a commodity laptop can provide useful, reliable, and
usable interruptibility information [9]. Moreover, experimental
results has showed that support for interruption management
should not be done in a separate system, but should be built
into the primary tools used for coordination and communi-
cation. These studies show that integration with the users’

primary application—like an IDE for a programmer—is of
paramount importance to facilitate adoption of presence and
interruptibility support (e.g., [22], [10]).

Based on these two observations, the design goal of Ap-
proximator was twofold: to experiment with the sensing ability
of commodity laptops to automatically estimate the interrupt-
ibility of programmers with little to no pre-configuration of
their laptops, and to design an infrastructure able to expose
accurate interruptibility information as a service to be utilized
by other application, like an IDE or chat application.

Figure 1 depicts a high-level overview of the Approximator
architecture2. As it can be seen, Approximator consist of three
main parts:

• An infrastructure aggregating and classifying data,
and running interruptibility predictions.

• Activity monitors collecting information from users’
laptops.

• Clients subscribing to presence and interruptibility
information from the infrastructure.

InfrastructureInfrastructure
Activity

monitors
Clients

Fig. 1. High-level overview of the Approximator system architecture. The
dashed line shows the Approximator API that allows activity monitors to
send data to the infrastructure and allows clients to subscribe to presence and
interruptibility information.

The central element of Approximator is the infrastructure
component, a server component deployed to a cloud service
that represent the access point for both the activity monitors
pushing the data collected on users’ laptops as well as third-
party client applications requesting data. The outer dashed
circle illustrates that the infrastructure expose an application
programmer interface (API) supporting communication with
activity monitors and clients.

Activity monitors are the data providers. An activity moni-
tor is tied to a specific user, and a user can have an undefined
number of monitors assigned. Activity monitors register them-
selves with the infrastructure, which returns a user-specific
endpoint and thereafter are allowed to send raw readings to
this endpoint. Finally, the APIs can be queried by clients to
gather presence and interruptibility information inferred by the
infrastructure. This information can then be utilized to e.g.
visualize such information to the users.

A. Infrastructure

The main responsibilities of the infrastructure are to: (i)
receive data from the remote activity monitors (see Section
III-B); (ii) aggregate such data based on the models for
presence and predict interruptibility (see Section IV); and (iii)
make such information available through the Approximator
API.

For the infrastructure, it is important to design for scala-
bility in order to make the system usable in a global software

2The server side of Approximator and the client used for the evaluation are
available on GitHub at https://github.com/mofus/GSE.

92

development context. It should be able to handle multiple
activity monitors for multiple users, multiple client applica-
tions, accessed from many different geographical locations.
However, since the infrastructure is responsible for inferring
presence and interruptibility, it is a potential bottleneck. To
address scalability, the design of Approximator is based the
actor model by Carl Hewitt [17], which uses actors as main
units of work that communicate among each other through
message passing and do not share state. This makes it possible
to easily parallelize the execution by running actors on differ-
ent resources, which leverage the benefits of a cloud-based
infrastructure where additional resources can be dynamically
allocate when needed. Approximator is implemented in Akka3

and Scala4, which implements an actor model on the Java VM.

The Approximator API is implemented as a REST-based
service using a WebSocket communication layer. The service
creates the following endpoint:

• /register {PUT}. This endpoint allows users to regis-
ter with a sensor- and user- name pair (String, String).
It returns the endpoint that the user should send
updates to, i.e., the first user will get the endpoint
/user/1 and subsequent users will get a path with an
increased userid value.

• /user/id(int) {GET & PUT}. After the register
method is called the server creates two new endpoints
for each user based on the path returned during the
registration (e.g., /user/1 in the example above) by
creating both a GET and a PUT endpoint for that
specific URL. The PUT is used to provide new sensor
readings; while, the GET returns the current predicted
interruptibility.

• /users {GET}. This endpoint returns the path and
current predicted interruptibility of all registered users.

B. Activity Monitors

Activity monitors gather low-level information about a
user’s presence and behavior. Activity monitors are in general
designed to run on commodity laptops, which we define a
device that is generally available for sale, runs a common
PC operating system (OSX, Windows, or Linux), and is
equipped with a camera, input devices (i.e., keyboard and
mouse), a built-in microphone, and built-in radios (e.g., Wi-
Fi and Bluetooth). To communicate with the infrastructure,
activity monitors need to register via the Approximator API by
providing an identification of the user being monitored. This
identification is then used to aggregate sets of activity monitors
together around the notion of user facilitating the retrieval and
analysis process.

Looking at a commodity laptop, there is a range of sens-
ing capabilities that can be monitored. Table I provides an
overview of these. In the following, we will review these
sensing capabilities and discuss their strengths and weaknesses.
Table I also lists if a particular sensor was included as part
of this study. As we will explain later, a combination of
few activity monitors (i.e., sensing input devices and the

3http://akka.io/
4http://www.scala-lang.org/

camera) turned out to be sufficient for an adequate accuracy
in interruptibility prediction.

Type Strength Weakness Incl.
Input devices Reveals user activity No ID of user; No detec-

tion of absence
�

Microphone Remote sensing; ID of
user

Noisy environment; No
detection of absence

�

Camera Remote sensing; ID of
user

Only in front of camera �

Radio Remote sensing; sensing
mobility

Unstable �

Process mon-
itor

Reveals activity types Requires user-specific
knowledge

�

Calendar Reveals current and future
activity

Requires user-specific
knowledge

�

Geo-location Helps map activity to loca-
tion

Provides little information
on its own

�

TABLE I. SUMMARY OF ACTIVITY MONITORS.

By collecting data from various input devices (e.g., key-
board, mouse, and trackpad), user presence and activity can
be detected. However, information from these input devices
will not enable the system to identify a specific user in front
of a given machine. Moreover, information from input devices
provides a very weak indicator of absence. In fact, a user could
be away from the computer, talking on the phone, reading on
the screen, or doing any other activity not involving the use
of input devices but still be present.

Using a microphone as an activity indicator has been
shown to be a very accurate information able to overcome
the weakness related to absence of input devices monitors. A
microphone monitor can be used to assess the presence of a
person even when not interacting with the laptop. Moreover,
using speech recognition techniques, voice input could be used
to establish the identity of a user. However, a microphone
suffers from the same limitation of input sensors, as the lack
of input is not a meaningful or useful piece of information.
Beside presence information, a microphone can be used to
infer interruptibility; according to Fogarty et al. [8] speaking
represents a situation of non-interruptibility. However, this
does not take into consideration a shared, noisy, and coop-
erative environment such as an open office space with, e.g.,
software developers. In such environments there is a high
chance of informal communication that hardly represents a
non-interruptible situation.

Like the microphone, the camera can provide information
about the presence of a user within the camera field of view
even when the user is not interacting with the machine. Given
the common positioning of cameras on the monitor bezel,
a camera detects a user only when in front of the laptop
rather than within the microphone’s range. Face-recognition
approaches could be used to strengthen the information and
determine the identity of the user visible to the camera, and
other computer vision techniques could be applied to perform
basic activity recognition for inferring interruptibility.

Since users on average own about three to six computing
devices [19], radio signals like Bluetooth or WiFi signals from
such devices can be used to infer the users proximity to the
machine. Moreover, if offices are equipped with e.g. Bluetooth
beacons, the system can infer indoor location. The weakness
of using radio for proximity detection and identification is the

93

overhead and instability of radio communication and need for
discoverability of e.g. Bluetooth devices.

Software process monitors can be used to sense interrupt-
ibility. Usually a process monitor is provided with a list
of processes (software applications) running on the user’s
computer. The list consist of both work and leisure associated
processes. By means of this information, it is possible to
obtain information about the type of application that the user is
currently using, which can provide knowledge that would help
infer interruptibility. For example, if a user is using an IDE, this
indicates that he is busy with software development, whereas
when using a web browser, he is reading facebook. Similarly,
a simple calendar monitor can help identify user’s activities
during the day and, in doing so, convey information about
their availability. However, such monitoring of a user would
require us to build user-specific models that map software
processes and calendar entries with their ‘interruptibility’. Such
user-specific configuration works against our design goal of
building a general model and these types of monitors was
hence excluded from this study.

Geo-location information can be obtained from the IP
address of the laptop or by using location estimation based on
WiFi triangulation. Knowing the whereabouts of the machine
neither infers presence nor interruptibility on its own. However,
it does provide other activity monitors and the decision module
with useful information regarding the geographical setting of
the machine, which would allow them to reason considering
the coarse user location, e.g., office, home, etc.

In summary, Table I provides an overview of the pos-
sibilities that have been considered and their strengths and
weaknesses. In order to move forward with the study, we
decided on only supporting a minimum set of sensors, which
is in line with the study of Fogaty et al. [9] in which it is
shown that significant results can be obtained with a reduced
set of sensors and, in particular, those available in commodity
laptops. In their evaluation, the sensors included were: mouse
and keyboard monitors, process monitor, and microphone.
Therefore, we decided on including sensing of input devices
(mouse and keyboard) since this provide information about
user activity directly on the laptop, as well as the camera to
sense presence in front of the laptop as well as remote (non-
keyboard/mouse) activity. As such, we wanted to investigate
the accuracy of prediction of interruptibility based on these
two simple activity monitors.

IV. INTERRUPTIBILITY MODEL

To estimate whether (i) a software developer is present and
(ii) to assess his or her level of interruptibility, the Approxi-
mator has access to data originated from: a keyboard monitor,
a mouse monitor, and a camera monitor for face detection.
Raw data from these monitors alone cannot be used to assess
these two characteristics of software developers. Therefore,
we defined the concept of presence as the assessment of
Approximator of a user (not necessarily the owner of the
laptop) being in close proximity to the laptop. The presence
feature is binary as a user can be either present, if detected by
any monitor, or not present, if not detected by any monitor.
The concept of interruptibility, instead, was defined as the
assessment of Approximator of the degree to which a user

detected as present can be interrupted. The interruptibility
value is also binary (i.e., interruptible/non-interruptible).

Given these definitions, raw data can be used directly to
assess presence; however, interruptibility requires a decision
model. Initially, we attempted to define a simple model of a
software developer based on preliminary tests and experience
working in software development environments. It soon be-
came clear that this model (described in the Section IV-A)
was limited and could match only hardcoded work patterns.
Therefore, to improve the accuracy of the estimations provided
by Approximator we refined the interruptibility decision model
by using machine learning techniques; this approach is detailed
in Section IV-B.

A. Initial Model

The initial model comprises three main scenarios, which
are assessed by a decision model component located on the
infrastructure server component. The scenario-detection algo-
rithm acts on a sliding window of incoming activity monitor
data, which for this study was set to 30 seconds based on initial
tests as depicted in Figure 2.

30 seconds of
sensor input

Scenario 1 Scenario 2 Scenario 3

Low Activity

Face Detected

High Mouse
Activity

High Keyboard
Activity

Fig. 2. Initial decision model.

Scenario #1 is inferred using face detection. When a user sits
in front of the computer, the face detection monitor will detect
the user as being present. Detection happens with a frontal or
profile detection depending on the angle with which the camera
sees the users face. This scenario is meant to capture the
situation in which a user is sitting in front of the computer but
does not interact with it. Common examples of this scenario
are: a user reading on the screen, a user having a conversation
for instance on Skype, or similar.
Scenario #2 is connected to high keyboard activity and iden-
tifies a user is doing concentrated work. Typical examples of
this scenario are a user writing code or other keyboard intense
tasks.
Scenario #3 on the contrary, is characterized by high mouse
activity5. The assumption behind this scenario is that heavy
mouse activity is an indicator of casual activity in software
development. Examples of this scenario are web browsing,
activity on the file system like moving files, or simply a switch
of context between work sessions.

5Note. In the unlikely case of data from the mouse and keyboard monitors
being equally weighted, the initial model of Approximator would have
evaluated Scenario #3 due to the code structure.

94

After testing this decision model, we noticed that the
accuracy of the system was very dependent on the test subject
being analyzed. Clearly, the interruptibility decision model was
unable to recognize the different work patterns of the test
subjects as relying heavily on the assumption that keyboard
input entails non-interruptibility and mouse events relate to
interruptibility.

B. Improved Model

To tackle the problems identified with the initial decision
model, we decided to utilized a machine learning algorithm.
The features selected for the machine learning algorithm were
computed from the mouse and keyboard of the participant’s
laptop. Samples were drawn at ∼5hz with a moving window
size of 35 seconds of data resulting in a sample size of
175 (35x5 = 175) without any overlap between samples. We
calculated the mouse mileage and used the moving average for
4 instances of data as the first feature. For the keyboard sensor,
we used a binary feature in which a pressed key would generate
1 while no key event would generate 0. To calculate the second
feature, we used the same moving average of 4 instances of
the keyboard sensor. The classification model was built in
the Weka machine-learning environment. We tried different
classifiers and the NNge classifier6 outperformed others. The
performance of the classification model was evaluated using a
standard cross-validation approach with 10 folds [23].

V. EVALUATION

To evaluate Approximator against the results presented by
Fogarty et al. in [8], we ran an experiment closely replicating
theirs. Their approach, defined as a bottom-up approach,
consists of three phases.

A The ‘data collection’ phase comprised the audio and video
recording of subjects (software developers in our case)
working in their actual environments. During this phase, the
system was firstly gathering data from the various sensors
(or activity monitors in our case) and secondly requesting
test subjects twice an hour, but at random intervals, to self-
assess their interruptibility level.

B The ‘human assessment’ phase focused on the human esti-
mation of interruptibility. A survey was performed in which
participants were asked to assess the level of interruptibility
of specific segments of the recordings captured during the
data collection phase.

C The ‘automatic assessment’ phase concerned the evaluation
of the improved estimation models described in Section
IV-B, which was tested against the dataset recorded during
the data collection phase.

A. Data Collection

Purpose: to collect audio and video recording of software
developers working in their actual environment while
gathering data through the Approximator system as well as
requesting periodic interruptibility self-assessments.

Subjects: two male subjects participated in this phase7.
Subject A, age 25, works for a security company in which

6NNge: Non-Nested Generalized Exemplars.
7In [8], test subjects were four for an overall recording time of 602 hours.

his primary task is to maintain and develop the company
system. Since the company has offices in several countries,
test subject A often does parallel development with the remote
teams. He works in shared offices with three to four other
employees depending on the day; these colleagues are always
assigned to the same projects, and they share a similar set
of skills. This is a rather important detail to describe his
work practices as they often engage in discussions, i.e., to
share knowledge. Finally, the office has a physical door that
can be closed, but this is rarely done. Subject B, age 34,
works for a software company in which his primary task is
to develop server solutions. Also his company has offices
in several locations and, as a company policy, it allows its
employees to work from home. During the days in which he
was recorded, subject B worked in his home office located in
the basement of his house. Therefore, in the case of subject
B all communication with colleagues happened either online,
through instant messaging, or via audio chats.

Setup: a Sony Handycam HDR-CX360 with a wide-angle
lens was used to record both audio and video (MP4, 720x576,
25 frames/sec.). As shown in Figure 3 and 4, the camera was
positioned at an angle that: (i) did not allow for the content of
the screen to be visible, (ii) captured as much as possible of
the office, and (iii) clearly showed the face of the test subjects,
their hands, and the input devices.

Fig. 3. Overview of the experiment setups illustrating camera position.

The Approximator system was deployed on both subjects’
laptops: a Microsoft Surface Pro 3 i5 processor 8GB RAM
with Windows 8.1 for subject A; and a Lenovo T440s i5
processor 8GB RAM with Windows 7 for subject B. Both
machines are used by the subjects on docking stations that
automatically connect the laptops to an external monitor, a
keyboard, and a mouse. In both setups, the machines were
connected to internet during the entire evaluation, thereby
allowing the activity monitors to collect and send data to the
infrastructure without any interruptions.

A small application was used to prompt both visual and
acoustic notification at random intervals averaging at two times
per hour. At each prompt the test subjects were required to
self-report their own level of interruptibility on a scale from
one (highly interruptible) to five (highly non-interruptible) by
holding up the corresponding amount of fingers on one hand
to the camera when prompted; alternatively, even though less
preferred, a verbal assessment was also accepted. The test
subjects were not allowed to interrupt or pause the application,

95

but could request retroactively to have sequences deleted if
necessary. Recordings in which the test subjects were not
present during a prompt were excluded from the evaluation.
Whereas, in cases in which test subjects clearly registered the
prompt but did not signal their interruptibility due to them
being either on the phone or engaged in another activity requir-
ing their full attention, the interruptibility level was manually
recorded during a post-analysis as highly non-interruptible.

The data collection phase of the experiment ran two
workdays from 9:00 am to 4:30 pm yielding a total of 30 hours
of video and 43 prompts. Out of these 43 prompts, eight were
discarded since the subjects were not present at the time of
the prompt.

Interruptibility level 1 2 3 4 5
Frequency 9 6 3 9 8

Total number of prompts 35

TABLE II. FREQUENCY OF INTERRUPTIBILITY VALUES REPORTED BY

THE TEST SUBJECTS, RANGING FROM 1 (HIGHLY INTERRUPTIBLE) TO 5
(HIGHLY NON-INTERRUPTIBLE).

B. Human Assessment

Purpose: to have all instances registered in the data
collection phase assessed by humans.

Subjects: for the human assessment, we chose subjects
from the software development community to partake in
the survey under the supervision of two researchers. During
the survey, demographic information were collected (i.e.,
nationality, age, and gender); these are reported in Table III.

Nationality # Age # Gender #
Danish 13 18-24 7 Male 16
Romanian 3 25-34 10 Female 3
Belgian 1 35-44 1
German 1 45-54 1
Polish 1

Total participants 19 19 19

TABLE III. DEMOGRAPHIC DATA OF SURVEY PARTICIPANTS BY

COUNTRY OF ORIGIN, AGE AND GENDER.

Setup: Figure 4 shows the application created to peer
review the collected data. Through the application, a
participant was able to review a set of videoclips from the
data collection phase and assess the interruptibility level of
the subject shown. The same scale used during data collection
ranging from one (highly interruptible) to five (highly non-
interruptible) was also used in this process. The application
allowed replaying the videoclip as many times as needed
to feel comfortable when providing an assessment. Each
sequence played in full length before the user could rate it
and proceed to the next. Finally, given that the Approximator
system did not include microphone data, the sound was
removed from the videoclips.

Method: Participants were introduced to the survey by
describing them the task using the following sentence: “If you
were a colleague of these people and needed to talk to them,
would you consider them interruptible?” Each participant was
asked to assess one of five unique sets of videoclip with seven
different video clips from the first stage of the experiment plus

Fig. 4. Screenshot of survey webpage.

three random repetitions from the same set; these were used
to ensure consistency within the participant’s answers. Each
clip contained the last 30 seconds leading up to the prompt
message requesting subjects form the data collection phase to
self-assess their interruptibility; this last fragment was clearly
not included in the clip. If two or more of the three repetitions
deviated of at least two points from the original answer, the
results from the participants were considered invalid.

C. Automatic Assessment

Purpose: to evaluate the decision models during post
analysis of the dataset obtained in the data collection phase.
Results were compared to the ones presented in [8] and [9].

Method: a cross fold validation with 10 folders [23] was
used on 90% of the raw data logged during data collection
to construct a decision model that was then evaluated on the
remaining 10%.

VI. RESULTS

To compare the human estimation against the automatic
prediction from Approximator, we plotted the data into three
confusion matrices. The first two compare the self-assessment
answers of test subjects A and B to the ones of the survey
participants collected in the human assessment phase. In
particular, Table V presents data including the full scale used
during the data collection phase and the human assessment
one (i.e., including values from 1 to 5); whereas, Table VI
presents the same data but aggregated as explained below.
The third matrix compares the self-assessment answers of the
test subjects to the predictions of Approximator done in the
automatic assessment phase. This matrix already considers the
compression of the 5-point scale to binary value. By finding

96

correlations between hits in the self-assessment / survey
participants and self-assessment / Approximator results, we
can compare the Approximator performance to the human
judgment, while, at the same time, relating our findings to
those presented in [8].

Review Group Results: 19 participants accepted to partic-
ipate in the survey. As previously mentioned, the 35 videoclips
were divided into five sets (i.e., 7 unique clips and 3 repetitions
for control per set). Sets A, B, C, and D were reviewed by four
participants, while only three surveyed set E. All surveys were
valid and had consistent answers confirming the confidence of
the participants in providing their estimations.

Test Set Adjusted Original
A 50.99% 21.42%
B 57.14% 21.42%
C 82.14% 39.28%
D 78.57% 32.14%
E 47.61% 28.57%

Average 63.09% 28.57%

TABLE IV. ACCURACY OF SURVEY PARTICIPANTS INTERPRETING

TEST SUBJECTS INTERRUPTIBILITY.

Nonetheless, although answers were consistent and par-
ticipants clearly understood the task, the accuracy of the
answers given was overall poor. As shown in Table IV, the
average precision among all sets is 28%. We attribute this
low score to the difficulty of precisely rating another person’s
interruptibility on a scale from one to five. To account for
this, we used a scale conversion similar to the one used by
Fogarty to obtain a binary representation of the data. However,
differently from Fogarty, which converted 5 as 5 and all other
values as 1, to maximize accuracy we mapped values 1-2-3
to 1 and 4-5 to 5. As shown in Table IV, this approach lead
to a significant improvement of the average accuracy, which
increased to 63%.

During the data analysis, we compared the result from the
survey participants to the data from the self-assessment from
the test subjects A and B. The resulting confusion matrix is
reported in Table V; rows correspond to the values reported
by the test subjects, and columns correspond to the values
from the survey participants. The unshaded diagonal represents
instances in which the estimator subject correctly estimated
the same value given by the test subjects gathered during
the data collection phase. This matrix shows that the overall
accuracy (calculated by summing up the percentages from the
main diagonal) lies at 30.08%, and the accuracy within one
(calculated by summing up the percentages from the three
central diagonals) is 62.41%.

Approximator Results: the activity monitors from the
Approximator system collected data throughout the 30 hours of
the experiment resulting in a total collection of 86,823 mouse
events, 16,151 face detection events, and 28,629 keyboard
events. In this data analysis, only the events related the
videoclips shown to the survey participants were considered
(see the distribution overview in Table VII). Based on this
data, we performed the same analysis used for the survey data.

The performance of the classification model was evaluated
using a standard cross-validation approach with 10 folds [23].
Our classifier was able to classify 77.77% of the instances

Estimator Subject Value
Highly

Interruptible
Highly

Non-Interruptible

1 2 3 4 5

Te
st

Su
bj

ec
t

Va
lu

e

1
12

9.02%
9

6.77%
11

8.27%
3

2.26%
0

0%

2
4

3.01%
6

4.51%
8

6.02%
5

3.76%
1

0.75%

3
3

2.26%
0

0%
4

3.01%
3

2.26%
2

1.50%

4
4

3.01%
5

3.76%
9

6.77%
12

9.02%
4

3.01%

5
7

5.26%
5

3.76%
4

3.01%
6

4.51%
6

4.51%

TABLE V. CONFUSION MATRIX COMPARING THE ESTIMATOR SUBJECT

VALUES TO THE VALUES OF THE TEST SUBJECT. OVERALL ACCURACY:
30.08% ACCURACY WITHIN 1: 62.41%.

Estimator Subject Value

Other Values
Highly

Non-Interruptible

Te
st

Su
bj

ec
t

Va
lu

e Other Values
57

42.86%
14

10.53%

Highly
Non-Interruptible

34
25.56%

28
21.05%

TABLE VI. REDUCED CONFUSION MATRIX COMPARING THE

ESTIMATOR SUBJECT VALUES TO THE VALUES OF THE TEST SUBJECT.
OVERALL ACCURACY: 63.91%.

correctly. The confusion matrix and a detailed overview of the
classification performance are presented in Tables VIII and IX.

VII. DISCUSSIONS

This study followed the approach and evaluation technique
of Fogarty et al. [8]. Differently from their work, this study
investigated software developers and collected data by lever-
aging only the sensing ability of common laptops and, in
particular, used a reduced data set from input devices and
the camera. The study also showed that static ad-hoc models
cannot be used to assess different work interruptibility, while
machine learning techniques can be used effectively to provide
customized models fitting individual users. The analysis of
automatic assessment of the interruptibility level of humans
obtained an accuracy very close to the ones reported by Fogarty
et al. in [8] and [9]. We demonstrated that interruptibility can
be predicted automatically as accurately as or better than a
human (i.e., 78%) using very little training of the machine-
learning model (i.e., 175 seconds of recorded data).

Figure 5 provides an overview that compares the results
from the Fogarty et al. study (left-hand side) with the re-
sults obtained in our study (right-hand side). Our results are
promising when comparing them firstly with the accuracy of
human estimations reported to be 77% [8] and secondly to
the decision models using only sensors present in laptops
(including process monitors) used in [9], which reached an
accuracy ranging from 78.9% to 81.6% depending on the work
patterns of the subject observed. In other word, Approximator
is able to predict interruptibility at the same level, or better,
than a human, and obtain almost similar accuracy as the study
by Fogarty et al. while using fewer sensors. This result has
significant repercussions as it shows that human assessment
can be substituted by an automatic one.

97

Event Type Test Subject 1 Test Subject 2
Mouse events 984 534
Keyboard events 319 218
Face detection events 244 113

Total 1547 865

TABLE VII. DISTRIBUTION OF EVENTS COLLECTED BY

APPROXIMATOR DIVIDED OVER THE TEST SUBJECTS.

Estimator Subject Value

Other Values
Highly

Non-Interruptible

Te
st

Su
bj

ec
t

Va
lu

e Other Values
25

69.44%
1

2.77%

Highly
Non-Interruptible

7
19.44%

3
8.33%

TABLE VIII. CONFUSION MATRIX PRODUCED IN THE DECISION

MODEL REFINEMENT. OVERALL ACCURACY: 77.77%.

Even though initial, these results represent a starting point
for designing support for interruptibility into tools for commu-
nication, coordination, cooperation, and distributed awareness
to be used in global software development. As initially de-
scribed, the architecture of Approximator was designed as a
cloud-based service that client applications can access and get
interruptibility information from.

One usage of Approximator is to utilize interruptibility
information in communication tools such as instant messaging
(IM), email, and video communication tools. For example,
studies of IM use has shown that practitioners often adopt
ad-hoc practices to better coordinate availability with distant
colleague [27], [6] even when the very same IM systems
provide features to set availability/status information. In fact,
in practice, it is often the case that such manual setting is not
utilized, which results in people being constantly in a ‘do-not-
disturb’ status throughout their working hours. Integrating a
system like Approximator would allow setting the status of IMs
both automatically and in a much more fine-grained manner
throughout a working day.

Similarly, several extension of integrated development en-
vironments (IDEs) have been proposed that adds features for
supporting team cooperation and coordination. For example,
JazzBand from the Jazz Research Project [4] helps improve
team awareness, Palantir [29] detects parallel code changes,
and Lighthouse [5] supports team coordination by suggesting
potentially conflicting changes. Such systems would be able
to integrate the interruptibility information provided by Ap-
proximator allowing users of their technology to, for instance,
assess whether a colleague would be available for clarifying a
code conflict.

The present study also has limitations. First, the study
is very limited only involving two subjects and the results
are only generalizable to a limited extend. Much more data
sampling and training of the prediction model would be needed
to provide a more stable model. Second, the accuracy of the
prediction is still fairly low and is only predicting interrupt-
ibility on a very coarse-grained binary level (i.e., highly non-
interruptible or “other” as shown in Table VIII). Third, one
of the goals of the investigation reported in this article was
to minimize the set of monitors utilized by Approximator;
however, some of the ones described in Section III-B represent

Class TP
Rate

FP
Rate Precision Recall F-Measure ROC

Area
Other
Values 0.962 0.7 0.781 0.962 0.862 0.631

Highly Non-
Interruptible 0.3 0.038 0.75 0.3 0.429 0.631

Weighted
Average 0.778 0.516 0.773 0.778 0.742 0.631

TABLE IX. DETAILED ACCURACY BY CLASS.

64%

68%

77%

78%

79-82%

51%

Fogarty et al. [8][9] Approximator

Human
assessment

Human
assessment

Baseline

Baseline

Automatic
assessment

Automatic
assessment
(with process
monitors)

Interruptibility assessment accuracy

Fig. 5. Summary of interruptibility assessment accuracy reported in the
studies by Fogarty et al. [8], [9] and the ones achieved with Approximator.
Note: the value for the baseline represents the result obtainable by selecting
always the option of non highly non-interruptible and is calculated by summing
up all the values from the dataset not falling in the highly non-interruptible
group, i.e., including 1-2-3-4 for [8] and 1-2-3 for ours.

interesting candidates for further investigation. In fact, the
use of a machine learning algorithm would allow be able to
handle personalization of the incoming data. This would allow
the same model to take into account personalized information
about, e.g., software processes and calendar entries.

VIII. CONCLUSIONS

In this paper, we have presented Approximator: a system
designed to estimate the interruptibility of a user based ex-
clusively on the sensing ability of commodity laptops. Our
experimental results show that data aggregated from several
activity monitors (i.e., key-logger, mouse-logger, and face-
detection) in combination with a machine learning technique
can be used effectively to automatically estimate the interrupt-
ibility of software developers with a 78% accuracy. These early
but promising results represent a starting point for designing
support for interruptibility into tools for distributed awareness
and cooperation to be used in global software development.
Our future directions are focused on strengthening such results
and integrating Approximator with commonly used IMs and
IDEs to test the impact of automatic interruptibility assessment
in a larger globale software development setup.

ACKNOWLEDGMENT

This research has been supported by the Danish Agency for
Science, Technology and Innovation under the project “Next
Generation Technology for Global Software Development”
(NexGSD), #10-092313.

98

REFERENCES

[1] D. Avrahami, J. Fogarty, and S. E. Hudson. Biases in human estimation
of interruptibility: effects and implications for practice. In CHI
’07: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM Request Permissions, Apr. 2007.

[2] J. B. Begole, N. E. Matsakis, and J. C. Tang. Lilsys: Sensing
Unavailability. ACM, Nov. 2004.

[3] S. A. Bly, S. R. Harrison, and S. Irwin. Media spaces: bringing people
together in a video, audio, and computing environment. Communica-
tions of the ACM, 36(1), Jan. 1993.

[4] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up Eclipse
with collaborative tools. In Proceedings of the 2003 OOPSLA workshop
on eclipse technology eXchange, pages 45–49, New York, NY, USA,
2003. ACM.

[5] I. A. da Silva, P. H. Chen, C. Van der Westhuizen, R. M. Ripley, and
A. van der Hoek. Lighthouse: coordination through emerging design.
In Proceedings of the 2006 OOPSLA workshop on eclipse technology
eXchange, pages 11–15, New York, NY, USA, 2006. ACM.

[6] Y. Dittrich and R. Giuffrida. Exploring the Role of Instant Messaging
in a Global Software Development Project. In Global Software Engi-
neering (ICGSE), 2011 6th IEEE International Conference on, 2011.

[7] P. Dourish and S. Bly. Portholes: supporting awareness in a distributed
work group. In CHI ’92: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 541–547, New York, New
York, USA, June 1992. ACM Request Permissions.

[8] J. Fogarty, S. E. Hudson, C. G. Atkeson, D. Avrahami, J. Forlizzi,
S. Kiesler, J. C. Lee, and J. Yang. Predicting human interruptibility
with sensors. Transactions on Computer-Human Interaction (TOCHI,
12(1):119–146, Mar. 2005.

[9] J. Fogarty, S. E. Hudson, and J. Lai. Examining the robustness
of sensor-based statistical models of human interruptibility. In CHI
’04: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM Request Permissions, Apr. 2004.

[10] J. Fogarty, J. Lai, and J. Christensen. Presence versus availability: the
design and evaluation of a context-aware communication client. Inter-
national Journal of Human-Computer Studies, 61(3):299–317, 2004.

[11] S. Greenberg. Peepholes: low cost awareness of one’s community.
In CHI ’96: Conference Companion on Human Factors in Computing
Systems. ACM Request Permissions, Apr. 1996.

[12] C. Gutwin, S. Greenberg, and M. Roseman. Workspace Awareness
in Real-Time Distributed Groupware: Framework, Widgets, and Eval-
uation. In Proceedings of HCI on People and Computers XI, pages
281–298, London, UK, 1996. Springer-Verlag.

[13] M. Handel and J. D. Herbsleb. What is chat doing in the workplace?
ACM, Nov. 2002.

[14] R. Harr and M. Wiberg. Lost in translation: investigating the ambiguity
of availability cues in an online media space. Behaviour & Information
Technology, 2008.

[15] J. Herbsleb. Global software engineering: The future of socio-technical
coordination. Future of Software Engineering, pages 188–198, 2007.

[16] J. Herbsleb and A. Mockus. An empirical study of speed and
communication in globally distributed software development. Software
Engineering, IEEE Transactions on, 29(6):481–494, June 2003.

[17] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, pages 235–
245, San Francisco, USA, 1973. Morgan Kaufmann Publishers Inc.

[18] J. D. Hincapié-Ramos, S. Voida, and G. Mark. A Design Space Analysis
of Availability-sharing Systems. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, pages
85–96, New York, NY, USA, 2011. ACM.

[19] S. Houben, P. Tell, and J. E. Bardram. ActivitySpace: Managing Device
Ecologies in an Activity-Centric Configuration Space. In ITS ’14:
Proceedings of the Ninth ACM International Conference on Interactive
Tabletops and Surfaces. ACM Request Permissions, Nov. 2014.

[20] J. M. Hudson, J. Christensen, W. A. Kellogg, and T. Erickson. ”I’D Be
Overwhelmed, but It’s Just One More Thing to Do”: Availability and
Interruption in Research Management. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 97–104,
New York, NY, USA, 2002. ACM.

[21] S. Hudson, J. Fogarty, C. Atkeson, D. Avrahami, J. Forlizzi, S. Kiesler,
J. Lee, and J. Yang. Predicting human interruptibility with sensors: a
Wizard of Oz feasibility study. In CHI ’03: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 257–264,
New York, New York, USA, Apr. 2003. ACM Request Permissions.

[22] M. Jiménez, M. Piattini, and A. Vizcaı́no. Challenges and improvements
in distributed software development: a systematic review. Advances in
Software Engineering, 2009:3:1–3:16, 2009.

[23] R. Kohavi and others. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Ijcai, 1995.

[24] J. Lai, S. Yoshihama, T. Bridgman, M. Podlaseck, P. B. Chou, and
D. C. Wong. MyTeam: Availability Awareness Through the Use of
Sensor Data. In INTERACT. Citeseer, 2003.

[25] G. Mark, V. M. Gonzalez, and J. Harris. No task left behind?: examining
the nature of fragmented work. In CHI ’05: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2005.

[26] G. Mark, D. Gudith, and U. Klocke. The Cost of Interrupted Work:
More Speed and Stress. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems, New York, USA, 2008. ACM.

[27] B. A. Nardi, S. Whittaker, and E. Bradner. Interaction and outeraction:
instant messaging in action. In CSCW ’00: Proceedings of the 2000
ACM conference on Computer supported cooperative work. ACM
Request Permissions, Dec. 2000.

[28] T. Niinimä andki, A. Piri, C. Lassenius, and M. Paasivaara. Reflecting
the Choice and Usage of Communication Tools in GSD Projects with
Media Synchronicity Theory. In Global Software Engineering (ICGSE),
2010 5th IEEE International Conference on, pages 3–12, Aug. 2010.

[29] A. Sarma, D. F. Redmiles, and A. Van Der Hoek. Palantir: Early De-
tection of Development Conflicts Arising from Parallel Code Changes.
Software Engineering, IEEE Transactions on, 38(4):889–908, July
2012.

[30] J. C. Tang, N. Yankelovich, J. Begole, M. Van Kleek, F. Li, and
J. Bhalodia. ConNexus to awarenex: extending awareness to mobile
users. In CHI ’01: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM Request Permissions, Mar. 2001.

[31] S. Voida, E. D. Mynatt, B. MacIntyre, and G. M. Corso. Integrating
virtual and physical context to support knowledge workers. Pervasive
Computing, IEEE, 1(3):73–79, 2002.

[32] R. Want, A. Hopper, V. Falcão, and J. Gibbons. The active badge
location system. ACM Transactions on Information Systems (TOIS),
10(1):91–102, Jan. 1992.

[33] S. Whittaker. Rethinking video as a technology for interpersonal
communications: theory and design implications. International Journal
of Human-Computer Studies, 42(5):501–529, May 1995.

99

