Mobile Sensing & Personal Health Technology

Jakob E. Bardram, PhD

Professor, Dept. of Applied Mathematics and Computer Science Adjunct Professor, Dept. Public Health, University of Copenhagen Director, Copenhagen Center for Health Technology

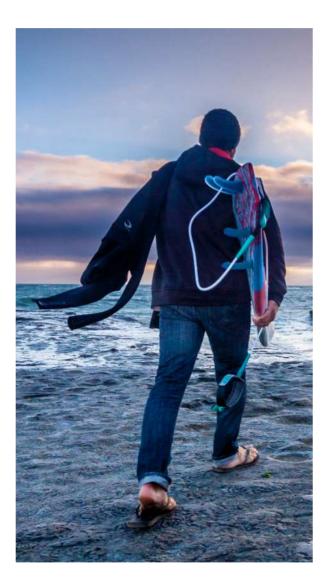
Technical University of Denmark

Curriculum

- Bardram JE, Frost M. **The Personal Health Technology Design Space**. *IEEE Pervasive Computing*. 2016;15(2):70-78.
- Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. **A survey of mobile phone sensing**. *IEEE Communication Magazine*. 2010;48(9).
- Estrin D. Small Data, Where N = Me. Communication of the ACM. 2014;57(4):32-34.
- West P, Van Kleek M, Giordano R, Weal MJ, Shadbolt N. Common Barriers to the Use of Patient-Generated Data Across Clinical Settings. In: *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI '18*. New York, NY, USA: ACM; 2018:484:1--484:13.
- Hollis V, Konrad A, Springer A, et al. What Does All This Data Mean for My Future Mood? Actionable Analytics and Targeted Reflection for Emotional Well-Being. *Human–Computer Interaction*. 2017;32(5-6):208-267.

OUTLINE OF TALK

- Mobile Sensing
- Personal Health Technology
 - architecture
 - design space
 - examples
- Cases Mental Health
 - sensing
 - intervention
- Resources
 - frameworks
 - references



Mobile Sensing

The Smartphone

- Ubiquitous
- Unobtrusive
- Intimate
- Powerful
- Sensor-rich
- Connected always!
- Programmable
- Easy deployment (app store)
- Cloud-enabled

5

"... the mobile phone has become the most ubiquitous piece of technology in our recent history" – Oliver et. al. 2015

"Smartphones offer huge potential to gather precise, objective, sustained, and ecologically valid data on the real-world behaviors and experiences of millions of people where they already are" – Miller, 2015

Sensing

- Sensors...
 - antennas (GSM, wifi, bluetooth, NFC,)
 - steps, temperature, ...
 - touch, pressure
- App logging
 - phone calls / texting
 - PIM (email, calendar, todo, ...)
 - social media
 - app usage
- External devices
 - activity trackers, scale
 - cardio (pulse, HRV, blood pressure, ECG, ...)
 - mental (breathing, sleep, EEG, ...)
 - in-ear BP/ECG
 - food

Figure 1. An off-the-self iPhone 4, representative of the growing class of sensorenabled phones. This phone includes eight different sensors: accelerometer, GPS, ambient light, dual microphones, proximity sensor, dual cameras, compass, and gyroscope.

> Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A survey of mobile phone sensing. *IEEE Commun Mag*. 2010;48(9).

Sensing Scale

• Personal sensing

- sensing by a single individual
- produced & consumed by a sole person
- `single loop'

• Group sensing

- sharing goal w. a group
- sharing of sensing data (trust)
- `citizen science'

• Community sensing

- large-scale data collection, analysis, and sharing
- for the good of a community
- strangers (privacy)
- 'population sensing'

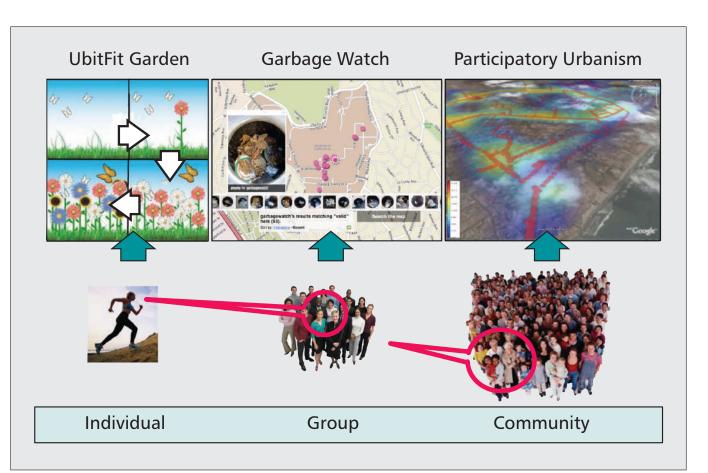


Figure 2. Mobile phone sensing is effective across multiple scales, including: a single individual (e.g., UbitFit Garden [1]), groups such as social networks or special interest groups (e.g., Garbage Watch [23]), and entire communities/ population of a city (e.g., Participatory Urbanism [20]).

Sensing paradigms

- Opportunistic sensing
 - data collection stage is fully automated with no user involvement
- Participatory sensing
 - the user actively engages in the data collection activity

	Opportunistic	Participatory
user's role	none / automatic sensing	engaged in sensing
burden on user	low	high
data collection	high	low
technical complexity	high	low
data quality	low	depends on engagement
sensing context	difficult	user specific

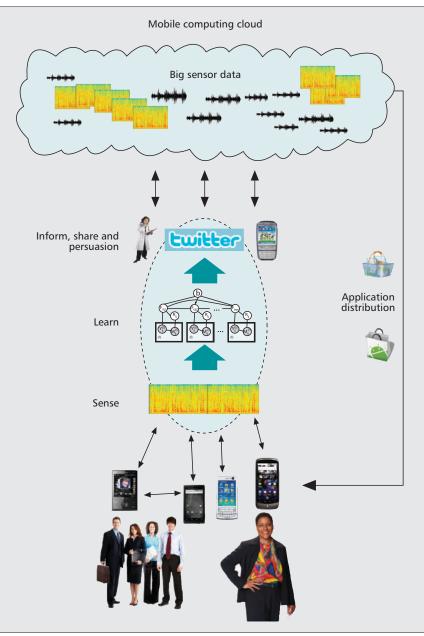


Figure 3. Mobile phone sensing architecture.

Mobile Sensing Architecture

• Sense

- programmability api, accessing sensors, cross-platform
- continuous sensing threading, resources
- phone context volatile, noise, unstable

• Learn

- human behavior walking, sitting, steps, ...
- context modeling significant places, social context, …
- Inform, share, and persuasion
 - sharing visualization (web?), SoMe, communities
 - personalized sensing recommendations, preferences,
 - persuasion nudge, healthy behavior, influencers, gamification
 - privacy fundamental, trust, re-identification, "secondhand smoking"

Personal Health Technology

UbifitGarden [2008]

- obesity
- exercise
- activity recognition
- motivating feedback

BeWell [2011]

- wellness
- exercise
- social activity
- sleep

ShutEye [2012]

- sleep hygiene
- tracking sleep patterns
- food | caffeine | alcohol
- exercise | napping | relaxing

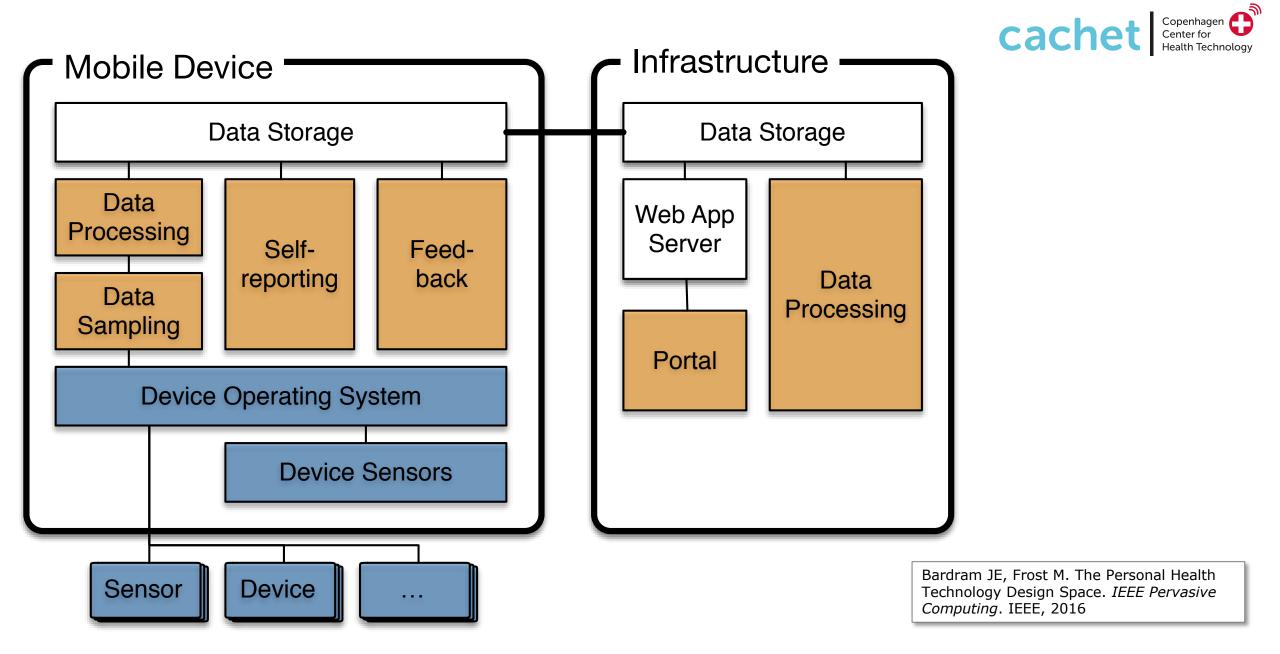
Mobilyze! [2011]

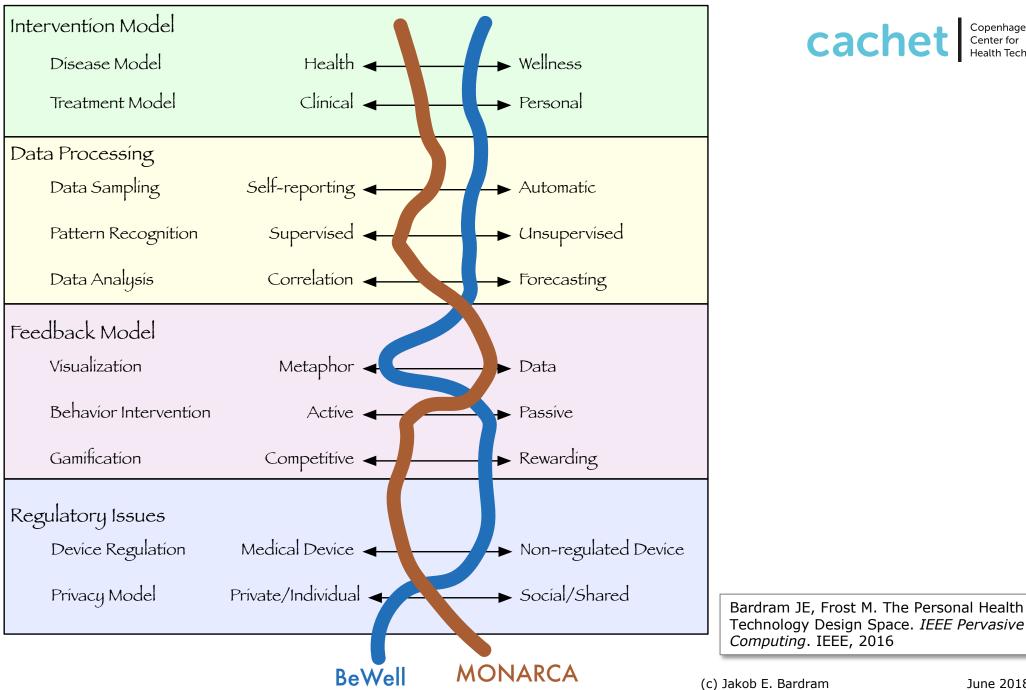
- mental health
- mood assessment
- location-based coping cards

MONARCA [2013]

Cachet Copenhagen Conter for Health Technology

- mental health
- self-assessment
- tracking physical, social, mobility, and phone activity
- mood prediction
- triggers & early warning signs





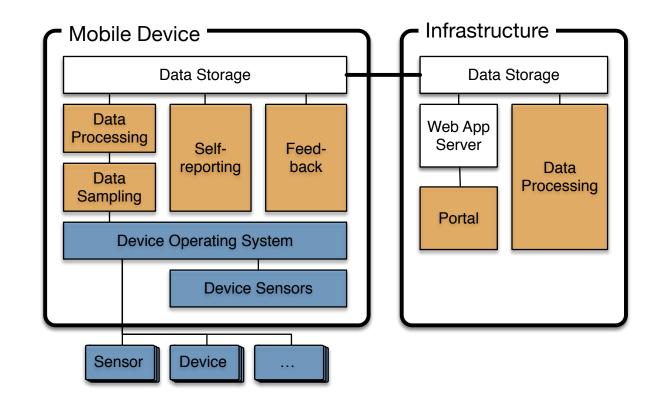
Copenhagen Center for

Health Technology

		INTEF	RVENTION	DA	TA PROCESSIN	IG	FEEC	ВАСК МО	DDEL	REGULATORY MODEL		
System	Focus	Disease Model	Treatment Model	Data Sampling	Pattern Recognition	Analysis	Visualization	Inter- vention	Gamification	Device Regulation	Privacy	
BeWell	Wellness (exercise, social activity, sleep)	Wellness	Personal	Automatic	Unsupervised clasification		Metaphor (aquarium)	Passive		N/A	Individual	
Mobilyze!	Depression	Health	Personal	Automatic + self-reporting	Supervised	Forecasting / Prediction	Data	Active		N/A	Individual (+Shared)	
UbiFit Garden	Encourage physical activity	Wellness	Personal	Automatic + self-reporting	Unsupervised clasification		Metaphor (garden)	Passive		N/A	Individual	
bant	Diabetes	Health	Personal	Automatic	Rule-based clasification		Data	Passive	Rewarding	N/A	Social/Shared	
Fish'n Steps	Obesity	Wellness	Personal	Automatic (simulated)			Metaphor (fish+bowl)	Passive	Rewarding + Competing	N/A	Individual + Social	
Mobile Mood Diary	Mental Health (mood charting)	Health	Clinical	Self-reporting			Data (online)	Passive		N/A	Individual	
ShutEye	Sleep	Wellness	Personal	Self-reporting			Data	Passive		NA/	Individual	
Mobile Health Mashups	Wellbeing & Insight	Wellness	Personal	Automatic		Correlation	Data	Passive		NA/	Individual	
Monarca	Bipolar Disorder	Health	Clinical	Self-reporting + Automatic	Supervised correlation	Forecasting / Prediction	Data	Active		N/A	Shared + Individual	

Personal Health Technology

- SENSING & MONITORING
 - health progression & regression
 - behavior
 - context
 - longitudinal & continuously
- LEARNING & PREDICTING
 - pattern recognition
 - correlation analysis
 - disease forecasting
 - clinical alerts & decision-support
- FEEDBACK & INTERVENTION
 - early detection
 - context-aware feedback & treatment
 - clinical intervention & prescription

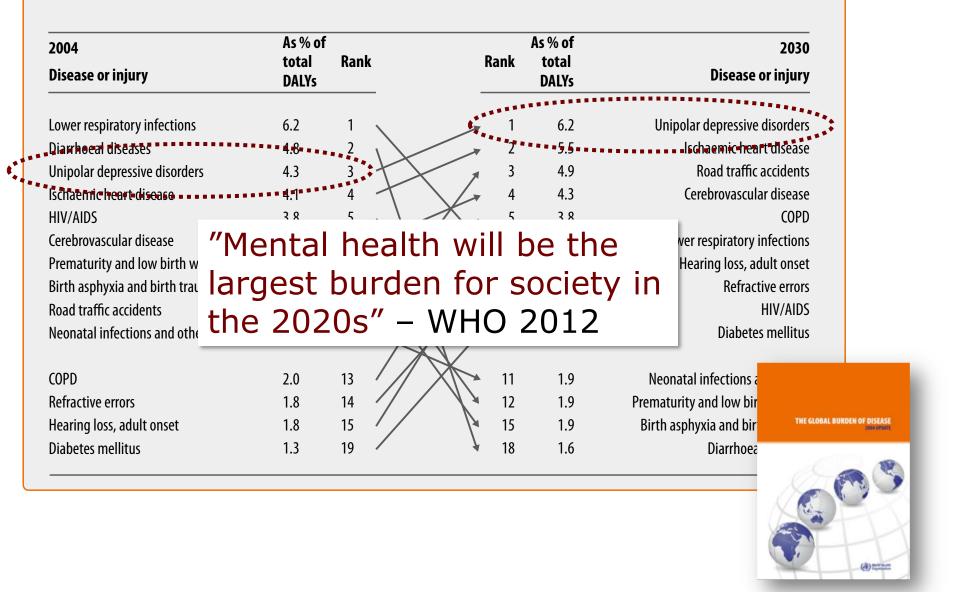


CASE – MENTAL HEALTH

MONARCA

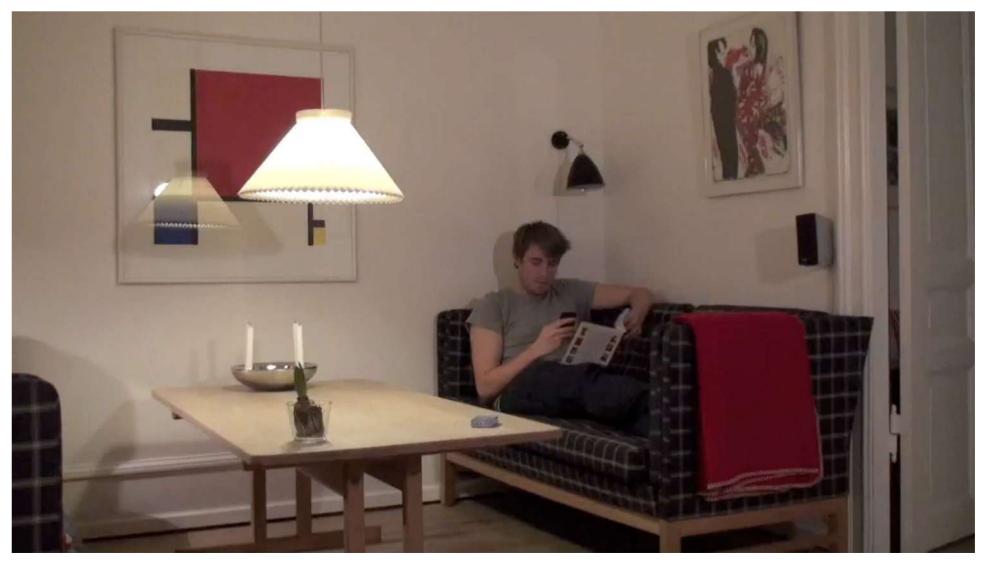
Copenhagen Center for Health Technology

Figure 27: Ten leading causes of burden of disease, world, 2004 and 2030



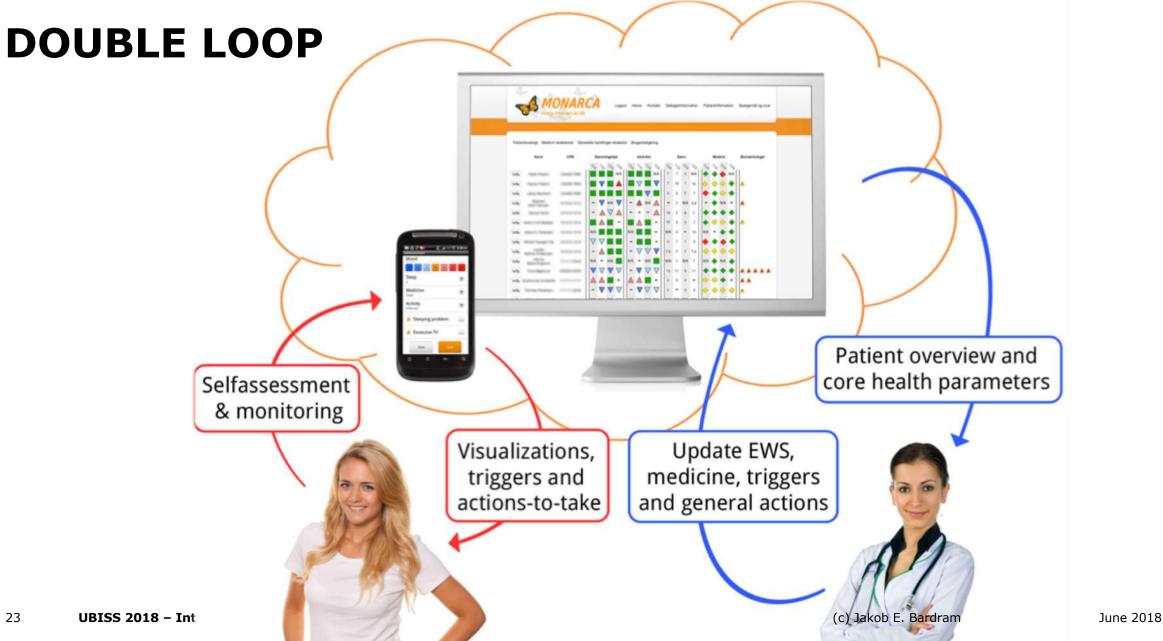
MONARCA

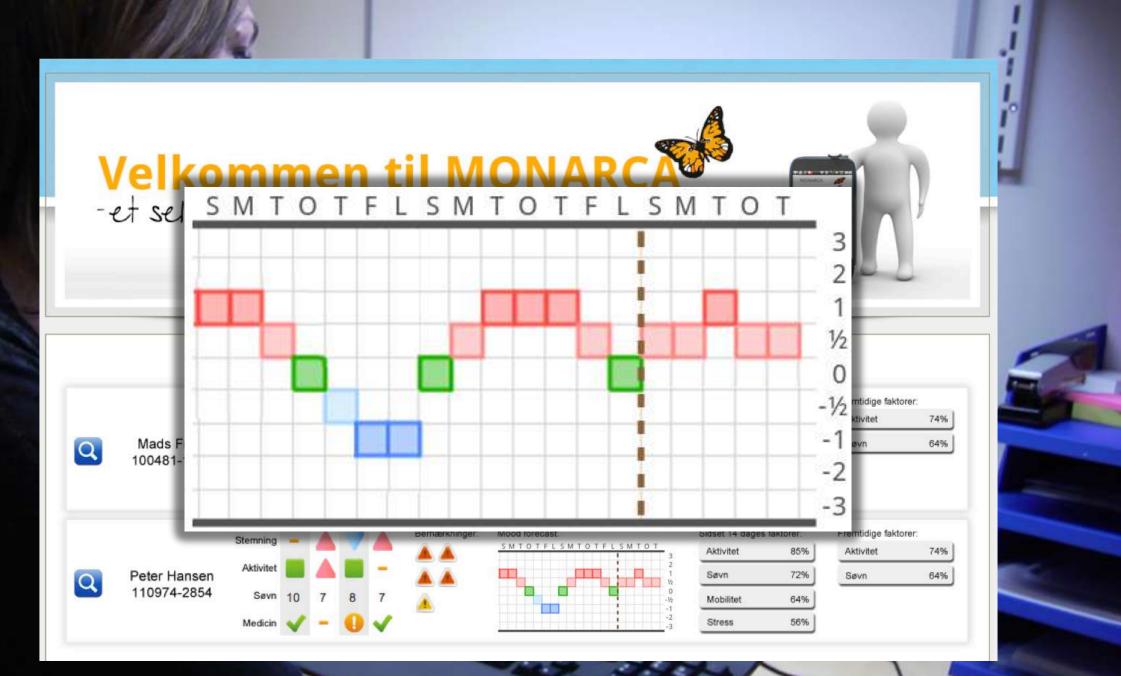
- Bipolar disorder (manio-depressive)
- EU STREP project w. 13 European partners.
- Copenhagen team
 - The Copenhagen Clinic for Affective Disorder, Rigshospitalet, Psychiatric Center Copenhagen,
 - The Pervasive Interaction Technology Laboratory (PIT Lab), IT University of Copenhagen, Copenhagen



SYSTEM FEATURES

- Self-assessment (participatory sensing)
 - mood | sleep | stress | medicine | ...
- Auto-assessment (opportunistic sensing)
 - physical activity | mobility | social activity | phone usage
- Feedback
 - visualizations | medication | actions-to-take | triggers | early-warning-signs | impact factors
- Mood forecast
 - predict mood for next 5 days





Usefulness & Usability

Clinical evaluations have shown that the MONARCA system

- have a very high compliance rate (87-95%)
- is considered very useful and very usable by patients and clinicians
- helps patients better manage their disease
- helps clinicians in better patient treatment

JE Bardram et al. Designing mobile health technology for bipolar disorder: a field trial of the MONARCA system. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, p. 2627-2636, ACM, 2013.

CSUQ item	Description	avg.	sd.
OVERALL	Overall satisfaction	2.60	1.01
SYSUSE	System usefulness	1.93	0.42
INFOQUAL	Information quality	3.32	1.10
INTERQUAL	Interface quality	2.71	0.93

Table 2. The CSUQ usability results on a Likert scale from 1–7:1=Highly agree; 7=Highly disagree.

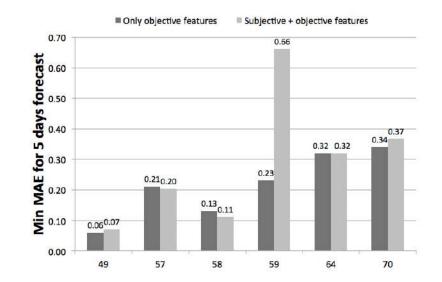
	Syster	n	Perce	ived
	Usefu	lness	Usefu	lness
	avg.	sd.	avg.	sd.
Disease Mgmt.	3.16	1.55	2.16	1.02
Self-assessment	2.21	1.06	1.73	0.72
Visualization	2.22	1.39	1.66	0.78
Alarms	2.34	1.44	2.13	1.88
Triggers	3.59	1.31	2.71	1.02
Early Warning Signs	3.44	1.18	2.36	0.78
Actions to take	3.25	1.52	2.34	0.88
Medication	4.30	1.50	3.17	1.51
Website	3.00	1.70	2.63	1.76

Table 3. Questionnaire results on 'System Usefulness' as used in the trial period and 'Perceived Usefulness' in the future. Users reported on a 1–7 point Liket scale on the question of "The MONARCA system is useful for ...": 1=Highly agree; 7=Highly disagree.

Mood Forecasting

- Mood Forecasting
 - mean-absolute-error (MAE) is between 0.06 and 0.66
 - $(\pm 3 \text{ scale})$
 - in 4 out of 6 cases, MAE is lower w. only objective data
 - i.e. mood forecasting can be done using only <u>objective data</u>
- Impact Factors Top 5
 - Activity | Stress | Sleep
 - Phone Usage* | Social Activity*

M Frost et al. Supporting disease insight through data analysis. in *Proceedings of the 2013 ACM international joint conference on Pervasive and Ubiquitous computing*, ACM, 2013.



Data features	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Activity	3	1	1	1	0	0	0	0	0	0	0	0	0	0
Stress	1	1	2	0	1	0	1	0	0	0	0	0	0	0
Sleep	0	1	0	3	2	0	0	0	0	0	0	0	0	0
Phone Usage*	1	0	3	0	0	0	1	0	0	0	0	1	0	0
Social Activity*	0	2	0	1	0	0	1	0	1	0	1	0	0	0
Irritability	0	0	0	0	2	2	0	1	1	0	0	0	0	0
Cognitive Problems	0	1	0	1	0	1	1	0	1	0	0	0	1	0
Physical Activity*	1	0	0	1	0	0	1	0	1	1	0	1	0	0
Alcohol	0	0	0	1	0	1	1	2	0	0	0	0	1	0
Warning Signs	0	0	0	0	1	1	0	1	1	1	0	0	1	0
Mobility*	0	0	0	0	0	1	0	2	0	1	1	1	0	0
Mixed Mood	0	0	0	0	0	0	1	1	1	0	0	0	0	3
Medicine Changed	0	0	0	0	0	0	0	1	0	0	2	1	1	1
Medicine Taken	0	0	0	0	0	0	0	0	0	0	0	2	2	2

 Table 2. Ranking of the correlation between Impact Factors (features) and the mood score. The objective features are marked with *.

Clinical Correlations

- Clinical Study
 - N=61 | 6 m | 19 m
 - HDRS-17 (depression) and YMRS (manic)
 - 400+ clinical ratings (monthly)
- Results
 - significant correlations between self-rated mood and HDRS & YMRS
 - significant correlations between social activity and clinical ratings on both HDRS & YMRS
 - especially when grouping into 'affective states' (3 states)

"Smartphones provide an **easy** and **objective** way to monitor illness activity and could serve as an **electronic biomarker** for depressive and manic symptoms in patients with bipolar disorder."

Faurholt-Jepsen M, Vinberg M, Frost M, Christensen EM, Bardram JE, Kessing LV. Smartphone data as an electronic biomarker of illness activity in bipolar disorder. *Bipolar Disorders*. 17(1): 2015

Table 2. Correlations between self-monitored data^a collected using smartphones and depressive and manic symptoms measured using the HDRS-17 and YMRS, respectively^b

		Unadjusted		Adjusted					
	Coefficient	95% CI	p-value	Coefficient	95% CI	p-value			
Mood (scale: -3 to +3)									
HDRS-17	-0.055	-0.067 to -0.042	< 0.001	-0.058	-0.071 to -0.045	< 0.001			
HDRS-17 sub-item 1 (mood)	-0.38	-0.45 to -0.30	< 0.001	-0.38	-0.46 to -0.31	< 0.001			
YMRS	0.39	0.016-0.062	< 0.001	0.039	0.017-0.062	< 0.001			
YMRS sub-item 1 (mood)	0.38	0.24-0.53	< 0.001	0.38	0.24-0.53	< 0.001			
Sleep (hours/night)									
HDRS-17	-0.017	-0.048 to 0.014	0.28	-0.02	-0.052 to 0.011	0.21			
YMRS	-0.047	-0.088 to -0.005	0.027	-0.047	-0.088 to -0.006	0.026			
Activity (scale: -3 to +3)									
HDRS-17	-0.037	-0.053 to -0.020	< 0.001	-0.042	-0.059 to -0.025	< 0.001			
YMRS	0.047	0.022-0.072	< 0.001	0.048	0.023-0.072	< 0.001			
Stress (scale: 0 to +5)									
HDRS-17	0.047	0.029-0.065	< 0.001	0.046	0.027-0.064	< 0.001			
YMRS	0.012	-0.013 to 0.033	0.34	0.012	-0.013 to 0.037	0.35			

CI = confidence interval; HDRS-17 = Hamilton Depression Rating Scale-17 item; YMRS = Young Mania Rating Scale.

^aAverages of the smartphone data were analyzed for the current day and three days before ratings with the HDRS-17 and YMRS, as these rating scales address symptoms over the last four days.

^bTotal N = 30.

^cAdjusted for age and sex.

Table 5. Correlations between automatically generated objective data ^a collected using smartphones and *affective states* according to the HDRS-17 and YMRS presented as categorical data ^b, respectively^c

		Unadjusted		Adjusted ^d				
	Coefficient	95% CI	p-value	Coefficient	95% CI	p-value		
ncoming calls (no./day)								
Asymptomatic versus mania	0.95	0.076-1.82	0.033	0.97	0.10-1.84	0.029		
Duration incoming calls (sec/day)								
Asymptomatic versus hypomania	729.51	334.87-1124.13	< 0.001	768.10	374.34-1161.86	< 0.001		
Dutgoing calls (no./day)								
Asymptomatic versus hypomania	2.09	0.38-3.80	0.016	2.08	0.37-3.80	0.017		
Duration outgoing calls (sec/day)								
Asymptomatic versus moderate to severe depression	452.17	149.56-754.78	0.003	421.57	111.55-731.60	0.008		
Asymptomatic versus hypomania	623.15	173.63-1072.67	0.007	641.53	190.41-1092.65	0.005		
Dutgoing text messages (no./day)								
Asymptomatic versus mania	4.14	-0.38 to 8.67	0.073	4.42	-0.10 to 8.95	0.055		

CI = confidence interval; HDRS-17 = Hamilton Depression Rating Scale-17 item; YMRS = Young Mania Rating Scale.

^aAverages of the smartphone data were analyzed for the current day and three days before ratings with the HDRS-17 and YMRS, as these rating scales address symptoms over the last four days.

^bScores on the HDRS-17 or YMRS ≤ 7 were defined as asymptomatic. Scores on the HDRS-17 or YMRS from 7 to 14 were defined as mild depression or hypomania. Scores on the HDRS-17 or YMRS ≥ 14 were defined as moderate to severe depression or mania. ^cAnalyses including all study participants; total N = 61.

^dAdjusted for age and sex.

Voice Feature Analysis

- Collection of voice features in naturalistic setting
 - N=28 | 12 w
 - HDRS-17 (depression) and YMRS (manic)
 - 179 clinical ratings (fortnightly)
 - openSMILE (emolarge)
- Classification results (user-specific models), accuracy (s.d.)
 - depressive state : 70% (0.13)
 - manic state : 61% (0.04)
- Classification accuracy were not significantly increased when combining voice features with automatically generated objective data

Table 3. Classification of affective states based on voice features			
	Accuracy (s.d.) ^a	Sensitivity (s.d.) ^b	Specificity (s.d.) ^c
User-dependent models ^d			
A depressive state ^e versus a euthymic state ^f ($n = 13$)	0.70 (0.13)	0.64 (0.25)	0.75 (0.23)
A manic or mixed state ^g versus a euthymic state ^f $(n = 3)$	0.61 (0.04)	0.71 (0.09)	0.50 (0.08)
User-independent models ^d			
A depressive state ^e versus a euthymic state ^f	0.68 (0.006)	0.81 (0.008)	0.56 (0.008)
A manic or mixed state ^g versus a euthymic state ^f	0.74 (0.005)	0.97 (0.002)	0.52 (0.01)

Abbreviations: HAMD, Hamilton Depression Rating Scale 17-item; YMRS, Young Mania Rating Scale. Data are mean and s.d. ^aDefined as accuracy = (true positive+true negative)/ (positive+negative). ^bDefined as sensitivity = true positive/positive. ^cDefined as specificity = true negative/negative. ^dUser-dependent models: building a model from each individual patient. User-independent models: building a common model from all patients. ^eDefined as a HAMD score \geq 13 and a YMRS score < 13. ^fDefined as HAMD < 13 and YMRS < 13. ^gDefined as a YMRS score \geq 13.

"Voice features collected in naturalistic settings using smartphones may be used as objective state markers in patients with bipolar disorder."

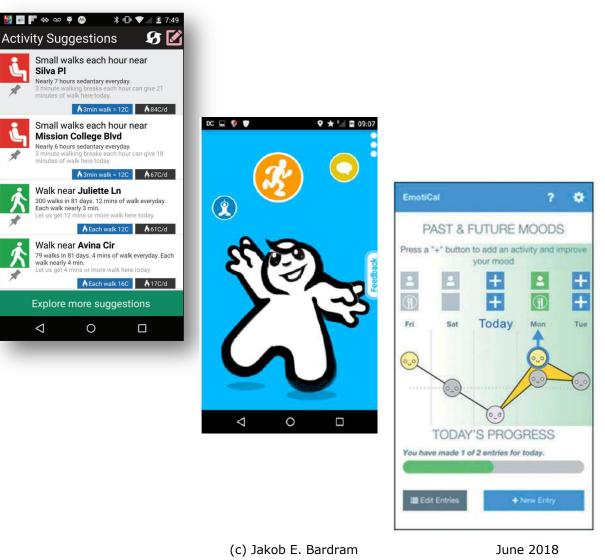
> M Faurholt-Jepsen, J Busk, M Frost, M Vinberg, EM Christensen, O Winther, JE Bardram and LV Kessing. Voice analysis as an objective state marker in bipolar disorder. *Transl Psychiatry* (2016) 6

Technical University of Denmark

OPPORTUNITIES FOR INTERVENTION

From Monitoring to Intervention

- MyBehavior
 - Cornell University, USA
- MOOS Mobile Sensing and Support
 University of St Gallen, Switzerland
- EmotiCal Emotional Calendar
 - University of California at Santa Cruz, USA



MyBehavior

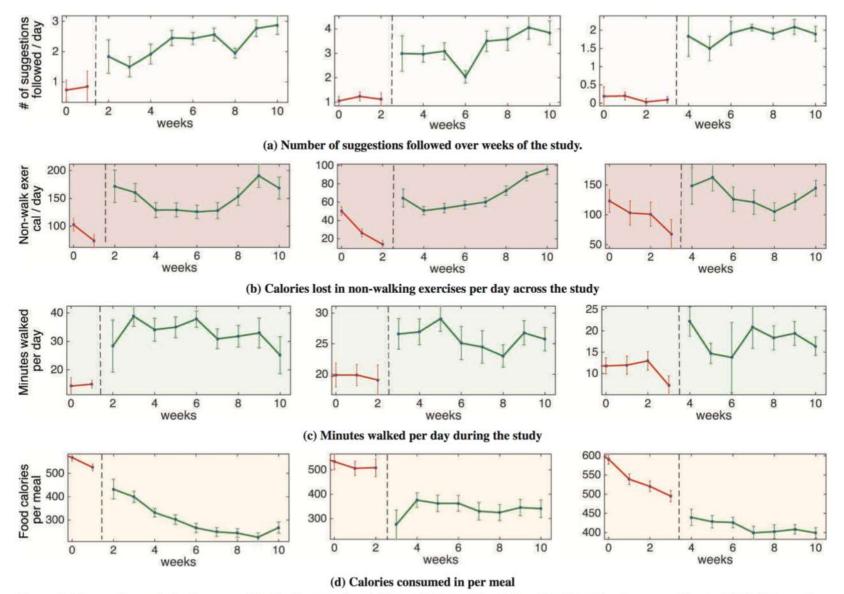
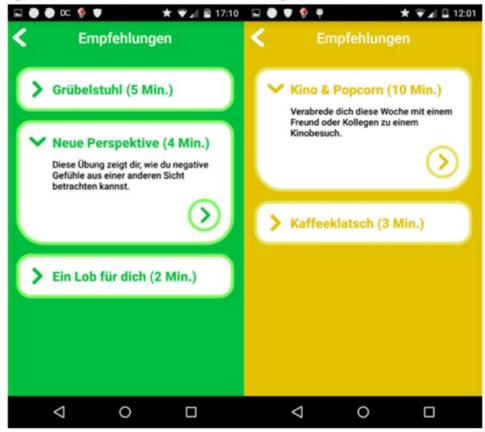


Figure 6: Changes in user behavior as predicted by the mixed model for multiple baseline design. The dotted lines represent the start of the intervention of MyBehavior. Left, middle, and right figures respectively show results from participants where intervention were started after 2, 3 and 4 weeks of using the control. Red color represents control phase where as green represents periods of using MyBehavior.

Cachet Copenhagen Conter for Health Technology

MOOS

Figure 4. Sample screenshots of lists of interventions of two different baskets. Each item shows the approximate time it takes to carry out the intervention together with a short summary (in German language) Note: The left, green list presents 3 mindfulness exercises: "muse chair," "new perspective," and "praise yourself." The right, yellow list presents 2 social exercises: "Movies&Popcorn" and "kaffeeklatsch.".



Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild. *JMIR mHealth uHealth*. JMIR Publications Inc.; 2016;4(3).

MOOS Study

- Study setup
 - Single arm, pilot study
 - N=126
 - 4 weeks
 - PHQ-9 > 10 (clinically relevant)
- Results
 - N=12
 - for participants PHQ-9 > 10 + app adherence, a significant drop in PHQ-9 was observed.
 - able to distinguish between subjects above and below PHQ-9 = 10

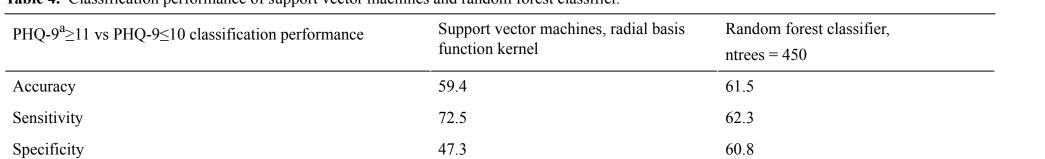
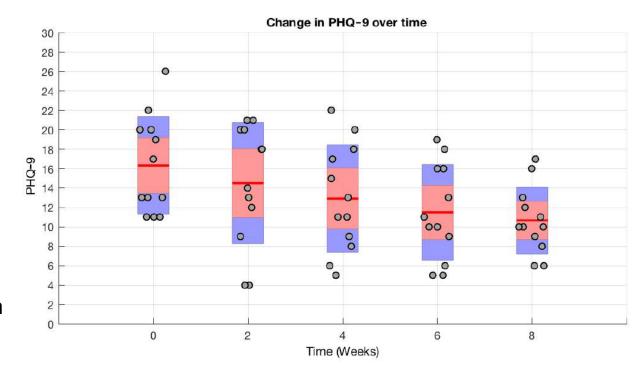
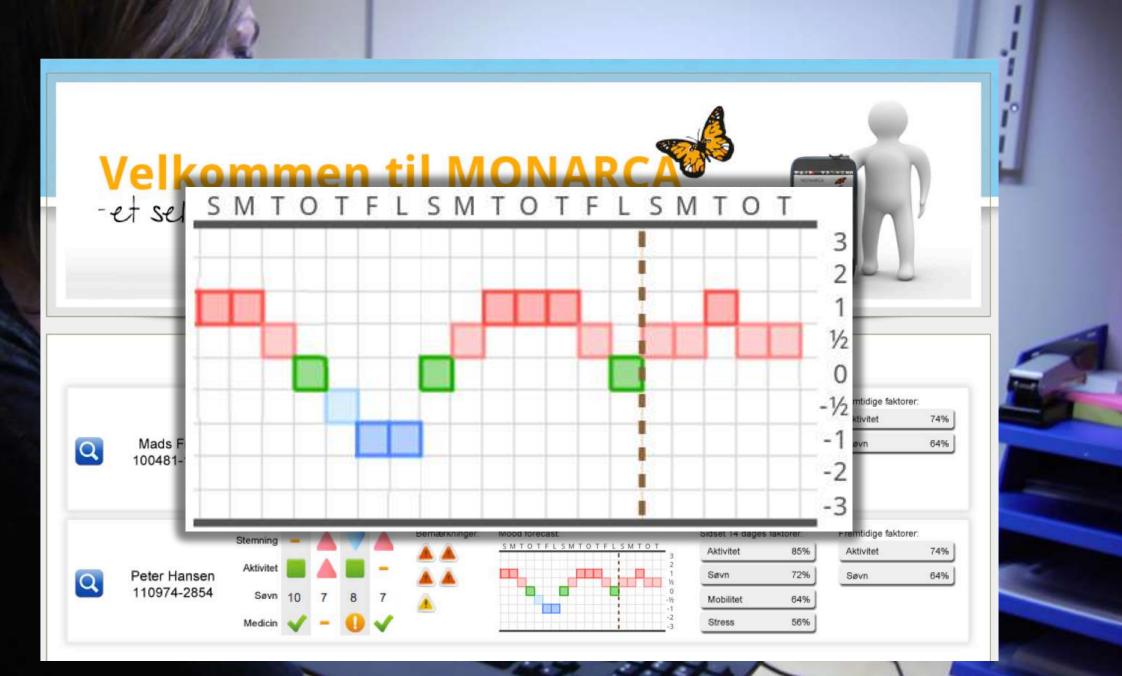


Table 4. Classification performance of support vector machines and random forest classifier.





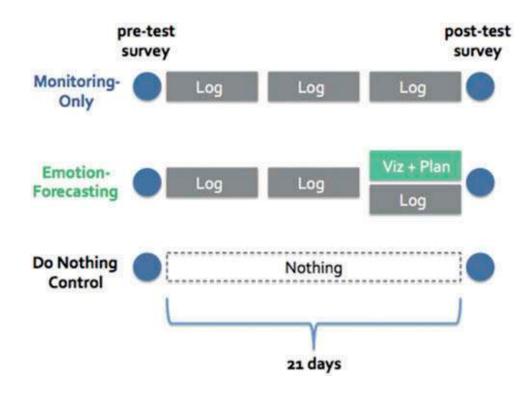
EmotiCal

- Mood Monitoring
 - 2 / day
 - mood, energy, time, location
 - trigger activities
- Emotion forecasting
 - actionable recommendations
 - motivate engagement in future activities that directly improve mood
- Recommendations for activities
 - history (5)
 - psychological needs (5)

X Exit Create Entry ?	X Exit Create Entry ?	EmotiCal ? 🔅
Step: 1 of 5	Step: 2 of 5	PAST & FUTURE MOODS
How do you feel?	Which factors do you think had the most impact on your mood? Go to your preferences to change the labels on these fields. Food [+1]	Press a *+* button to add an activity and improve your mood
Mood [3]	Negative Impact Positive Impact Sleep Exercise	Fri Sat Today Mon Tur
Energy [1]	Work 1 Social Company 1	
Low High	Social Activity	TODAY'S PROGRESS
03/05/2016, 06:01:52.561 PM	Custom 1	You have made 1 of 2 entries for today.
Location	Custom 2	
Home •		
K Tark Net >	Back Next	III Edit Entries + New Entry

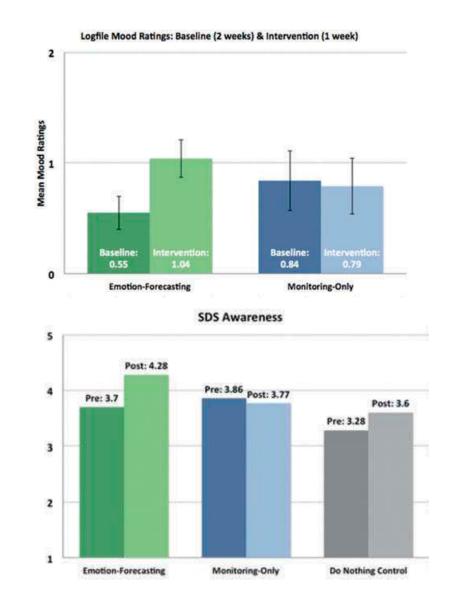
EmotiCal Study

- 3 week
- N = 36/60 | random, not ill
- \$10
- 3 arms
 - monitoring only
 - emotion forecasting
 - control
- Surveys
 - Positive and Negative Affect Scale [PANAS]
 - Psychological needs (BPNS)
 - Self-awareness, and perceived choice over behavior (Self-Determination Scale [SDS])
 - Pleasant Activities Schedule



EmotiCal Study Results

- Emotion-forecasting participants had more positive mood records with greater use of cognitive mechanism and insight terms
- Emotion-forecasting participants had higher ratings of self-awareness,
 - but no differences in perceived choice or PANAS Scores
- ... and some more



RESOURCES – FRAMEWORKS & REFERENCES

TRY YOURSELF! (FRAMEWORKS)

- Goggle Sensor & geolocation API [Google]
- Goggle Activity Recognition API [Google]
- Sensus [University of Virginia]
- Funf [MIT/Google]
- AWARE [University of Oulu Center for Ubiquitous Computing]
- PACO [Google]
- EmotionSense [University of Cambridge]
- Purple Robot [Center for Behavioral Intervention Technologies, Northwestern University]
- ResearchKit / CareKit [Apple]
- ResearchStack [Cornell]
- Open mHealth [Open mHealth]
- See
 - https://en.wikipedia.org/wiki/Mobile phone based sensing software

predictive-technology-laboratory / sensus

Advance Android Mobile Context Instrumentation Framework

E≻→OTIONSENSE

ResearchKit

REFERENCES

- 1. Bardram JE, Frost M. The Personal Health Technology Design Space. *IEEE Pervasive Computing*. IEEE, 2016
- 2. Bardram JE et al. Designing mobile health technology for bipolar disorder: a field trial of the MONARCA system. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, p. 2627-2636, ACM, 2013.
- 3. Frost M et al. Supporting disease insight through data analysis. in *Proceedings of the 2013 ACM international joint conference on Pervasive and Ubiquitous computing*, ACM, 2013.
- 4. Faurholt-Jepsen M, Vinberg M, Frost M, Christensen EM, Bardram JE, Kessing LV. Smartphone data as an electronic biomarker of illness activity in bipolar disorder. *Bipolar Disorders*. 17(1): 2015
- 5. Faurholt-Jepsen M, Busk J, Frost M, et al. Voice analysis as an objective state marker in bipolar disorder. *Transl Psychiatry*. 2016.
- 6. Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, et al. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study. *J Med Internet Res.* 2015;17(7).
- 7. Rabbi M, Aung MH, Zhang M, Choudhury T. MyBehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. *Ubicomp '15, Sept 7–11, 2015, Osaka, Japan*. 2015:707-718.
- 8. Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile Sensing and Support for People With Depression: A Pilot Trial in the Wild. *JMIR mHealth uHealth*. JMIR Publications Inc.; 2016;4(3).
- 9. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A survey of mobile phone sensing. *IEEE Communication Magazine*. 2010;48(9).
- 10. Estrin D. Small Data, Where N = Me. Communication of the ACM. 2014;57(4):32-34.
- 11. West P, Van Kleek M, Giordano R, Weal MJ, Shadbolt N. Common Barriers to the Use of Patient-Generated Data Across Clinical Settings. In: *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI '18*. New York, NY, USA: ACM; 2018:484:1--484:13.
- 12. Hollis V, Konrad A, Springer A, et al. What Does All This Data Mean for My Future Mood? Actionable Analytics and Targeted Reflection for Emotional Well-Being. *Human–Computer Interact*. 2017;32(5-6):208-267.