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OUTLINE OF TALK
• Mobile Sensing
• Personal Health Technology

– architecture
– design space
– examples

• Cases – Mental Health
– sensing
– intervention

• Resources
– frameworks
– references
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The Smartphone
• Ubiquitous
• Unobtrusive
• Intimate
• Powerful
• Sensor-rich
• Connected – always!

• Programmable 
• Easy deployment (app store)
• Cloud-enabled

”... the mobile phone has become the 
most ubiquitous piece of technology in 
our recent history” – Oliver et. al. 2015

“Smartphones offer huge potential to gather 
precise, objective, sustained, and 
ecologically valid data on the real-world 
behaviors and experiences of millions of 
people where they already are” – Miller, 2015
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Sensing
• Sensors...

– antennas (GSM, wifi, bluetooth, NFC, ....)
– steps, temperature, ...
– touch, pressure

• App logging
– phone calls / texting
– PIM (email, calendar, todo, ...)
– social media
– app usage

• External devices
– activity trackers, scale
– cardio (pulse, HRV, blood pressure, ECG, ...)
– mental (breathing, sleep, EEG, ...)
– in-ear BP/ECG
– food 
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collection, analysis and validation? How can we
exploit the availability of big data shared by
applications but build watertight systems that
protect personal privacy? While this new
research field can leverage results and insights
from wireless sensor networks, pervasive com-
puting, machine learning, and data mining, it
presents new challenges not addressed by these
communities.

In this article we give an overview of the sen-
sors on the phone and their potential uses. We
discuss a number of leading application areas and
sensing paradigms that have emerged in the liter-
ature recently. We propose a simple architectural
framework in order to facilitate the discussion of
the important open challenges on the phone and
in the cloud. The goal of this article is to bring
the novice or practitioner not working in this field
quickly up to date with where things stand.

SENSORS
As mobile phones have matured as a computing
platform and acquired richer functionality, these
advancements often have been paired with the
introduction of new sensors. For example,
accelerometers have become common after being
initially introduced to enhance the user interface
and use of the camera. They are used to automat-
ically determine the orientation in which the user
is holding the phone and use that information to
automatically re-orient the display between a
landscape and portrait view or correctly orient
captured photos during viewing on the phone.

Figure 1 shows the suite of sensors found in
the Apple iPhone 4. The phone’s sensors include
a gyroscope, compass, accelerometer, proximity
sensor, and ambient light sensor, as well as other
more conventional devices that can be used to
sense such as front and back facing cameras, a
microphone, GPS and WiFi, and Bluetooth
radios. Many of the newer sensors are added to
support the user interface (e.g., the accelerome-
ter) or augment location-based services (e.g., the
digital compass).

The proximity and light sensors allow the
phone to perform simple forms of context recog-
nition associated with the user interface. The
proximity sensor detects, for example, when the
user holds the phone to her face to speak. In
this case the touchscreen and keys are disabled,
preventing them from accidentally being pressed
as well as saving power because the screen is
turned off. Light sensors are used to adjust the
brightness of the screen. The GPS, which allows
the phone to localize itself, enables new loca-
tion-based applications such as local search,
mobile social networks, and navigation. The
compass and gyroscope represent an extension
of location, providing the phone with increased
awareness of its position in relation to the physi-
cal world (e.g., its direction and orientation)
enhancing location-based applications.

Not only are these sensors useful in driving
the user interface and providing location-based
services; they also represent a significant oppor-
tunity to gather data about people and their
environments. For example, accelerometer data
is capable of characterizing the physical move-
ments of the user carrying the phone [2]. Dis-

tinct patterns within the accelerometer data can
be exploited to automatically recognize different
activities (e.g., running, walking, standing). The
camera and microphone are powerful sensors.
These are probably the most ubiquitous sensors
on the planet. By continuously collecting audio
from the phone’s microphone, for example, it is
possible to classify a diverse set of distinctive
sounds associated with a particular context or
activity in a person’s life, such as using an auto-
matic teller machine (ATM), being in a particu-
lar coffee shop, having a conversation, listening
to music, making coffee, and driving [11]. The
camera on the phone can be used for many
things including traditional tasks such as photo
blogging to more specialized sensing activities
such as tracking the user’s eye movement across
the phone’s display as a means to activate appli-
cations using the camera mounted on the front
of the phone [12]. The combination of
accelerometer data and a stream of location esti-
mates from the GPS can recognize the mode of
transportation of a user, such as using a bike or
car or taking a bus or the subway [3].

More and more sensors are being incorporat-
ed into phones. An interesting question is what
new sensors are we likely to see over the next
few years? Non-phone-based mobile sensing
devices such as the Intel/University of Washing-
ton Mobile Sensing Platform (MSP) [6] have
shown value from using other sensors not found
in phones today (e.g., barometer, temperature,
humidity sensors) for activity recognition; for
example, the accelerometer and barometer make
it easy to identify not only when someone is
walking, but when they are climbing stairs and in
which direction. Other researchers have studied
air quality and pollution [13] using specialized

Figure 1. An off-the-self iPhone 4, representative of the growing class of sensor-
enabled phones. This phone includes eight different sensors: accelerometer,
GPS, ambient light, dual microphones, proximity sensor, dual cameras, com-
pass, and gyroscope.
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Sensing Scale
• Personal sensing

– sensing by a single individual
– produced & consumed by a sole 

person
– ‘single loop’

• Group sensing
– sharing goal w. a group
– sharing of sensing data (trust)
– ‘citizen science’

• Community sensing
– large-scale data collection, 

analysis, and sharing 
– for the good of a community
– strangers (privacy)
– ‘population sensing’
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sensors embedded in prototype mobile phones.
Still others have embedded sensors in standard
mobile phone earphones to read a person’s
blood pressure [14] or used neural signals from
cheap off-the-shelf wireless electroencephalogra-
phy (EEG) headsets to control mobile phones
for hands-free human-mobile phone interaction
[36]. At this stage it is too early to say what new
sensors will be added to the next generation of
smartphones, but as the cost and form factor
come down and leading applications emerge, we
are likely to see more sensors added.

APPLICATIONS AND APP STORES
New classes of applications, which can take
advantage of both the low-level sensor data and
high-level events, context, and activities inferred
from mobile phone sensor data, are being
explored not only in academic and industrial
research laboratories [11, 15–22] but also within
startup companies and large corporations. One
such example is SenseNetworks, a recent U.S.-
based startup company, which uses millions of
GPS estimates sourced from mobile phones
within a city to predict, for instance, which sub-
population or tribe might be interested in a spe-
cific type of nightclub or bar (e.g., a jazz club).
Remarkably, it has only taken a few years for
this type of analysis of large-scale location infor-
mation and mobility patterns to migrate from
the research laboratory into commercial usage.

In what follows we discuss a number of the
emerging leading application domains and argue
that the new application delivery channels (i.e.,
app stores) offered by all the major vendors are
critical for the success of these applications.

TRANSPORTATION
Traffic remains a serious global problem; for
example, congestion alone can severely impact
both the environment and human productivity
(e.g., wasted hours due to congestion). Mobile
phone sensing systems such as the MIT VTrack

project [4] or the Mobile Millennium project [5]
(a joint initiative between Nokia, NAVTEQ, and
the University of California at Berkeley) are
being used to provide fine-grained traffic infor-
mation on a large scale using mobile phones that
facilitate services such as accurate travel time
estimation for improving commute planning.

SOCIAL NETWORKING
Millions of people participate regularly within
online social networks. The Dartmouth
CenceMe project [2] is investigating the use of
sensors in the phone to automatically classify
events in people’s lives, called sensing presence,
and selectively share this presence using online
social networks such as Twitter, Facebook, and
MySpace, replacing manual actions people now
perform daily.

ENVIRONMENTAL MONITORING
Conventional ways of measuring and reporting
environmental pollution rely on aggregate statis-
tics that apply to a community or an entire city.
The University of California at Los Angeles
(UCLA) PEIR project [3] uses sensors in phones
to build a system that enables personalized envi-
ronmental impact reports, which track how the
actions of individuals affect both their exposure
and their contribution to problems such as car-
bon emissions.

HEALTH AND WELL BEING
The information used for personal health care
today largely comes from self-report surveys and
infrequent doctor consultations. Sensor-enabled
mobile phones have the potential to collect in
situ continuous sensor data that can dramatically
change the way health and wellness are assessed
as well as how care and treatment are delivered.
The UbiFit Garden [1], a joint project between
Intel and the University of Washington, captures
levels of physical activity and relates this infor-
mation to personal health goals when presenting
feedback to the user. These types of systems
have proven to be effective in empowering peo-
ple to curb poor behavior patterns and improve
health, such as encouraging more exercise.

APP STORES
Getting a critical mass of users is a common
problem faced by people who build systems,
developers and researchers alike. Fortunately,
modern phones have an effective application dis-
tribution channel, first made available by Apple’s
App Store for the iPhone, that is revolutionizing
this new field. Each major smartphone vendor
has an app store (e.g., Apple AppStore, Android
Market, Microsoft Mobile Marketplace, Nokia
Ovi). The success of the app stores with the pub-
lic has made it possible for not only startups but
small research laboratories and even individual
developers to quickly attract a very large number
of users. For example, an early use of app store
distribution by researchers in academia is the
CenceMe application for iPhone [2], which was
made available on the App Store when it opened
in 2008. It is now feasible to distribute and run
experiments with a large number of participants
from all around the world rather than in labora-
tory controlled conditions using a small user

Figure 2. Mobile phone sensing is effective across multiple scales, including: a
single individual (e.g., UbitFit Garden [1]), groups such as social networks or
special interest groups (e.g., Garbage Watch [23]), and entire communities/
population of a city (e.g., Participatory Urbanism [20]).

Individual Group Community

UbitFit Garden Garbage Watch Participatory Urbanism
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Sensing paradigms
• Opportunistic sensing

– data collection stage is fully automated with no user involvement
• Participatory sensing

– the user actively engages in the data collection activity

(c) Jakob E. Bardram10

Opportunistic Participatory
user’s role none / automatic sensing engaged in sensing
burden on user low high
data collection high low
technical complexity high low
data quality low depends on engagement 
sensing context difficult user specific
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Mobile Sensing Architecture 
• Sense

– programmability – api, accessing sensors, cross-platform
– continuous sensing – threading, resources
– phone context – volatile, noise, unstable

• Learn
– human behavior – walking, sitting, steps, ...
– context modeling – significant places, social context, ...

• Inform, share, and persuasion 
– sharing – visualization (web?), SoMe, communities
– personalized sensing – recommendations, preferences, 
– persuasion – nudge, healthy behavior, influencers, 

gamification
– privacy – fundamental, trust, re-identification, “secondhand 

smoking”

(c) Jakob E. Bardram11
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study. For example, researchers interested in sta-
tistical models that interpret human behavior
from sensor data have long dreamed of ways to
collect such large-scale real-world data. These
app stores represent a game changer for these
types of research. However, many challenges
remain with this new approach to experimenta-
tion via app stores. For example, what is the best
way to collect ground-truth data to assess the
accuracy of algorithms that interpret sensor
data? How do we validate experiments? How do
we select a good study group? How do we deal
with the potentially massive amount of data
made available? How do we protect the privacy
of users? What is the impact on getting approval
for human subject studies from university institu-
tional review boards (IRBs)? How do
researchers scale to run such large-scale studies?
For example, researchers used to supporting
small numbers of users (e.g., 50 users with
mobile phones) now have to construct cloud ser-
vices to potentially deal with 10,000 needy users.
This is fine if you are a startup, but are academic
research laboratories geared to deal with this?

SENSING SCALE AND PARADIGMS
Future mobile phone sensing systems will oper-
ate at multiple scales, enabling everything from
personal sensing to global sensing as illustrated
in Fig. 2 where we see personal, group, and com-
munity sensing — three distinct scales at which
mobile phone sensing is currently being studied
by the research community. At the same time
researchers are discussing how much the user
(i.e., the person carrying the phone) should be
actively involved during the sensing activity (e.g.,
taking the phone out of the pocket to collect a
sound sample or take a picture); that is, should
the user actively participate, known as participa-
tory sensing [15], or, alternatively, passively par-
ticipate, known as opportunistic sensing [17]?
Each of these sensing paradigms presents impor-
tant trade-offs. In what follows we discuss differ-
ent sensing scales and paradigms.

SENSING SCALE
Personal sensing applications are designed for a
single individual, and are often focused on data
collection and analysis. Typical scenarios include
tracking the user’s exercise routines or automating
diary collection. Typically, personal sensing appli-
cations generate data for the sole consumption of
the user and are not shared with others. An excep-
tion is healthcare applications where limited shar-
ing with medical professionals is common (e.g.,
primary care giver or specialist). Figure 2 shows
the UbitFit Garden [1] as an example of a person-
al wellness application. This personal sensing
application adopts persuasive technology ideas to
encourage the user to reach her personal fitness
goals using the metaphor of a garden blooming as
the user progresses toward their goals.

Individuals who participate in sensing appli-
cations that share a common goal, concern, or
interest collectively represent a group. These
group sensing applications are likely to be popu-
lar and reflect the growing interest in social net-
works or connected groups (e.g., at work, in the
neighborhood, friends) who may want to share

sensing information freely or with privacy pro-
tection. There is an element of trust in group
sensing applications that simplify otherwise diffi-
cult problems, such as attesting that the collect-
ed sensor data is correct or reducing the degree
to which aggregated data must protect the indi-
vidual. Common use cases include assessing
neighborhood safety, sensor-driven mobile social
networks, and forms of citizen science. Figure 2
shows GarbageWatch [23] as an example of a
group sensing application where people partici-
pate in a collective effort to improve recycling by
capturing relevant information needed to
improve the recycling program. For example,
students use the phone’s camera to log the con-
tent of recycling bins used across a campus.

Most examples of community sensing only
become useful once they have a large number of
people participating; for example, tracking the
spread of disease across a city, the migration
patterns of birds, congestion patterns across city
roads [5], or a noise map of a city [24]. These
applications represent large-scale data collection,
analysis, and sharing for the good of the commu-

Figure 3. Mobile phone sensing architecture.
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BeWell [2011]
• wellness
• exercise
• social activity
• sleep

! ! !
!"#$%&'()'*+"!",'-.%/&012'3",0&22'/&4"5&6,7&'89:"!#$!%&'$!()!
$*&!+,-!./01!23!4!./5416!4$!7&1$&0!()!$*&!+,-!(1!($)!.4()$8
5/91$!74)&6!41:!4$!0(;*$!40&!$*&!)&1)/0!2/40:)!(1)(:&!$*&!74)(1;"!

:/1&! 23! <()*=1>,$&?)@! A/9)$/1@! 41:! ,*4B04C@! ?0/D(:(1;!
?/)($(D&!0&(1'/07&5&1$!04$*&0!$*41!?91()*5&1$!E:04.(1;!'0/5!
A/9)$/1>)! )977&))! 41:! ?0/2%&5)! '/91:! 23! <()*=1>,$&?)C@!
?0/D(:(1;!'0&F9&1$!/??/0$91($(&)!'/0!)&%'80&'%&7$(/1!E)(5(%40!$/!
A/9)$/1@!G*(7B!G%(F9&@!41:!,*4B04C@!41:!(1$&;04$(1;!9)&!(1$/!
&D&03:43!%('&!E4%%!?0/H&7$)C"!!

!"#$%&'('!$)*+,#-$./.!#0$
!"#$%&##'!(%)*'+,"$&'-./$%(%)*'0.1'2.&#').,%'3(%2&/'3%.14'5"$0'

#"67&%'8&66#*'(/2'-.-96&'#0&66#*'(/2':(%"3.62#'(66'"/'('%.1;''
<'=%(/-&#'>.23#./'?,%/&$$''

I&! *4D&! :&)(;1&:! 4! *&4%$*3! %('&)$3%&! $&7*1/%/;3@! @8"="$'
A(%2&/@! .*(7*! 9)&)! /182/:3! )&1)(1;@! 0&4%8$(5&! )$4$()$(74%!
5/:&%(1;@! 41:! 4! ?&0)/14%@! 5/2(%&! :()?%43! $/! &17/904;&!
0&;9%40! ?*3)(74%! 47$(D($3"! J2(<($! K40:&1! ()! :&)(;1&:! '/0!
(1:(D(:94%)! .*/! *4D&! 0&7/;1(L&:! $*&! 1&&:! $/! (17/0?/04$&!
0&;9%40! ?*3)(74%! 47$(D($3! (1$/! $*&(0! &D&03:43! %(D&)! 29$! *4D&!
1/$!3&$!:/1&!)/@!4$!%&4)$!1/$!7/1)()$&1$%3M"!!

N*&!J2(<($!K40:&1!)3)$&5!7/1)()$)!/'!$*0&&!7/5?/1&1$)O!EMC!
'($1&))!:&D(7&@!EPC!(1$&047$(D&!4??%(74$(/1@!41:!EQC!;%417&42%&!
:()?%43"! N*&! B"$/&##' 2&7"-&! 49$/54$(74%%3! (1'&0)! 41:!
7/5591(74$&)! (1'/054$(/1! 42/9$! )&D&04%! $3?&)! /'! ?*3)(74%!
47$(D($(&)! $/! $*&! ;%417&42%&! :()?%43! 41:! (1$&047$(D&!
4??%(74$(/1"! N*&! "/$&%(-$"7&' (CC6"-($"./! (17%9:&)! :&$4(%&:!
(1'/054$(/1! 42/9$! $*&! (1:(D(:94%>)! ?*3)(74%! 47$(D($(&)! 41:! 4!
H/9014%! .*&0&! 47$(D($(&)! 741! 2&! 4::&:@! &:($&:@! 41:! :&%&$&:"!
N*&! 36(/-&(86&' 2"#C6()' 9)&)! 4! 1/18%($&04%@! 4&)$*&$(7!
0&?0&)&1$4$(/1! /'! ?*3)(74%! 47$(D($(&)! 41:! ;/4%! 4$$4(15&1$! $/!
5/$(D4$&! 2&*4D(/0! E<(;! MC"! R$! 0&)(:&)! /1! $*&! 247B;0/91:!
)70&&1@!/0!S.4%%?4?&0@T!/'!4!5/2(%&!?*/1&!$/!?0/D(:&!4!)92$%&!
0&5(1:&0!.*&1&D&0!41:!.*&0&D&0!$*&!?*/1&!()!9)&:"!!

I&!40&!9)(1;!41!($&04$(D&!?0/7&))!$/!:&)(;1!J2(<($!K40:&1"!R1!
4::($(/1!$/!:04.(1;!'0/5!?0(/0!./0B!E(17%9:(1;!/90!/.1!UVWC@!
.&! 7/1:97$&:! 4! )90D&3! E1XYVC! .($*! 0&)?/1:&1$)! '0/5! MQ!
)$4$&)! 470/))! $*&!J","! $*4$! 7/D&0&:! 4! 041;&! /'! 4$$($9:&)! 41:!
2&*4D(/0)! .($*! 5/2(%&! :&D(7&)! 41:! ?*3)(74%! 47$(D($3"! N*()!
)90D&3! $&)$&:! 4))95?$(/1)! 42/9$! $*&! ;%417&42%&! :()?%43! 41:!
&%(7($&:! ;&1&04%! '&&:247B"! ZD&04%%@! 0&)?/1:&1$)! .&0&! D&03!
?/)($(D&!42/9$!$*&!7/17&?$!41:!7/1'(05&:!$*4$!$*&!:()?%43!.4)!
91:&0)$41:42%&"! #! 54H/0($3! /'! 0&)?/1:&1$)! 7/9%:! (54;(1&!
9)(1;! J2(<($! K40:&1"! G/55/1! 7/17&01)! *4:! $/! :/! .($*!
4))95(1;! $*4$! 4%%! &[&07()&! :4$4!./9%:! *4D&! $/! 2&!54194%%3!
&1$&0&:! (1$/! $*&! ?*/1&! /0! $*4$! $*&! ?*/1&!./9%:! *4D&! $/! 2&!
7400(&:! :90(1;! &[&07()&! E$*&! '($1&))! :&D(7&! 41:! (1$&047$(D&!
4??%(74$(/1!.&0&!1/$!4::0&))&:!(1!$*&!)90D&3C"!!

%12(23$)456789:$(2387::$,7;2<7$
J2(<($!K40:&1!()!?40$!/'!4!%40;&0!0&)&407*!?0/;045!$/!&[?%/0&!
*/.! )&1)(1;! 41:! 47$(D($3! (1'&0&17&! $&7*1/%/;(&)! 741! 2&!
4??%(&:! $/! 0&4%!./0%:!?0/2%&5)@!)97*!4)!&17/904;(1;!?&/?%&!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
M!J2(<($!K40:&1!$40;&$)!$*&!7/1$&5?%4$(/1@!?0&?404$(/1@!41:!47$(/1!
)$4;&)!/'! 7*41;&!/'! $*&!D%(/#$0&.%&$"-(6'!.2&6@!.*(7*!:&)70(2&)!
$*&! )$4;&)! $*0/9;*! .*(7*! (1:(D(:94%)! ?0/;0&))! $/! (1$&1$(/14%%3!
5/:('3!4::(7$(D&!41:!/$*&0!?0/2%&54$(7!2&*4D(/0)!UM\W"!

$/! &1;4;&! (1! *&4%$*3! 47$(D($(&)"!J2(<($!K40:&1! 0&%(&)! /1! $*&!
!.8"6&'E&/#"/3'F6($B.%:'G!EFH!U]@\W@!4!0&)&407*!?%4$'/05!'/0!
5/2(%&!)&1)(1;!41:!(1'&0&17&!4??%(74$(/1)"!

N*&!+,-' ()! 4! ?4;&08)(L&:@! 24$$&03! ?/.&0&:! 7/5?9$&0! .($*!
)&1)/0)! 7*/)&1! $/! '47(%($4$&! 4!.(:&! 041;&!/'!5/2(%&! )&1)(1;!
4??%(74$(/1)! E<(;! PC"! N*&! +,->)! )&1)/0)! (17%9:&O! Q8:!
477&%&0/5&$&0@! 240/5&$&0@! *95(:($3@! D()(2%&! 41:! (1'040&:!
%(;*$@! $&5?&04$90&@! 5(70/?*/1&@! 41:! 7/5?4))"! R$! (17%9:&)! 4!
]^^+AL!_,74%&!5(70/?0/7&))/0@!QP+`!a#+@!PK`!/'!'%4)*!
5&5/03! '/0! )$/0(1;! ?0/;045)! 41:! %/;;(1;! :4$4@! 41:! 4!
0&7*40;&42%&! %($*(95! (/1! 24$$&03"! N*&! +,->)! `%9&$//$*!
1&$./0B(1;! 4%%/.)! ($! $/! 7/5591(74$&!.($*! /$*&0!`%9&$//$*8
&142%&:!:&D(7&)!)97*!4)!5/2(%&!?*/1&)"!

J2(<($!K40:&1!9)&)!$*&!+,-!$/!49$/54$(74%%3!(1'&0!?*3)(74%!
47$(D($(&)! (1! 0&4%! $(5&"! N*&! +,-! 091)! 4! )&$! /'! 2//)$&:!
:&7()(/1! )$95?! 7%4))('(&0)! $*4$! *4D&! 2&&1! $04(1&:! $/' (1'&0!
.4%B(1;@! 0911(1;@! 737%(1;@! 9)(1;! 41! &%%(?$(74%! $04(1&0@! 41:!
9)(1;!4!)$4(0!547*(1&"!N*&)&!(1'&0&17&)!40&!:&0(D&:!'0/5!$./!
)&1)/0)O! $*&! Q8:! 477&%&0/5&$&0! 41:! 240/5&$&0"! N*&! )&1)/0!
:4$4!()!?0/7&))&:!41:!$*&!47$(D($3!()!(1'&00&:!/1!$*&!+,-@!$*&1!
$*&! (1'&0&17&)! 40&! 7/5591(74$&:! D(4!`%9&$//$*! $/! 4!5/2(%&!
?*/1&! $*4$! 091)! $*&! (1$&047$(D&! 4??%(74$(/1! 41:! ;%417&42%&!
:()?%43! E<(;! QC"! N*&!+,-! 7/5591(74$&)! 4! %()$! /'! 47$(D($(&)!
41:! $*&(0! ?0&:(7$&:! %(B&%(*//:)! $/! $*&! ?*/1&! '/90! $(5&)! ?&0!
)&7/1:"! N*&! ?*/1&! 4??%(74$(/1! 4;;0&;4$&)! 41:! S)5//$*&)T!
$*&)&! '(1&8;04(1@! 1/()3! :4$4! 0&)9%$(1;! (1! S*9541! )74%&T!

4C! !

2C! ! 7C !

!"#$%&';)'*+"!",'-.%/&012'#<.05&.+<&'/"2=<.>)'4C!4$!$*&!
2&;(11(1;!/'!$*&!.&&Bb)54%%!29$$&0'%(&)!(1:(74$&!0&7&1$!;/4%!
4$$4(15&1$)6!$*&!42)&17&!/'!'%/.&0)!5&41)!1/!47$(D($3!$*()!.&&B6!
2C!4!;40:&1!.($*!./0B/9$!D40(&$36!7C!$*&!:()?%43!/1!4!5/2(%&!
?*/1&b$*&!%40;& 29$$&0'%3!(1:(74$&)!$*()!.&&B>)!;/4%!.4)!5&$"!

UbifitGarden [2008]
• obesity
• exercise
• activity recognition
• motivating feedback

plications focus on tracking sleep information for aware-
ness or preliminary diagnosis of sleep issues. ShutEye also 
focuses on sleep, but takes a different approach by encour-
aging the user to be aware of healthy sleep habits without 
requiring manual tracking or wearable sensors. 

Mobile Health and Wellbeing 
Mobile systems for health have used manual input from 
users, automatic input from sensors, or some combination 
of the two. Many systems that aim to encourage physical 
activity use sensors such as pedometers [6,20], accelerome-
ters [27], biometric sensors [27], location data [2], or cus-
tom sensor platforms [7]. Most of these systems also re-
quire or enable the user to augment the sensing system with 
manual journaling of activities. Others rely entirely on users 
manually journaling, especially with difficult-to-detect ac-
tivities such as food intake [12] or general wellbeing [24]. 
Data capture, either through wearable sensors or manually, 
can be burdensome on users due to the time and effort in-
volved or through discomfort from wearing sensors.  

A number of mobile health applications have explored crea-
tive ways of displaying information to help users become 
more aware of health-related activities. For example, 
Fish‘n‘Steps [20] represents users‘ step count information 
as a fish in a virtual aquarium. Shakra [2] and Houston [6] 
display physical activity data as a pictorial representation or 
a bar chart in comparison to a group of the user‘s peers and 
toward a specific goal. Applications that provide just-in-
time visualizations to help users change their habits are also 
closely related to our work. UbiFit uses a pictorial represen-
tation of the user‘s physical activity as a personal peripheral 
display on her mobile phone [7]. TripleBeat provides a pe-
ripheral display of the user‘s current heart rate compared to 
their target for their current activity [27]. These applications 
provide real-time information while users are in a position 
to change their behavior, such as getting more physical ac-
tivity, relieving stress, or increasing their workout intensity. 

ShutEye differs from these systems in that it is designed to 
provide many of the benefits of mobile health applications 
through awareness of activities that impact sleep, but does 
not rely on data capture, thus minimizing the user‘s burden 
of using the application. We believe that for this application 
space, there is a trade off between a highly accurate but 
high burden data capture and visualization and a low bur-
den system that provides less customized recommendations. 
Because others have explored the higher burden, highly 
accurate side of this trade off in other domains, with Shut-
Eye, we aimed to explore whether a low burden, but re-
duced accuracy approach could still be effective in improv-
ing people‘s awareness. 
DESIGN OF SHUTEYE 
ShutEye uses a glanceable peripheral display to communi-
cate sleep recommendations, which runs as the active wall-
paper and lock screen image of the user‘s mobile phone. It 
shows a 24-hour window with up to nine horizontal bars of 
different colors resembling a timeline (Figure 1, left). Each 
bar represents an activity that is known to affect sleep, ei-
ther positively or negatively: consuming caffeine, napping, 
exercising, eating heavy meals, consuming alcohol, nicotine 
use, and relaxing, as well as two custom activities that the 
user can specify. By default, the display shows caffeine, 
napping, exercising, meals, alcohol, and relaxing. An icon 
on each bar at the right of the screen reminds the user of 
what the bar represents. At any time, the user can change 
which activities are displayed, create custom activities, or 
hide the activity icons.  

We implemented ShutEye on the Android-based Nexus One 
phone, although it can run on any Android device. The 
Nexus One has five background screens: the primary 
screen, or ‗home screen,‘ plus two screens to the right and 
two to the left, which are accessed by swiping in either di-
rection. ShutEye‘s 24-hour timeline is spread across the five 
screens; the current time is always on the home screen. A 

    
Figure 1: ShutEye’s peripheral wallpaper display (left) consists of a timeline with horizontal bars representing activities that im-
pact sleep. Thick bars indicate when an activity is unlikely to negatively affect or likely to improve sleep; thin bars represent when 
an activity is not recommended. The vertical bar updates automatically and indicates the current time. In the interactive applica-
tion, colored icons represent activities (center), where users can read about the recommendation and customize its times (right). 
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ShutEye [2012]
• sleep hygiene 
• tracking sleep patterns
• food | caffeine | alcohol
• exercise | napping | relaxing

Mobilyze! [2011]
• mental health
• mood assessment
• location-based coping cards 

MONARCA [2013]
• mental health 
• self-assessment
• tracking physical, social, 

mobility, and phone activity
• mood prediction
• triggers & early warning signs
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Sensor Device … Bardram JE, Frost M. The Personal Health 
Technology Design Space. IEEE Pervasive
Computing. IEEE, 2016
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Bardram JE, Frost M. The Personal Health 
Technology Design Space. IEEE Pervasive
Computing. IEEE, 2016
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System Focus
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Personal Health Technology
• SENSING & MONITORING

– health progression & regression
– behavior
– context
– longitudinal & continuously

• LEARNING & PREDICTING
– pattern recognition
– correlation analysis
– disease forecasting
– clinical alerts & decision-support

• FEEDBACK & INTERVENTION
– early detection
– context-aware feedback & treatment
– clinical intervention & prescription

Device Operating System

Device Sensors

Data 
Processing

Data 
Sampling

Feed-
back

Self-
reporting

Data Storage

Data 
Processing

Web App 
Server

Data Storage

Portal

InfrastructureMobile Device

Sensor Device …
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Global Burden of Disease 2004

Burden of disease: DALYs

1

2

3

4

Annex A

Annex B

Annex C

References

COPD, chronic obstructive pulmonary disease.

a This category also includes other non-infectious causes arising in the perinatal period apart from prematurity, low 
birth weight, birth trauma and asphyxia. These non-infectious causes are responsible for about 20% of DALYs shown 
in this category.

Figure 27: Ten leading causes of burden of disease, world, 2004 and 2030
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”Mental health will be the 
largest burden for society in 
the 2020s” – WHO 2012
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MONARCA
• Bipolar disorder (manio-depressive)

• EU STREP project w. 13 European partners. 

• Copenhagen team
– The Copenhagen Clinic for Affective Disorder, 

Rigshospitalet, Psychiatric Center Copenhagen, 
– The Pervasive Interaction Technology Laboratory 

(PIT Lab), IT University of Copenhagen, 
Copenhagen

(c) Jakob E. Bardram20
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SYSTEM FEATURES
• Self-assessment (participatory sensing)

– mood | sleep | stress | medicine | …
• Auto-assessment (opportunistic sensing)

– physical activity | mobility | social activity | phone 
usage

• Feedback
– visualizations | medication | actions-to-take | 

triggers | early-warning-signs | impact factors
• Mood forecast

– predict mood for next 5 days

(c) Jakob E. Bardram22
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DOUBLE LOOP
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Usefulness & Usability
Clinical evaluations have shown that the 
MONARCA system

– have a very high compliance rate (87-
95%)

– is considered very useful and very 
usable by patients and clinicians

– helps patients better manage their 
disease

– helps clinicians in better patient 
treatment

(c) Jakob E. Bardram25

JE Bardram et al. Designing mobile health technology for bipolar 
disorder: a field trial of the MONARCA system. In Proceedings of 
the SIGCHI Conference on Human Factors in Computing 
Systems, p. 2627-2636, ACM, 2013. 
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P48 m 29 4 iPhone 15 -1 Student 0 n/a n/a 65 50 57 76 87 4.00 0
P49 f 50 4 Nokia 20 0 Unemployed 59 95 2.88 40 26 38 65 68 3.80 1
P55 m 29 2 Nokia 13 0 Shipping 59 95 2.97 99 60 60 60 100 3.87 0
P57 f 35 4 SonyE. 15 0 Accountant 62 100 3.00 90 76 86 84 88 4.00 0
P58 f 34 2 Samsung 10 0 Teacher 43 69 2.04 98 96 97 97 98 3.31 6
P59 f 38 4 Nokia 13 -1 Unemployed 43 69 2.77 98 74 92 75 80 3.77 0
P61 f 34 4 iPhone 14 0 Self-employed 59 95 2.34 68 64 68 94 94 3.56 1
P63 f 20 5 HTC 9 0 Student 0 n/a n/a 22 8 14 36 57 3.38 0
P64 f 51 2 Nokia 14 1 Pensioner 59 95 2.22 77 77 77 100 100 3.87 15
P66 m 45 4 SonyE. 12 0 Student 50 80 3.00 70 61 69 87 88 3.80 51
P67 m 37 5 iPhone 15 1 Ph.D. student 0 n/a n/a 53 46 52 86 88 3.78 11
P70 m 37 4 iPhone 15 -1 Musician 0 n/a n/a 49 47 49 95 95 4.00 2
Avr. 36 14 36 87 2.65 69 57 63 80 87 3.76 7

Table 1. Participation in the MONARCA trial study. From left: participation ID; demographic data; and data from the normal paper-based self-
assessment forms, and usage data for the 14 weeks trial study of the MONARCA system.

CSUQ item Description avg. sd.
OVERALL Overall satisfaction 2.60 1.01
SYSUSE System usefulness 1.93 0.42
INFOQUAL Information quality 3.32 1.10
INTERQUAL Interface quality 2.71 0.93

Table 2. The CSUQ usability results on a Likert scale from 1–7:
1=Highly agree; 7=Highly disagree.

reported (activity is missing), and we see a slightly lower de-
gree of compliance (2.65 out of 3.00 is 88%).

Finally, looking at the use of the website, it is quite evident
that this is not used by most of the participants. P66, P64 and
P67 show moderate use. The extensive use by P66 is due to
this patient being interested in the data visualization, where
he accessed the website constantly, just to look at the graphs.

System Usability
Table 2 shows the usability scores as measured by the IBM
Computer System Usability Questionnaire (CSUQ) on a 7-
point Likert scale from ‘Strongly Agree’ (1) to ‘Strongly Dis-
agree’ (7). From these scores we can conclude that the overall
usability of the system is good (OVERALL = 2.60) and the
users found the system very useful (SYSUSE = 1.93). This
reflects a low score in simplicity, comfortability and learn-
ability, and efficiency. The information quality score is lower
(INFOQUAL = 3.25) which can be ascribed to problems with
the error messages of the system, which scored 5.33, and did
not help users fix the problems they may have experienced.
Finally, the system scores well in interface quality in general
(INTERQUAL = 2.86), but the study showed that it did not
have all the functions and capabilities that patients expected.

System Perceived
Usefulness Usefulness
avg. sd. avg. sd.

Disease Mgmt. 3.16 1.55 2.16 1.02
Self-assessment 2.21 1.06 1.73 0.72
Visualization 2.22 1.39 1.66 0.78
Alarms 2.34 1.44 2.13 1.88
Triggers 3.59 1.31 2.71 1.02
Early Warning Signs 3.44 1.18 2.36 0.78
Actions to take 3.25 1.52 2.34 0.88
Medication 4.30 1.50 3.17 1.51
Website 3.00 1.70 2.63 1.76

Table 3. Questionnaire results on ‘System Usefulness’ as used in the trial
period and ‘Perceived Usefulness’ in the future. Users reported on a 1–7
point Liket scale on the question of “The MONARCA system is useful
for ...”: 1=Highly agree; 7=Highly disagree.

This was also mentioned in the interviews, and we will return
to this in the discussion below.

Usefulness and Perceived Usefulness
In the usefulness questionnaire we asked 38 questions di-
vided into 10 categories, using the 7-point Likert scale. The
categories and average scores are shown in Table 3. The
usefulness of the system for disease management during the
trial scored 3.16. This means that patients agree (though not
strongly) that MONARCA helped them in managing their
bipolar disorder. This category addressed wether the patients
became better at managing their disease (2.92), wether they
were made more aware of their disease (2.50), the specific
usefulness of the application for disease management (3.33),
the usefulness of the website (4.33), and if the application
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P48 m 29 4 iPhone 15 -1 Student 0 n/a n/a 65 50 57 76 87 4.00 0
P49 f 50 4 Nokia 20 0 Unemployed 59 95 2.88 40 26 38 65 68 3.80 1
P55 m 29 2 Nokia 13 0 Shipping 59 95 2.97 99 60 60 60 100 3.87 0
P57 f 35 4 SonyE. 15 0 Accountant 62 100 3.00 90 76 86 84 88 4.00 0
P58 f 34 2 Samsung 10 0 Teacher 43 69 2.04 98 96 97 97 98 3.31 6
P59 f 38 4 Nokia 13 -1 Unemployed 43 69 2.77 98 74 92 75 80 3.77 0
P61 f 34 4 iPhone 14 0 Self-employed 59 95 2.34 68 64 68 94 94 3.56 1
P63 f 20 5 HTC 9 0 Student 0 n/a n/a 22 8 14 36 57 3.38 0
P64 f 51 2 Nokia 14 1 Pensioner 59 95 2.22 77 77 77 100 100 3.87 15
P66 m 45 4 SonyE. 12 0 Student 50 80 3.00 70 61 69 87 88 3.80 51
P67 m 37 5 iPhone 15 1 Ph.D. student 0 n/a n/a 53 46 52 86 88 3.78 11
P70 m 37 4 iPhone 15 -1 Musician 0 n/a n/a 49 47 49 95 95 4.00 2
Avr. 36 14 36 87 2.65 69 57 63 80 87 3.76 7

Table 1. Participation in the MONARCA trial study. From left: participation ID; demographic data; and data from the normal paper-based self-
assessment forms, and usage data for the 14 weeks trial study of the MONARCA system.

CSUQ item Description avg. sd.
OVERALL Overall satisfaction 2.60 1.01
SYSUSE System usefulness 1.93 0.42
INFOQUAL Information quality 3.32 1.10
INTERQUAL Interface quality 2.71 0.93

Table 2. The CSUQ usability results on a Likert scale from 1–7:
1=Highly agree; 7=Highly disagree.

reported (activity is missing), and we see a slightly lower de-
gree of compliance (2.65 out of 3.00 is 88%).

Finally, looking at the use of the website, it is quite evident
that this is not used by most of the participants. P66, P64 and
P67 show moderate use. The extensive use by P66 is due to
this patient being interested in the data visualization, where
he accessed the website constantly, just to look at the graphs.

System Usability
Table 2 shows the usability scores as measured by the IBM
Computer System Usability Questionnaire (CSUQ) on a 7-
point Likert scale from ‘Strongly Agree’ (1) to ‘Strongly Dis-
agree’ (7). From these scores we can conclude that the overall
usability of the system is good (OVERALL = 2.60) and the
users found the system very useful (SYSUSE = 1.93). This
reflects a low score in simplicity, comfortability and learn-
ability, and efficiency. The information quality score is lower
(INFOQUAL = 3.25) which can be ascribed to problems with
the error messages of the system, which scored 5.33, and did
not help users fix the problems they may have experienced.
Finally, the system scores well in interface quality in general
(INTERQUAL = 2.86), but the study showed that it did not
have all the functions and capabilities that patients expected.

System Perceived
Usefulness Usefulness
avg. sd. avg. sd.

Disease Mgmt. 3.16 1.55 2.16 1.02
Self-assessment 2.21 1.06 1.73 0.72
Visualization 2.22 1.39 1.66 0.78
Alarms 2.34 1.44 2.13 1.88
Triggers 3.59 1.31 2.71 1.02
Early Warning Signs 3.44 1.18 2.36 0.78
Actions to take 3.25 1.52 2.34 0.88
Medication 4.30 1.50 3.17 1.51
Website 3.00 1.70 2.63 1.76

Table 3. Questionnaire results on ‘System Usefulness’ as used in the trial
period and ‘Perceived Usefulness’ in the future. Users reported on a 1–7
point Liket scale on the question of “The MONARCA system is useful
for ...”: 1=Highly agree; 7=Highly disagree.

This was also mentioned in the interviews, and we will return
to this in the discussion below.

Usefulness and Perceived Usefulness
In the usefulness questionnaire we asked 38 questions di-
vided into 10 categories, using the 7-point Likert scale. The
categories and average scores are shown in Table 3. The
usefulness of the system for disease management during the
trial scored 3.16. This means that patients agree (though not
strongly) that MONARCA helped them in managing their
bipolar disorder. This category addressed wether the patients
became better at managing their disease (2.92), wether they
were made more aware of their disease (2.50), the specific
usefulness of the application for disease management (3.33),
the usefulness of the website (4.33), and if the application
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Figure 5. Enhancement of the Mood Forecast from the clinician’s patient

overview web page, seen in Figure 3. The dotted line represents today;

mood scored to the left are self-reported historic data, whereas the 5

days mood scores on the right are forecast.

6 MONTHS FIELD DEPLOYMENT
In order to evaluate MONARCA 2.0, it was deployed for a
small 6-month field trial from March to August, 2012, in-
volving 6 patients. The purpose of this study was to verify
the redesign of the system, and to investigate if the new data
mining functionality would find relevant impact factors and
make sensible forecasting. This should prepare for a larger
trial with more patients. The use of the system was approved
by the Danish National Committee on Health Research Ethics
and the security and data handling was approved by the Dan-
ish Data Protection Agency. Informed consent was obtained
from all patients.

In this section we discuss the findings from this initial field
deployment of MONARCA 2.0, focusing on (i) the general
system usage and performance, (ii) the analysis of the data
collected and its ability to identify impact factors and fore-
cast mood, and (iii) the patients’ and clinicians’ feedback on
usability and usefulness of using MONARCA 2.0 based on a
set of interview during the trial period.

System Usage and Performance
During the field trial, the system collected self-reported data
in 511 days and sensor data in 563 days. This gives an total
55.6% uptime of the Android app. In total 1,043 mb of data
was collected. In order to gauge the battery consumption of
the system, we measured and compared the battery perfor-
mance over a 24 hour period on 1) an out-of-the-box HTC
Desire S phone, 2) a phone with MONARCA 1.0 installed,
and 3) a phone with MONARCA 2.0 installed. During the 24
hours, the consumption was respectively 12%, 32%, and 68%
of the total battery power. For the measurements to be com-
parable, the phone was not used in the measurement period.
This means that energy consumption will be higher when ac-
tually used. But the energy consumption is sufficiently low
for the patients to use the phone during a normal day of ca. 16
hours without having to recharge the phone. In the trial, there
were a few cases where patients ran out of power, but only
when they had used the phone excessively for phone calls. In
general, the energy consumption did allow the patients to use
the phone throughout a day without the need for recharging.

In the trial of MONARCA 1.0, we tested the adherence rate
of the patients’ self-reporting, i.e. to what degree a patient
would fill in the self-report each day. In the original study
we found an adherence rate of 87%, taking into consideration
the days where the system was actually working [2]. When
performing the same analysis of MONARCA 2.0, we found

Data features 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Activity 3 1 1 1 0 0 0 0 0 0 0 0 0 0
Stress 1 1 2 0 1 0 1 0 0 0 0 0 0 0
Sleep 0 1 0 3 2 0 0 0 0 0 0 0 0 0
Phone Usage* 1 0 3 0 0 0 1 0 0 0 0 1 0 0
Social Activity* 0 2 0 1 0 0 1 0 1 0 1 0 0 0
Irritability 0 0 0 0 2 2 0 1 1 0 0 0 0 0
Cognitive Problems 0 1 0 1 0 1 1 0 1 0 0 0 1 0
Physical Activity* 1 0 0 1 0 0 1 0 1 1 0 1 0 0
Alcohol 0 0 0 1 0 1 1 2 0 0 0 0 1 0
Warning Signs 0 0 0 0 1 1 0 1 1 1 0 0 1 0
Mobility* 0 0 0 0 0 1 0 2 0 1 1 1 0 0
Mixed Mood 0 0 0 0 0 0 1 1 1 0 0 0 0 3
Medicine Changed 0 0 0 0 0 0 0 1 0 0 2 1 1 1
Medicine Taken 0 0 0 0 0 0 0 0 0 0 0 2 2 2

Table 2. Ranking of the correlation between Impact Factors (features)

and the mood score. The objective features are marked with *.

an adherence rate of 91%, which is slightly better but equiva-
lent. It should be noted that these high adherence rates are in
itself a major achievement of the system, since self-reporting
typically have very low rates of adherence.

Analyzing the use of the web site, we found that none of the
patients logged in. This confirms previous findings that pa-
tients do not want to use a web interface; they prefer to have
all features on the Smartphone. The clinicians monitoring the
patients logged in on a regular basis with 286 logins.

Data Sampling and Analysis
The data (both subjective and objective) collected during the
trial was subject to two types of analysis. First, we investi-
gated how data features correlate with the mental state of a
patient. Second, we analyzed the performance of the mood
forecasting, with a specific focus on how accurate the mood
can be inferred using only the objective data set.

Analyzing Impact Factors
We repeated the experiment done during the design phase us-
ing the Chi-Squared method on the new data set, now includ-
ing both objective and subjective features. We applied the
method on each individual patient’s data, and analyzed the
rankings with respect to the mood score as the class.

As shown in Table 2, (self-reported) Activity, Stress, Sleep
and Phone Usage are among the 4 highest ranked parameters.
For example, Activity is ranked in the top 4 for all 6 patients,
and Phone Usage is ranked in the top 4 for 4 out of 6. Al-
though the parameters of Activity, Stress, and Sleep still are
amongst the highest ranking, the table also shows that 2 out of
4 objective features, namely Phone Usage and Social Activity
are among the parameters that are highly correlated with the
participants’ mood score.

We repeated the method of inferring mood from the features
with the same set of learners used in the design phase analy-
sis. This time, we created two data sets for each patient. The
first one include all 14 subjective and objective features, while
the second contained only the 4 objective features. We ran the
cross-validation on both data sets with the selected learners
and compared the output results. From the mood estimation
model built with both objective and subjective features, we
observed an average min MAE (mean absolute error) of 0.40,

Mood Forecasting
• Mood Forecasting

– mean-absolute-error (MAE) is between 0.06 
and 0.66 
(�3 scale)

– in 4 out of 6 cases, MAE is lower w. only 
objective data

– i.e. mood forecasting can be done using only 
objective data

• Impact Factors – Top 5
– Activity | Stress | Sleep 
– Phone Usage* | Social Activity*

(c) Jakob E. Bardram26

M Frost et al. Supporting disease insight through data 
analysis. in Proceedings of the 2013 ACM international joint 
conference on Pervasive and Ubiquitous computing, ACM, 
2013. 

while this value from the model built with only objective fea-
tures is 0.45. Hence, although the combination of objective
and subjective features gave slightly better results, we still
got a pretty close estimation of the mood using only objective
features.

Analyzing Mood Forecast
In order to analyze the mood forecast, we first built models
with both subjective and objective features and then com-
pared it with the models built only from objective features.
We used the same set of learners as in the design phase anal-
ysis, and analyzed how the base learners performed on each
data set. The main metric is again the mean absolute error
(MAE) between the actual and the forecast value. In order to
compare the performance of the two models – the one built
with subjective and objective and the one with only objective
data – we looked at the MAEs calculated for the 5 days, and
computed the minimum and maximum values between them.
This helped us determine the closest (minMAE) and the fur-
thermost (maxMAE) predicted mood scores in each model.

We observed that the forecast mood values in the models with
only objective data are closer to the actual reported mood
scores. In other words, the mean absolute error in 5 days fore-
cast is on average lower than the corresponding value in the
models including both subjective and objective data. Figure 6
shows that both minimum and maximum MAEs are lower or
equal in the objective models for at least 4 out of 6 patients.

Feedback from patients and clinicians
When interviewing patient, they reported that the redesign
had improved the overall usability and usefulness of the sys-
tem. For example, they found the improved self-assessment
form highly useful, especially the fact that they could add
1/2-point mood score. As stated by patient P57; “the 1/2

point scale allows me to keep track of little details that mean

a lot to me; these small changes can be early indicators that

something is under way.” Also the personalization of the
self-assessment form by adding additional individual features
were reported to be key for the patients to manage their dis-
ease. However, the limitations in the scale were a limiting
factor. As P59 stated; “I would like to keep track of the num-

ber of cigarettes I smoke a day, but I cannot enter more that

10. It is annoying that you can’t define your own scale.”

Both patients and clinicians appreciated the new objective
sensor-based information available in MONARCA 2.0. Pa-
tients especially mentioned the benefits of the new objective
features. For example, patients reported that it gave them an
insight into the circumstances of their disease to see the vi-
sualization of the correlation between e.g. social interaction
and mood. However, some patients were not completely con-
vinced of the accuracy of the collected data. For example,
P64 reported that his mobility level was constant whether he
was staying in his apartment or traveling long distances with
the train.

The structure of the impact factor screen was deemed intu-
itive by the patients, and the use of colors consistent with the
visualization screen made it very coherent. The output fos-
tered a process of reflection, which at times challenged the

Figure 6. Minimum MAE and maximum MAE for the 5-day mood fore-

cast. For most patients, both minMAE and maxMAE are lower in the 5

days forecast model with only objective features compared to the corre-

sponding model built with both the objective and subjective features.

patients’ own insight into their illness, informing them of in-
terconnections which the patients were not aware of. Given
the impact factors were built based on the patients’ objective
and subjective data, there were issues with getting meaningful
output when the system did not work properly.

All patients reported that the Live Wallpaper was easy to com-
prehend and provided a subtle overview of the impact factors
generated by the system. The patients did however express
difficulties with interacting with the bubbles if their interface
were filled with shortcuts and widgets. The phone is becom-
ing a highly personalized tool for many users, and some of
the patients reported that the MONARCA wallpaper did not
allow them to have other things there. For example, P58 re-
ported that she would like to have her newborn baby there,
just like her friends.

The clinicians’ reactions to the forecast were mixed in the
beginning of the trial. They seemed to be hesitant to take
actions based on an inferred forecast. For instance, when a
patient’s forecast pointed towards a depressive state, they did
not know if they should call the patient, change their medi-
cation, or wait a few days to verify the actual change in the
state. They ended up using the forecast as an of indicator to
watch, but basically relied on their own clinical experience in
handling patients.
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Clinical Correlations
• Clinical Study

– N=61 | 6 m | 19 m  
– HDRS-17 (depression) and YMRS (manic)
– 400+ clinical ratings (monthly)

• Results
– significant correlations between self-rated mood and  

HDRS & YMRS
– significant correlations between social activity and clinical 

ratings on both HDRS & YMRS
• especially when grouping into ‘affective states’ 

(3 states)

(c) Jakob E. Bardram27

Faurholt-Jepsen M, Vinberg M, Frost M, Christensen 
EM, Bardram JE, Kessing LV. Smartphone data as an 
electronic biomarker of illness activity in bipolar 
disorder. Bipolar Disorders. 17(1): 2015

“Smartphones provide an easy and objective
way to monitor illness activity and could serve as 
an electronic biomarker for depressive and 
manic symptoms in patients with bipolar 
disorder.”

the YMRS, whereas the duration of outgoing
calls/day correlated positively and significantly
with scores on the YMRS and borderline signifi-
cantly with scores on the HDRS-17.

There was a significant positive correlation
between the duration of incoming calls/day and
scores on the HDRS-17 in both the unadjusted
model and the model adjusted for age and sex
(unadjusted model B = 19.96, 95% CI: 4.12–35.80,
p = 0.014; adjusted model B = 17.15, 95% CI:
1.00–33.30, p = 0.037), indicating that for every
score that increased 10 points on the HDRS-17 in
the adjusted models there was an increase in the
duration of incoming calls/day of 171.5 (10.0;
333.0) sec. Further, there was a significant positive
correlation between the duration of incoming calls/
day and scores on the YMRS in both the unad-
justed model and the model adjusted for age and
sex (unadjusted model B = 28.54, 95% CI: 5.17–
51.90, p = 0.017; adjusted model B = 30.38, 95%
CI: 7.04–53.71, p = 0.011), indicating that for
every score that increased 10 points on the YMRS
in the adjusted models there was in increase in the
duration of incoming calls/day of 303.8 (70.4;
537.1) sec.

Table 4 presents the results from models
regarding automatically generated objective data
and sub-components of the level of clinically
rated depressive and manic symptoms, as repre-
sented by scores on sub-items on the HDRS-17
and the YMRS, respectively. For the HDRS-17,
items concerning mood (sub-item 1), psychomo-

tor retardation (sub-item 8) and psychomotor
agitation (sub-item 9) were selected, and for the
YMRS, items concerning mood (sub-item 1),
activity (sub-item 2) and speech (sub-item 6)
were selected. These items on the clinical rating
scales were selected because they represent cen-
tral and objectively measurable parts of depres-
sion and mania. Scores on the activity item on
the YRMS (sub-item 2) correlated positively and
significantly with the automatically generated
objective data in relation to the number of
incoming and outgoing calls/day and the number
of outgoing text messages/day. Scores on the
psychomotor retardation item on the HDRS-17
(sub-item 8) correlated positively and signifi-
cantly with the duration of outgoing calls/day in
the unadjusted model and borderline significantly
in the adjusted model.

Table 5 presents the results from models regard-
ing the automatically generated objective data and
affective states by the HDRS-17 and the YMRS
categorized into the subcategories of asymptomatic
(HDRS-17 and YMRS ≤7), mild depression/
hypomania (HDRS-17 and YMRS 7–14) and mod-
erate to severe depression/mania (HDRS-17 and
YMRS ≥14). For the HDRS-17, patients with mod-
erate to severe depression showed a significantly
higher duration of outgoing calls/day than did
asymptomatic patients in both the unadjusted and
the adjusted models (unadjusted model B = 452.17,
95% CI: 149.56–754.78, p = 0.003; adjusted model
B = 421.57, 95% CI: 111.55–731.60, p = 0.008).

Table 2. Correlations between self-monitored dataa collected using smartphones and depressive and manic symptoms measured using the HDRS-
17 and YMRS, respectivelyb

Unadjusted Adjustedc

Coefficient 95% CI p-value Coefficient 95% CI p-value

Mood (scale: !3 to +3)
HDRS-17 !0.055 !0.067 to !0.042 <0.001 !0.058 !0.071 to !0.045 <0.001
HDRS-17 sub-item 1 (mood) !0.38 !0.45 to !0.30 <0.001 !0.38 !0.46 to !0.31 <0.001
YMRS 0.39 0.016–0.062 <0.001 0.039 0.017–0.062 <0.001
YMRS sub-item 1 (mood) 0.38 0.24–0.53 <0.001 0.38 0.24–0.53 <0.001
Sleep (hours/night)
HDRS-17 !0.017 !0.048 to 0.014 0.28 !0.02 !0.052 to 0.011 0.21
YMRS !0.047 !0.088 to !0.005 0.027 !0.047 !0.088 to !0.006 0.026
Activity (scale: !3 to +3)
HDRS-17 !0.037 !0.053 to !0.020 <0.001 !0.042 !0.059 to !0.025 <0.001
YMRS 0.047 0.022–0.072 <0.001 0.048 0.023–0.072 <0.001
Stress (scale: 0 to +5)
HDRS-17 0.047 0.029–0.065 <0.001 0.046 0.027–0.064 <0.001
YMRS 0.012 !0.013 to 0.033 0.34 0.012 !0.013 to 0.037 0.35

CI = confidence interval; HDRS-17 = Hamilton Depression Rating Scale–17 item; YMRS = Young Mania Rating Scale.
aAverages of the smartphone data were analyzed for the current day and three days before ratings with the HDRS-17 and YMRS, as
these rating scales address symptoms over the last four days.
bTotal N = 30.
cAdjusted for age and sex.
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For the YMRS, patients with mania showed a sig-
nificantly higher number of incoming calls/day than
did asymptomatic patients in both the unadjusted
and the adjusted models (unadjusted model
B = 0.95, 95% CI: 0.076–182, p = 0.033; adjusted
model B = 0.97, 95% CI: 0.10–1.84, p = 0.029).
Additionally, patients with mania showed a border-
line significantly higher number of outgoing text
messages/day than did asymptomatic patients in
both the unadjusted and the adjusted models.

Overall, further adjustment for the randomiza-
tion group (intervention group or control group)
in each of the models presented in Tables 2–5 did
not change the estimates.

Discussion

In the present longitudinal study, we investigated
correlations between smartphone data and the
level of depressive and manic symptoms, respec-
tively, using repeated measurements in outpatients
with bipolar disorder. In accordance with our a
priori hypotheses, we found that automatically
generated objective data on changes in speech,
social and physical activities and self-monitored
data collected using smartphones correlated with
the level of depressive and manic symptoms
assessed with the HDRS-17 and the YMRS,
respectively.

This is the first study investigating both auto-
matically generated objective data and self-moni-
tored data collected using smartphones in relation
to the level of clinically rated depressive and manic

symptoms in a larger study of patients with bipolar
disorder.

The most intriguing and novel results from the
present study were that (i) several of the automati-
cally generated objective data correlated with
scores on the HDRS-17 and the YMRS, and (ii)
the levels of automatically generated objective data
were able to discriminate between affective states
(asymptomatic versus moderate to severe depres-
sion or mania), suggesting that such automatically
generated objective data may be used as electronic
biomarkers for the longitudinal evaluation and
monitoring of illness activity in patients with bipo-
lar disorder.

Interestingly, in addition to the results for the
automatically generated objective data, the present
study showed that patients with bipolar disorder
were able to validly evaluate a number of symp-
toms of illness activity on a daily basis using the
MONARCA I system, e.g., their daily electronic
self-monitored data correlated with their scores on
the HDRS-17 and the YMRS.

Notably, the length of self-monitored sleep did
not correlate with the level of depressive symp-
toms. Bipolar depression often presents with more
atypical symptoms than does unipolar depression
(32). Thus, patients with bipolar depression may
suffer from both increased and decreased sleep
length. This could explain why there was neither a
positive nor a negative correlation between self-
monitored sleep length and depressive symptoms.
As expected, in the case of mania, patients with
manic symptoms reported lower sleep length.

Table 5. Correlations between automatically generated objective data a collected using smartphones and affective states according to the HDRS-17
and YMRS presented as categorical data b, respectivelyc

Unadjusted Adjustedd

Coefficient 95% CI p-value Coefficient 95% CI p-value

Incoming calls (no./day)
Asymptomatic versus mania 0.95 0.076–1.82 0.033 0.97 0.10–1.84 0.029
Duration incoming calls (sec/day)
Asymptomatic versus hypomania 729.51 334.87–1124.13 <0.001 768.10 374.34–1161.86 <0.001
Outgoing calls (no./day)
Asymptomatic versus hypomania 2.09 0.38–3.80 0.016 2.08 0.37–3.80 0.017
Duration outgoing calls (sec/day)
Asymptomatic versus moderate to severe depression 452.17 149.56–754.78 0.003 421.57 111.55–731.60 0.008
Asymptomatic versus hypomania 623.15 173.63–1072.67 0.007 641.53 190.41–1092.65 0.005
Outgoing text messages (no./day)
Asymptomatic versus mania 4.14 !0.38 to 8.67 0.073 4.42 !0.10 to 8.95 0.055

CI = confidence interval; HDRS-17 = Hamilton Depression Rating Scale–17 item; YMRS = Young Mania Rating Scale.
aAverages of the smartphone data were analyzed for the current day and three days before ratings with the HDRS-17 and YMRS, as
these rating scales address symptoms over the last four days.
bScores on the HDRS-17 or YMRS ≤ 7 were defined as asymptomatic. Scores on the HDRS-17 or YMRS from 7 to 14 were defined as
mild depression or hypomania. Scores on the HDRS-17 or YMRS ≥ 14 were defined as moderate to severe depression or mania.
cAnalyses including all study participants; total N = 61.
dAdjusted for age and sex.
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Voice Feature Analysis
• Collection of voice features in naturalistic setting

– N=28 | 12 w  
– HDRS-17 (depression) and YMRS (manic)
– 179 clinical ratings (fortnightly)
– openSMILE (emolarge)

• Classification results (user-specific models), accuracy (s.d.)
– depressive state : 70% (0.13)
– manic state : 61% (0.04)

• Classification accuracy were not significantly increased when combining 
voice features with automatically generated objective data

(c) Jakob E. Bardram28

M Faurholt-Jepsen, J Busk, M Frost, M Vinberg, 
EM Christensen, O Winther, JE Bardram and LV 
Kessing. Voice analysis as an objective state 
marker in bipolar disorder. Transl Psychiatry 
(2016) 6user-independent models. The mean accuracy for classification of

a depressive state versus a euthymic state based exclusively on
voice data was 0.70 (s.d. 0.13) with a sensitivity of 0.64 (s.d. 0.25),
and for a manic or mixed state versus a euthymic state the
accuracy was 0.61 (s.d. 0.04) with a sensitivity of 0.71 (s.d. 0.09).
Table 3 also presents the results of accuracy for classification of
affective states using voice data in user-independent models. The
accuracy for classification of a depressive state versus a euthymic
state based exclusively on voice data was 0.68 (s.d. 0.006) with a
sensitivity of 0.81 (s.d. 0.008), and for a manic or mixed state
versus a euthymic state the accuracy was 0.74 (s.d. 0.005) with a
sensitivity of 0.97 (s.d. 0.002). Table 3 also presents the specificity
for all models. The corresponding ROC curves including AUC on
classifications of a depressive and a manic or mixed state based on
the user-independent models are presented in Figures 1a and b.
The models classifying a depressive state versus a euthymic state
had an AUC of 0.78 and models classifying a manic or mixed state
versus a euthymic state had an AUC of 0.89.

Combined voice features and automatically generated objective
data for classification of affective states
Table 4A presents the results for classification of affective states
using a combination of voice features and automatically
generated objective data in user-dependent models, as well as
user-independent models. The data set combining voice features
and automatically generated objective data is different in size
from the original data set on classification models using voice
features exclusively, since automatically generated objective data
were not always available for each data point in the voice data set.
The results from models trained on voice features alone for every
given data set are therefore also presented.
As can be seen from Table 4A, the accuracy, sensitivity and

specificity were not increased when combining voice features with
automatically generated objective data compared with exclusively
using voice features.

Combined voice features and daily electronic self-monitored data
for classification of affective states
Table 4B presents the results for classification of affective states
using a combination of voice features and daily electronic self-
monitored data in user-dependent models, as well as user-
independent models. As with the data presented in Table 4A, the
data set combining voice features and daily electronic self-
monitored data is different in size from the original data set on
classification models using voice features exclusively, since
electronic self-monitored data were not always available for each
data point in the voice data set. The results from models trained
on voice features alone for every given data set are therefore also
presented.

As can been seen from Table 4B in the user-independent
models, combining voice features and daily self-monitored data
increased the accuracy, sensitivity and specificity compared with
exclusively using voice features (see column in Table 4B).

Combined voice features; automatically generated objective data;
and daily electronic self-monitored data for classification of
affective states
Table 4C presents the results for classification of affective states
using a combination of all features, that is, voice features,
automatically generated objective data and daily electronic self-
monitored data in user-dependent models, as well as user-
independent models. As with the data presented in Tables 4A and
B, the data set combining voice features automatically generated
objective data and daily electronic self-monitored data is different
in size from the original data set on classification models
exclusively using voice features, since automatically generated
objective data and electronic self-monitored data were not always
available for each data point in the voice data set. The results from
models trained on voice features alone for every given data set are
therefore also presented.
As can be seen from Table 4C, combining voice features,

automatically generated objective data and self-monitored data
increased the accuracy, sensitivity and specificity in three out of
four analyses compared with exclusively using voice features.
Comparing the combined data sets in Tables 4B and C, it can be
seen that adding automatically generated objective data seems to
give a small increase in accuracy, sensitivity and specificity
compared with using and combination of voice features and
daily self-monitored data.

DISCUSSION
In accordance with our hypotheses, we found that affective states
in patients with bipolar disorder were classified by models based
exclusively on voice features extracted during real-life phone calls
in naturalistic settings. The analyses showed that voice features
were more accurate in classifying manic or mixed states with an
AUC= 0.89 compared with an AUC= 0.78 for the classification of
depressive states.
Further, combining voice features and electronic self-monitored

data increased the accuracy, sensitivity and specificity of classify-
ing affective states slightly (Table 4B). Combining data on voice
features and electronic self-monitored data with automatically
generated objective data in the analyses also increased the
accuracy, sensitivity and specificity of classifying affective states
(Table 4B compared with Table 4C). Findings from the present
study suggests that collecting data on alterations in speech
accurately and with a high sensitivity can classify manic or mixed
states in bipolar disorder, but less accurately classify depressive

Table 3. Classification of affective states based on voice features

Accuracy (s.d.)a Sensitivity (s.d.)b Specificity (s.d.)c

User-dependent modelsd

A depressive statee versus a euthymic statef (n= 13) 0.70 (0.13) 0.64 (0.25) 0.75 (0.23)
A manic or mixed stateg versus a euthymic statef (n= 3) 0.61 (0.04) 0.71 (0.09) 0.50 (0.08)

User-independent modelsd

A depressive statee versus a euthymic statef 0.68 (0.006) 0.81 (0.008) 0.56 (0.008)
A manic or mixed stateg versus a euthymic statef 0.74 (0.005) 0.97 (0.002) 0.52 (0.01)

Abbreviations: HAMD, Hamilton Depression Rating Scale 17-item; YMRS, Young Mania Rating Scale. Data are mean and s.d. aDefined as accuracy= (true
positive+true negative)/ (positive+negative). bDefined as sensitivity= true positive/positive. cDefined as specificity= true negative/negative. dUser-dependent
models: building a model from each individual patient. User-independent models: building a common model from all patients. eDefined as a HAMD score ⩾ 13
and a YMRS score o13. fDefined as HAMDo13 and YMRSo13. gDefined as a YMRS score ⩾ 13.

Voice analyses in bipolar disorder
M Faurholt-Jepsen et al

4

Translational Psychiatry (2016), 1 – 8

“Voice features collected in naturalistic settings 
using smartphones may be used as objective 
state markers in patients with bipolar disorder.” 
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From Monitoring to Intervention

• MyBehavior
– Cornell University, USA

• MOOS – Mobile Sensing and Support
– University of St Gallen, Switzerland

• EmotiCal – Emotional Calendar
– University of California at Santa Cruz, USA

(c) Jakob E. Bardram31

(a) (b) (c) (d)
Figure 4: MyBehavior app screenshots (a) a set of activity suggestions for a user (b) a set of food suggestions for the same user (c) a set of suggestions at
a different time for the same user (d) a set of activity suggestions for a different user

combinatorially hard problem and lead to more complicated
suggestions. For activity suggestions, changing stationary be-
havior is added to the mix of walking, running or manually
input exercise suggestions. MyBehavior suggests users to
change every hour of stationary event in a specific location
with 3 minutes of walking. Such a mix often results into non-
trivial changes in suggestions: for instance, Fig. 4(c) shows a
ranking of MyBehavior suggestions where simply changing
regular stationary episodes with 3 minutes of walk for every
stationary hour can yield more calorie expenditure compared
to the user’s gym exercises. Regarding food suggestions, a
separate bandit generates food suggestions that take into ac-
count intake frequency and calorie. MyBehavior makes a dis-
tinction between suggestions for meals and those for snacks,
as the number of calories consumed can be different for these
two food clusters.

Figure 4 shows different suggestions generated by MyBehav-
ior. As seen in the screenshots, semantically meaningful mes-
sages are added with every suggestion. For suggestions gen-
erated by exploiting, MyBehavior asks the user to either con-
tinue positive activities (i.e., good calorie foods, walking, or
exercise), make small changes in some situations (i.e., sta-
tionary activities), or avoid negative activities (i.e., frequent
large meals). On the other hand, suggestions generated during
exploration phase, the system asks the users to consider try-
ing out the suggestions. All MyBehavior suggestions change
overtime and are different for different users. Figure 4(a) and
(c) are physical activity suggestions from the same user on
different days. Figure 4(d) shows suggestions generated for a
different user demonstrating the scalability of the system.

Finally, modeling MyBehavior as a MAB also has additional
advantages. MAB is an online algorithm and incrementally
makes decisions in a computationally efficient manner. This
means MyBehavior can compute all suggestions inside the

phone which is an added privacy feature. MABs also have
fewer parameters and are easy to learn.

Deployment and lessons learned
MyBehavior 1.0 was deployed in a 3-week pilot with 9 users
(4 female). At the end of this study, we conducted semi-
structured interviews with the participants about their experi-
ences with MyBehavior. We also asked the participants to in-
dicate whether they would be willing and able to follow each
suggestion on an average day on a scale of 1-5 (5=Strongly
Agrees that s/he can follow the suggestions; 1=Strongly Dis-
agrees). Each participant rated 15 suggestions.

In the interviews, users reported MyBehavior suggestions to
be actionable. In the suggestion rating survey, MyBehavior
received an average of 3.4 out of 5 (µ = 3.4;σ = 1.4). How-
ever, several areas of improvement are also identified. They
are as follows:

1. Difficulty in manual logging: Users reported the manual
food logging process to be self-reflective. However, they
also found the searching and adding appropriate food items
to be long and cumbersome. Furthermore, many manually
added exercises were repeatedly done (e.g., gym or fitness
classes). Users wanted quick ways to add repeated exercise
rather than searching them every time.

2. Lack of human control: Although MyBehavior can dy-
namically adapt to lifestyle changes, on occasion MyBe-
havior was slow to adapt. For example, a user regularly
played soccer with his friend but when his friend moved to
a new location he could no longer do that activity. The user
was frustrated that he could not remove the soccer sugges-
tion. On the other hand, users are sometimes highly moti-
vated about certain activities that they did not repeat much
in the past. For example, several users wanted, ”going to
the gym” as a top suggestion even though they did not fre-
quently go to gym in the past.
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those moods. The novel emotional forecasting user interface (UI) is shown in
Figure 1. The forecasting visualization highlights potentially problematic future
days, encouraging participants to actively plan enjoyable activities to improve their
emotion forecast. The figure shows an example of predicted affective states, along
with recommended remedial actions to improve that emotional future.

EmotiCal supports mood monitoring and tracking of trigger activities (e.g.,
sleep, exercise, work, etc.) that affect mood (see Figure 2). EmotiCal analyzes past
mood data to generate a 2-day forecast for a user’s potential moods for tomorrow
and the day after. Most important, the system provides actionable analytics to change
these forecasts. Participants can explore the effects of adopting recommended actions
to enhance mood. The visualization is updated to show expected changes if the
participant enacts activity recommendations, providing motivation to adopt those
actions. To improve the likelihood of users actually adopting remedial actions, the

FIGURE 1. Emotional forecasting and remedial action recommendations.

Note. This image shows the visualization displayed to emotion-forecasting participants in Week
3 of the study. The leftmost two points in the line graph indicate average mood ratings on
previous days, and the center point is the average rating for the immediate day. The two
rightmost points indicate predicted mood for upcoming days. The + symbol allows participants
to explore remedial actions to enhance future mood. This participant added two activity plans
for Monday. The visualization displays an updated mood prediction if those activities are
enacted.
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interventions of the related basket are presented to the user. See
Figure 4 for an example of interventions of a chosen basket
presented to the user.

For the most relevant baskets of each domain and every 6 hours,
only the top 3 interventions can be carried out by the user. Once
the user completes/neglects all 3 interventions, the basket and
its related circle disappears from the home screen until the next
context evaluation. In order to determine which 3 interventions
of each basket are shown to the user, individual interventions
are ranked according to a score.

The following Equation (4) was used to score interventions
using a weighted combination of the subject’s preference
depicted by a simple star rating after the execution of an
intervention (Figure 5), the completion rate of the interventions
depicted by the fraction of times the subject finished an
intervention and did not cancel it early and a small factor of
chance:

interventionScore = 0.75 * pastRatings/5 – 0.25 *
cancelationRate + 0.5 (if random ≤ 0.05) (4)

Where pastRatings is the average rating over all past ratings for
this intervention, cancelationRate is the fraction of times the
subject canceled the intervention early and random is a
uniformly distributed random number between zero and one.

The static weight parameters of the intervention score were set
following an explorative approach. The values follow the
assumption that past ratings of an intervention represent the
preference for an intervention and therefore should have the
highest impact on the scoring function. Contrary, the cancelation
rate has a negative impact on the overall score. The decision to

cancel an intervention early, is not necessarily related to a
subject’s general liking of the intervention, therefore the impact
is significantly lower than past ratings. Finally, to prevent
interventions from not being recommended over a long period
of time because their average past rating is too low, a factor of
chance is introduced with a positive impact on the score to
promote fluctuation.

In addition, 2 clinically trained psychologists predefined rules
to prevent the MOSS app making unreasonable intervention
recommendations. For example, an intervention asking the
subject to lie down for a relaxation exercise is only
recommended if the subject is at home and if the current time
period is in the morning or in the evening.

Also, after each execution, an intervention was blocked for a
period of time to avoid early repetition. The length of this period
in hours depended on the subject’s rating of the intervention
according to Equation 5:

blockTime = 36 * (6 – pastRating) (5)

Where pastRating is the last rating of the intervention.

In the second phase, the following changes to Equation 3 were
applied. After 2 weeks, the basket scoring computation (see
basket score Equation 3) was automatically adjusted, by
applying information of individual subject’s actual behavior:
xn_max and xn_min are defined as μ ± (2*σ) (ie, the average feature
value of the subject during the last week ±2 times the standard
deviation). This way, the MOSS app does not suffer from
potentially flawed assumptions about a subject’s behavior with
respect to the general population and adapts to the subject’s
actual behavior.

Figure 3. Example recommender results with physical activity baskets showing the highest score (orange circle) compared with social activity (yellow),
mindfulness (green), and relaxation (blue).
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lower-effort to adopt while also yielding more aggregate calo-
rie loss compared to going to the gym. Prioritizing frequent
behaviors also means that these behaviors are practiced and
therefore the user is likely to be good at those actions (i.e.,
users have mastery or self-efficacy). Such low-effort change
and self-efficacy are well-grounded in persuasion [16] and be-
havior change theories [4]. A further function of the system is
to keep users in the loop by giving users control to prioritize
suggestions that they prefer to follow. User preferences are
then balanced with the machine generated suggestions using
the second decision theory model, the pareto-frontier [48].

The blending of algorithms with behavioral theories into a
usable and deployable mobile application required several it-
erations of research and development. We previously pub-
lished early ideas of health feedback automation along with a
feasibility pilot study [47]. The previous version used MAB
to generate suggestions without considering user preference.
This paper presents MyBehavior 2.0 which builds and im-
proves on our earlier work and conducts more extensive test-
ing and evaluation. Specifically the contributions include:

1. The design of an improved system to create actionable sug-
gestions that takes into account both users behaviors and
preferences. MyBehavior interfaces allowed users to eas-
ily input their preferences. User preferences and behaviors
are utilized to generate a set of suggestions using Multi-
armed bandit and pareto-frontier. Both of these models op-
erationalizes the principles of behavior change theories.

2. A energy efficient, deployable android application that
provides automated feedback based on real-time activity
tracking, food logging and user preferences,

3. A 14-week study with 16 participants to demonstrate My-
Behavior’s efficacy quantitatively. Participants using My-
Behavior followed more suggestions with more calorie loss
(increased activity or decreased calorie intake) compared to
a control condition with prescribed recommendations from
health experts. These improvements lasted beyond the ini-
tial novelty period and continued over 5-9 weeks.

MOTIVATING DESIGN OF MYBEHAVIOR
In this section, we discuss the motivation and vision that led
to the development of MyBehavior.

Low effort and self-efficacy: Social cognitive theory [4] sug-
gests that in order to voluntarily initiate an action, a person
needs a sense of self-efficacy or confidence to perform the
action. The more frequently a person performs an action in
a certain context the more self-efficacy increases and the less
effortful the action is perceived to be. The Fogg behavior
model applies this theoretical principle to technology design
by creating tools to prompt low effort actions that can be trig-
gered even when motivation is low [16]. MyBehavior lever-
ages the principles of low effort and self-efficacy to create
suggestions that focus on repeated actions in distinct contexts.

Personalization of suggestions: Proponents of small
data [14] and N-of-1 interventions [53][17] argue that each in-
dividual is unique and heterogeneous. This uniqueness means
personalized intervention should perform better than one-
size-fits-all interventions that may fail to satisfy a person’s

specific requirements. To our knowledge, so far such per-
sonalization is provided only through human health coaches.
MyBehavior aims to build an automated suggestion genera-
tion system that personalizes without a human health coach.

Mobile recommender system for health feedback: Over
the last decade, search engines (e.g., Google, Bing) have
transformed the way we acquire information. Similarly,
movie [37] or news [27] recommendation systems influence
our media consumption. However, no automated health rec-
ommendation system has yet utilized the vast amount of per-
sonal data collected using mobile or wearable devices. To our
knowledge, MyBehavior is a first step in filling this gap and
is the first adaptive health suggestion generator. MyBehavior
also tackles the practical challenges of usability, privacy and
battery life.

MYBEHAVIOR APPLICATION DEVELOPMENT
The development of automated health suggestion generation
from logged data has little precedence. We had to overcome
both technical and user-centered challenges in order to create
a system that can promote change for real world users. To this
end, MyBehavior was honed using an iterative development
process that spanned nearly 2.5 years. During this period,
several MyBehavior prototypes were created and deployed.
These deployments revealed a core set of requirements that an
automated health feedback application needs to satisfy. Here
we describe the two significant versions of MyBehavior from
this iterative process.

MyBehavior 1.0: An Automated Health Suggestion Engine
with Multi-armed Bandit Algorithm
MyBehavior 1.0 solves the important hurdle of transforming
raw log data into personalized health suggestions. This sys-
tem is comprised of two modules: (1) a logging and behavior
mining module to track and mine user behaviors, (2) an auto-
mated suggestion generating module that utilizes the behavior
data to suggest small changes that maximize chances of calo-
rie loss. Details of MyBehavior 1.0 along with results from
a 3-week pilot deployment to determine feasibility of auto-
mated feedback and usability concerns can be found in [47].
This paper significantly extends the previous work by devel-
oping the MyBehavior 2.0 system and by quantitatively eval-
uating its effectiveness through a 14-week user study. To pro-
vide context, we briefly describe key aspects and findings of
MyBehavior 1.0 with more technical details.

Figure 2: MyBehavior 1.0 processing pipeline

Logging and Behavior mining module
MyBehavior 1.0 uses a combination of automatic sensing and
manual logging to record user’s food intake and physical ac-
tivity. Stationary, walking, running, and driving activities are
automatically inferred using the technique described in [28].
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(a) (b) (c) (d)
Figure 4: MyBehavior app screenshots (a) a set of activity suggestions for a user (b) a set of food suggestions for the same user (c) a set of suggestions at
a different time for the same user (d) a set of activity suggestions for a different user

combinatorially hard problem and lead to more complicated
suggestions. For activity suggestions, changing stationary be-
havior is added to the mix of walking, running or manually
input exercise suggestions. MyBehavior suggests users to
change every hour of stationary event in a specific location
with 3 minutes of walking. Such a mix often results into non-
trivial changes in suggestions: for instance, Fig. 4(c) shows a
ranking of MyBehavior suggestions where simply changing
regular stationary episodes with 3 minutes of walk for every
stationary hour can yield more calorie expenditure compared
to the user’s gym exercises. Regarding food suggestions, a
separate bandit generates food suggestions that take into ac-
count intake frequency and calorie. MyBehavior makes a dis-
tinction between suggestions for meals and those for snacks,
as the number of calories consumed can be different for these
two food clusters.

Figure 4 shows different suggestions generated by MyBehav-
ior. As seen in the screenshots, semantically meaningful mes-
sages are added with every suggestion. For suggestions gen-
erated by exploiting, MyBehavior asks the user to either con-
tinue positive activities (i.e., good calorie foods, walking, or
exercise), make small changes in some situations (i.e., sta-
tionary activities), or avoid negative activities (i.e., frequent
large meals). On the other hand, suggestions generated during
exploration phase, the system asks the users to consider try-
ing out the suggestions. All MyBehavior suggestions change
overtime and are different for different users. Figure 4(a) and
(c) are physical activity suggestions from the same user on
different days. Figure 4(d) shows suggestions generated for a
different user demonstrating the scalability of the system.

Finally, modeling MyBehavior as a MAB also has additional
advantages. MAB is an online algorithm and incrementally
makes decisions in a computationally efficient manner. This
means MyBehavior can compute all suggestions inside the

phone which is an added privacy feature. MABs also have
fewer parameters and are easy to learn.

Deployment and lessons learned
MyBehavior 1.0 was deployed in a 3-week pilot with 9 users
(4 female). At the end of this study, we conducted semi-
structured interviews with the participants about their experi-
ences with MyBehavior. We also asked the participants to in-
dicate whether they would be willing and able to follow each
suggestion on an average day on a scale of 1-5 (5=Strongly
Agrees that s/he can follow the suggestions; 1=Strongly Dis-
agrees). Each participant rated 15 suggestions.

In the interviews, users reported MyBehavior suggestions to
be actionable. In the suggestion rating survey, MyBehavior
received an average of 3.4 out of 5 (µ = 3.4;σ = 1.4). How-
ever, several areas of improvement are also identified. They
are as follows:

1. Difficulty in manual logging: Users reported the manual
food logging process to be self-reflective. However, they
also found the searching and adding appropriate food items
to be long and cumbersome. Furthermore, many manually
added exercises were repeatedly done (e.g., gym or fitness
classes). Users wanted quick ways to add repeated exercise
rather than searching them every time.

2. Lack of human control: Although MyBehavior can dy-
namically adapt to lifestyle changes, on occasion MyBe-
havior was slow to adapt. For example, a user regularly
played soccer with his friend but when his friend moved to
a new location he could no longer do that activity. The user
was frustrated that he could not remove the soccer sugges-
tion. On the other hand, users are sometimes highly moti-
vated about certain activities that they did not repeat much
in the past. For example, several users wanted, ”going to
the gym” as a top suggestion even though they did not fre-
quently go to gym in the past.
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dicate whether they would be willing and able to follow each
suggestion on an average day on a scale of 1-5 (5=Strongly
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agrees). Each participant rated 15 suggestions.

In the interviews, users reported MyBehavior suggestions to
be actionable. In the suggestion rating survey, MyBehavior
received an average of 3.4 out of 5 (µ = 3.4;σ = 1.4). How-
ever, several areas of improvement are also identified. They
are as follows:

1. Difficulty in manual logging: Users reported the manual
food logging process to be self-reflective. However, they
also found the searching and adding appropriate food items
to be long and cumbersome. Furthermore, many manually
added exercises were repeatedly done (e.g., gym or fitness
classes). Users wanted quick ways to add repeated exercise
rather than searching them every time.

2. Lack of human control: Although MyBehavior can dy-
namically adapt to lifestyle changes, on occasion MyBe-
havior was slow to adapt. For example, a user regularly
played soccer with his friend but when his friend moved to
a new location he could no longer do that activity. The user
was frustrated that he could not remove the soccer sugges-
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therapy. After each intervention, the system receives passive or
active feedback from the subject regarding the last
recommendation. Over time, this enables the system to learn a
subject’s preference to change recommendations accordingly.

In the following sections, we give a detailed description of the
context features, the functional principles of the recommender
algorithm, as well as a description of the developed
interventions.

Figure 1. Schematic overview of Mobile Sensing and-Support (MOSS) app process flow. Note: Starting left (1) MOSS app collects sensor and use
data, (2) data is analyzed and transformed into (3) context information, (4) context information in combination with user preference and decision logics
are used to recommend (5) evidence-based interventions presented via (1) the MOSS app.

Context Features
In order to be able to provide a subject with meaningful
recommendations in everyday life, we need to analyze subjects’
context solely based on their interaction with a smartphone. In
a first step, the current implementation constructs a context from
information about time of the day, location, smartphone usage,
and physical and social behavior. While information such as
time of the day or smartphone usage can directly be extracted,
other information needs to be approximated with the help of
behavioral proxies derived from processed sensor data. For
sensor data collection, we made extensive use of the open source
framework UBhave by Hargood et al [24]. Next, we provide an
overview of context features that we developed for the study
together with a motivation why the feature is relevant in the
context of depression, followed by a detailed description how
our recommendation algorithm uses these features to present
meaningful interventions.

General Activity
Numerous studies showed a bidirectional relationship between
depressive symptoms and physical activity [25-27]. Our
approximation of physical activity is 2-fold. Using the
acceleration sensor data provided by the smartphone, we analyze
a subject’s general activity level and a subject’s walking time.

To assess the general activity levels, the standard deviation of
the three-dimensional (3D) acceleration norm was computed
according to Equation 1:

STDEV(3DaccNorm) = STDEV(√(ax
2+ay

2+ az
2 )– 9.81m/s2)

(1)

Where ax
2, ay

2 and az
2 represent the 3 acceleration axis and

9.81m/s2 represents the gravity of Earth.

Each acceleration axis was sampled with 100 hz resulting in a
total of 300 samples per second. To estimate a subject’s general
activity intensity over a finite time window, the standard
deviation of the 3D acceleration norm was computed as
described by Vähä‐Ypyä et al [28]. A recent study showed that
the standard deviation of the 3D acceleration norm resembles
intensity of physical activity of 2 widely used commercial
acceleration-based activity trackers with reasonable consensus
[29]. For this trial, we used a time window of 2 minutes. As we
did not aim at classifying micro movement, this window size
was appropriate for our app needs and trades of phone memory
usage and frequency of computation and information gain.

Walking Time
To approximate the walking time, for every time window of 2
minutes, we made use of the standard deviation of the 3D
acceleration norm (1) again. Adapting the approach of
Vähä‐Ypyä et al [28], we used an intensity-based classification
approach to determine whether a subject was walking. To derive
a meaningful threshold for our app, we conducted numerous
tests with different test subjects varying walking speed and
smartphone carrying positions. We found, that this approach is
robust to variance in the orientation of the smartphone was
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MOOS Study
• Study setup

– Single arm, pilot study
– N=126
– 4 weeks
– PHQ-9 > 10 (clinically relevant)

• Results
– N=12
– for participants PHQ-9 > 10 + app adherence, a 

significant drop in PHQ-9 was observed.
– able to distinguish between subjects above and 

below PHQ-9 = 10
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Figure 7. Plot of PHQ-9 progression of clinically depressed individuals over time. Note: Gray dots represent individual PHQ9 values, red lines show
distribution mean for each time point, the red area shows the 95% confidence interval for the mean, the blue surface shows 1 standard deviation.

Figure 8. Scatter plot of cumulated app starts per subject over time and cumulated change in PHQ-9 values. Note: The development of PHQ-9 scores
of individual subjects is indicated by connected points of the same color.

Table 4. Classification performance of support vector machines and random forest classifier.

Random forest classifier,
ntrees = 450

Support vector machines, radial basis
function kernel

PHQ-9a≥11 vs PHQ-9≤10 classification performance

61.559.4Accuracy

62.372.5Sensitivity

60.847.3Specificity

aPHQ-9: Personal Health Questionnaire (self-reported depression survey).
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EmotiCal
• Mood Monitoring

– 2 / day
– mood, energy, time, location
– trigger activities

• Emotion forecasting
– actionable recommendations 
– motivate engagement in future 

activities that directly improve 
mood

• Recommendations for activities
– history (5)
– psychological needs (5)
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recommendations are personally tailored, derived from analysis of prior logfile history
or profiled to fit the user’s Basic Psychological Needs (Deci & Ryan, 2000). For
example, past user data might predict that a user would be in a neutral mood
tomorrow. However, the same mood modeling would also allow us to recommend
that the user meet with a friend or go for a bike ride, because an analysis of the
logfiles indicate that both of these activities correspond to higher emotion ratings for
that user. Our intervention evaluates this emotional forecasting approach, assessing
EmotiCal’s effectiveness in improving emotional well-being.

We conducted a 3-week field trial evaluation of EmotiCal with two main
objectives. First, we designed and evaluated new methods for end-user analytics
leading to remediation. These analytics model past logged emotions data, producing
an emotional forecast to motivate actionable future plans to change mood. Second,
we assessed whether EmotiCal is more effective for improving well-being than

FIGURE 2. EmotiCal system components.

Note. The leftmost image shows the landing page for participants in the emotion-forecasting
condition, displayed only in Week 3 of the study. Monitoring-only participants did not see the
visualization. The center image shows the mood-monitoring interface with options to rate mood
and energy level, as well as contextual information, for example, time and location. The
rightmost image shows the user interface for choosing trigger activities that led to current
mood (e.g., that food had a positive impact on current mood). There are 14 possible activities
the user might select as affecting mood, although not all are shown in this user interface view. If
custom labels were specified, these were displayed in addition to the trigger type, for example,
“Custom 1 (Teaching class)” or “Social Company 2 (Partner).”
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prediction of future baseline moods varied. Mean absolute error between pre-
dicted future moods and the actual mood on the predicted day was 1.13 with a
standard deviation of .82.

Hand-Coded Activity Recommendations. In addition to the five history-based
activity recommendations derived from the personalized mood models, we also generated
five needs-based recommendations. Pretest responses were obtained to the BPNSmeasur-
ing participants’ levels of autonomy, competence, and relatedness, which are a considerable
determinant of life satisfaction (Ryan&Deci, 2001). In combination with the pretest ratings
of activity enjoyment (from Lewinsohn’s Positive Activity Schedule), the researchers hand-
selected five activity recommendations tailored toward each user’s BPNS ratings(see
Appendix C). For example, if a user indicated in the pretest BPNS a low rating for
relatedness and competence, then we would choose two activities for relatedness, two
activities for competence, and one for autonomy in an effort to optimize personal satisfac-
tion. Comparisons of the effectiveness of history versus needs based recommendations are
described in the Engagement and Perceived Accuracy section.

3.2. Intervention

The field trial evaluation of EmotiCal involved three intervention conditions
(see Figure 4). First, to serve as a control for state-of-the-art emotion-monitoring
systems (such as InFlow or Moodscope) we included a monitoring-only condition in

FIGURE 4. EmotiCal study design showing three conditions: monitoring-only, emotion-
forecasting, and controls.

Note. In Week 3, the Emotion-Forecasting group switched from simple monitoring to future-
oriented visualizations and mood-enhancing recommendations.
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EmotiCal Study
• 3 week
• N = 36/60 | random, not ill
• $10
• 3 arms

– monitoring only
– emotion forecasting
– control

• Surveys
– Positive and Negative Affect Scale [PANAS]
– Psychological needs (BPNS)
– Self-awareness, and perceived choice over behavior

(Self-Determination Scale [SDS])
– Pleasant Activities Schedule
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EmotiCal Study Results
• Emotion-forecasting participants had more 

positive mood records with greater use of 
cognitive mechanism and insight terms

• Emotion-forecasting participants had 
higher ratings of self-awareness, 

– but no differences in perceived choice 
or PANAS Scores

• ... and some more

(c) Jakob E. Bardram39

We began by analyzing logfile text and mood ratings. In line with previous
findings (Faurholt-Jepsen, Munkholm, Frost, Bardram, & Kessing, 2016; Kahneman,
2000, Tsanas et al., 2016), we expected these to be accurate measures of intervention
success, as these are collected twice each day, assessing participants’ real-time
evaluations of current moods and recently experienced events. We first examined
changes in mood ratings and logfile content in the first 2 weeks versus 3rd (final)
week of the intervention, as a within-participant comparison. This process was to
compare differences in logfile mood before versus after the forecasting group
received visualizations and activity recommendations. We then compared these
differences with results from the monitoring-only group, which we expected to
show fewer changes.

Logfile Mood Ratings. We conducted a t test to evaluate changes in logfile
mood across conditions (see Figure 5). Changes were calculated as the within-
subject difference in mood ratings between baseline (2 weeks) and intervention
(1 week) phases. For example, a participant with an average baseline mood of .5
and intervention mood of .75 would have a logfile change rating of .25. These
within-subject differences between baseline and intervention period were then
compared between the two experimental conditions (monitoring only and emotion
forecasting). We found a significant difference in logfile mood change across
conditions. Forecasting participants on average increased daily mood ratings by
0.50 (SD = 0.55; baseline:M = .55, SD = 0.72; intervention:M = 1.04, SD = .79).

FIGURE 5. Mean mood ratings and standard error bars for emotion-forecasting and monitor-
ing-only conditions.

Note. Graph shows that forecasting improves mood. Baseline phase was 2 weeks in which both
conditions used the monitoring user interface. The intervention phase was 1 week in which
monitoring-only continued to use the same user interface as baseline and emotion-forecasting
participants were presented with additional visualization and recommender support.
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SDS Awareness scores pre–post. In addition, the test indicated a trend for SDS
Choice scales, F(2, 56) = 3.004, p = .058, with intervention conditions marginally
increasing and the do-nothing control decreasing in score (see Figure 6).

Positive and Negative Affect Scale. We conducted a similar MANOVA
examining the effects of condition and time on positive and negative PANAS
scores (see Figure 7). However, this showed no difference across conditions in
pre–post changes in the PANAS scale, F(4, 94) = 0.633, p = .640 (Pillai’s trace,
V = .052). One possible reason for this might be that the PANAS scale, by
probing the last week, was not sensitive to very recent changes in emotions. Recall
that participants in the forecasting condition had been using the system for just a

FIGURE 6. Mean scores on SDS Awareness and SDS Choice subscales.

Note. Measures were taken immediately before and after the 3-week study period. Awareness
increases for forecasting group (left panel). Choice decreases for controls compared with two
intervention groups (right panel).

FIGURE 7. Mean scores on the Positive and Negative Affect Scale (PANAS).

Note. There were no differences between conditions.
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TRY YOURSELF! (FRAMEWORKS)
• Goggle Sensor & geolocation API [Google]
• Goggle Activity Recognition API [Google]
• Sensus [University of Virginia]
• Funf [MIT/Google]
• AWARE [University of Oulu Center for Ubiquitous Computing]
• PACO [Google]
• EmotionSense [University of Cambridge]
• Purple Robot [Center for Behavioral Intervention Technologies, Northwestern University] 
• ResearchKit / CareKit [Apple]
• ResearchStack [Cornell]
• Open mHealth [Open mHealth]

• See
– https://en.wikipedia.org/wiki/Mobile_phone_based_sensing_software

(c) Jakob E. Bardram41
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