
Removing Code Duplication
Through Code Generation for

Kotlin Web Services

Mathias Enggrob Boon

Kongens Lyngby 2020

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract

In web services development, it is common to maintain multiple sources of truth
for similar code due to the decoupled nature of client-server systems, leading to
code redundancy. A popular solution is to use a specification-based approach to
generate API client libraries for requesting web services, partially solving the
problem.
In this thesis, it is shown that it is possible to generate both the web API
and API client library from application service definitions, maintaining a single
source of truth. This goal was achieved by designing and implementing a library
that generates code through annotation processing. The library was evaluated
through a series of tests and interviews which indicate that it is effective at
improving developer efficiency by eliminating code redundancy.

ii Abstract

Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfilment of the re-
quirements for acquiring an M.Sc. in Computer Science and Engineering.

The thesis deals with the area of web services, seeking to explore options for
improving on the industry standard practice of manually adapting the web API
to the underlying server logic and generating the client code for requesting the
service from a specification of the web API.

The thesis consists of a report, a proof-of-concept Kotlin library and a sample
Kotlin project demonstrating the library in use.

Kongens Lyngby, June 17th, 2020

Mathias Enggrob Boon

iv Preface

Acknowledgements

The author of this thesis would like to thank his supervisors, Jakob Eyvind
Bardram, Steven Jeuris and Alban Maxhuni, for their support during the thesis
development and writing period.

An additional thank-you to Steven Jeuris for his extensive feedback during the
writing process of the thesis.

Finally, a thank-you to the interview participants who provided feedback on the
proof-of-concept implementation of the library.

vi Acknowledgements

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Background and Project Motivation 1

1.1.1 Development of Client-server Systems 1
1.1.2 Domain-Driven Design in Distributed Systems 3

1.2 Problem Statement . 4
1.2.1 Project Proposal . 4
1.2.2 Project Delimitation . 4

1.3 Thesis Structure . 5

2 State of the Art 7
2.1 Distributed Systems . 7

2.1.1 Distributed System Architectures 8
2.2 Computer Networks . 9

2.2.1 Relevant Protocols . 10
2.3 Service-Oriented Architecture and Web Applications 12

2.3.1 RPC-style APIs . 12
2.3.2 RESTful APIs . 13
2.3.3 Naked Objects and Object-oriented User Interface 15

2.4 Domain-Driven Design (DDD) 16
2.4.1 Domain-Driven Design in Practice 17
2.4.2 Related Architectural- and Design Patterns 17

2.5 Developer Experience . 19
2.6 Related Work . 19

2.6.1 Existing Research . 20
2.6.2 Industry and Open Source Projects 22

viii CONTENTS

3 System Design 27
3.1 Requirements Analysis . 27

3.1.1 Design Constraints . 27
3.1.2 Artifacts . 28
3.1.3 Generated Code Functionality 30
3.1.4 Configurable Functionality 31

3.2 Proposed Design . 33

4 Implementation 35
4.1 Overview . 35
4.2 Technologies Used . 36

4.2.1 Programming Language - Kotlin 36
4.2.2 Annotation Processing - Kapt, Java Annotation Processing

& Java Language Modelling 37
4.2.3 Web Application Framework - Ktor 38
4.2.4 Code Generation - KotlinPoet 38

4.3 Integration with Other Projects 38
4.3.1 Usage of Generated Code 40

4.4 Example of Generated Code . 41

5 Evaluation 45
5.1 Evaluation Metrics . 45

5.1.1 Source Lines of Code . 46
5.1.2 Build Time . 46
5.1.3 Developer Experience . 47

5.2 Test Environment . 47
5.3 Test Methodology . 48

5.3.1 Source Lines of Code . 48
5.3.2 Build Time . 48

5.4 Results . 49
5.4.1 Source Lines of Code . 49
5.4.2 Build Time . 50

5.5 Developer Interviews . 52
5.5.1 Interview Methodology 52

6 Discussion 55
6.1 Analysis of Evaluation Results 55

6.1.1 Source Lines of Code . 55
6.1.2 Build Times . 56
6.1.3 Developer Experience . 56

6.2 Comparison to Existing Solutions 58
6.2.1 Specification-based Approach 58
6.2.2 Hybrid Approach . 58

6.3 Issues and Limitations . 59

CONTENTS ix

6.3.1 Flexibility . 59
6.3.2 Security and Authorization 60
6.3.3 Threats to Validity . 60

7 Conclusion 63
7.1 Project Findings . 63
7.2 Future Work . 63

Bibliography 65

A Interview Notes 69

x CONTENTS

Acronyms

DDD domain-driven design.

DRY Don’t Repeat Yourself.

DSL domain-specific language.

HATEOAS Hypermedia as the Engine of Application State.

HTTP HyperText Transfer Protocol.

IP Internet Protocol.

JSON JavaScript Object Notation.

MDA model-driven architecture.

MDE model-driven engineering.

MSA microservice architecture.

REST Representational State Transfer.

RPC remote procedure call.

SLOC source lines of code.

SOA service-oriented architecture.

SOAP Simple Object Transfer Protocol.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

xii Acronyms

UML Unified Modelling Language.

URL Uniform Resource Locator.

WWW World Wide Web.

XML Extensible Markup Language.

Glossary

API client library library containing a collection of client methods specific to
a web API or group of web APIs.

application service interface that defines the functionality a system offers to
other systems.

client method method used by client applications for making a request to an
endpoint.

endpoint in the context of web services, an identifier for a single service. In
the context of web applications, a code block associated with a URL that
is executed when a request to this URL is made.

Kodegen informal name for the proof-of-concept implementation of the library
designed in the thesis.

web API interface of a web server consisting of a collection of endpoints.

web application application that provides services through a web server.

web services the services provided by a web application.

xiv Glossary

Chapter 1

Introduction

In this chapter, the motivation for exploring this subject is given, the problem
statement and project proposal is presented, and the structure of the thesis is
explained.

1.1 Background and Project Motivation

1.1.1 Development of Client-server Systems

One of the challenges when designing distributed systems is building an interface
between the components of the system, allowing them to communicate. In a
non-distributed application, static checking can be used to catch bugs before the
application is executed, e.g. due to syntax errors or use of data types that are
not applicable in the given context.

In a distributed system, however, the components may not have any knowledge
of the internals of other components and therefore, static checking may not
be available. Instead, each component must agree on a protocol with the
other components, agreeing on how to communicate. The checks that would
otherwise be made statically now depend on the developers of each component
correctly implementing their protocols to interface with other components. This
complicates development, as bugs that would otherwise be caught at compile-time
may go unnoticed until encountered during run-time.

Architectural patterns and software engineering methodologies for maintaining
compatible interfaces between components of distributed systems have been
developed to help overcome these difficulties. Among these, service-oriented
architecture has become highly popular in the development of distributed systems

2 Introduction

because it simplifies inter-application communication. Rather than exposing the
full logic of a system, the logic is consolidated into a number of self-contained
services, which are then exposed to other applications. These other applications
do not need to concern themselves with the inner working of each services, only
how to access it and what result to expect from the service.

In a web-based distributed system, services are commonly published using a web
API. The web API is used by a server to expose a number of endpoints, each of
which corresponds to a service provided by the server. Knowing the endpoints
of the server, other applications can request the provided services by making a
network request to the relevant endpoint and reading the response sent by the
server.

While this simplifies the process of accessing the services provided by the server,
several issues are still present:

• Developers of client applications must know which endpoints exist, what
service they correspond to and the protocol for making requests. Moreover,
developers must manually write the logic for accessing each endpoint, i.e.
making the network request and interpreting the response.

• Maintainers of the server must ensure that when the server logic is updated,
the web API remains consistent with the service they provide. If the client
and server applications are developed together, this problem is exacerbated,
as developers will need to maintain the actual server logic, the server logic
for publishing it to an endpoint, and the client logic for accessing it. This
also violates the principle of Don’t Repeat Yourself (DRY), which states
that every piece of code must originate from one source only.

A potential solution for the first issue is for the developers of the server to
provide an API client library, i.e. a library that can be imported by client
applications and which defines a number of methods or even a domain-specific
language for accessing the web API. This approach has been employed by several
organisations, e.g. Google [23], Discord [10] and Slack [37].

However, API client libraries do not solve the second issue, as they must still be
maintained to remain consistent with the web API, which in turn must remain
consistent with the underlying server logic.

Partial solutions currently exist, notably maintaining a specification of the web
API and generating the client library from this. This approach can even be
extended to generate the specification from the web API. However, this still
leaves the task of maintaining the web API to remain consistent with the internal
server logic.

This redundancy and violation of the DRY principle serves as part of the
motivation for this thesis. Rather than using tools to assist developers in keeping
the components of a distributed system consistent with each other, this thesis

1.1 Background and Project Motivation 3

seeks to explore options for guaranteeing that the components remain consistent
by generating them from one source only.

1.1.2 Domain-Driven Design in Distributed Systems

Domain-driven design (DDD) is a software design methodology useful for systems
that operate on complex domains. When using DDD, the domain logic ideally is
the domain model, serving as an abstraction of the real-life domain and allowing
solving of problems.

As an example, a domain may be the area of medical studies. A domain model
of this domain would explain how the different concepts relate to each other and
how they interact, e.g. the attributes that constitute a study and how the study
is conducted.

A domain experts will have a detailed understanding of the area. By contrast, a
technical expert responsible for the development of a system relating to medical
studies may only have a superficial understanding and is therefore not able
unable to create an accurate domain model. Therefore, collaboration between
the domain expert and technical expert is encouraged to develop a model that
accurately depicts the domain and is implementable as a system.

To represent the possible interactions with a system, application services are
used, serving as the interface of the system. In a distributed system, however,
components are loosely coupled, making it difficult to enforce the interface. A
client application may be able to make a request to a server despite not having
access to the definition of the application services, allowing it to misinterpret
the interface.

A potential solution to this is to make network requests available through an
API client library that is guaranteed to be consistent with the application service
definitions. In contrast to the API client libraries described in Section 1.1.1,
these API client libraries do not just reflect the Web API, but also the underlying
application services that are exposed by the web API.

By ensuring that the client uses these API client libraries which are guaranteed
to be consistent with both the web API and the underlying application services,
it is guaranteed that the client application interfaces correctly with the server.
Moreover, using an API client library may allow static checking to be used,
ensuring that the parameters used in any requests and the use of the response
returned is valid.

This serves as the second motivation of the thesis, i.e. eliminating the potential
for misinterpreting the services offered by a server and encouraging the use of
domain-driven design in web services development.

4 Introduction

1.1.2.1 Impact of Thesis

The goal of the thesis is to present a potential method for solving the problems
presented in Section 1.1. Doing so could increase developer efficiency by reducing
the amount code to developer and maintain, while also reducing the risk of bugs
occurring due to developer errors.

For systems developed using domain-driven design, the solution proposed in the
thesis may assist in ensuring that client applications respects the application
service definitions used by the server.

1.2 Problem Statement
Based on the background presented in the Section 1.1, a problem statement for
the thesis was formulated. The problem statement is as follows:

"Given a distributed system with a client-server architecture, is it feasible to
automatically generate the logic for providing and requesting the server domain
logic from the server domain logic alone?"

1.2.1 Project Proposal

In order to answer the problem statement proposed above, a number of project
objectives were identified. These are:

• Identify existing research and technologies related to automatic generation
of web APIs and API client libraries.

• Design and implement a proof-of-concept library with the purpose of
automatically generating the code necessary to facilitate communication
between a client and server application.

• Evaluate the effectiveness of the library by comparing how it affects the
software metrics of a project using it, as well as through a qualitative study
on the developer experience of using it.

• Identify the limitations of the design and proof-of-concept implementation
and potential areas for further improvements.

1.2.2 Project Delimitation

The following areas of the problem domain, while relevant to the problem
statement and interesting to explore, are considered outside the scope of this
project, and will not be considered in this thesis:

• API versioning: API versioning is firstly a business issue, as the owner
of the system must decide how long they wish to support a previous version

1.3 Thesis Structure 5

of an API. While it is possible to allow multiple versions of an API to be
active, organisations trend towards deprecating and eventually closing old
API versions when third-party clients have been given a reasonable time
to migrate to the new version [11]. Thus, automatically generated Web
APIs and clients for accessing them are no different, as the problem does
not lie in how quickly a new API can be generated, but rather how long
previous ones should be maintained.

• Generation of domain logic: This project focuses on how the appli-
cation services of a server are exposed, and does not concern itself with
the domain logic used by the application services or whether these can be
subject to automatic generation.

• Multiplatform support and support for multiple network proto-
cols: While Kotlin supports compiling into multiple languages, doing
so adds a significant amount of complexity that is not appropriate for a
proof-of-concept. Moreover, as the main focus of this project is generating
Kotlin code from Kotlin code, multiplatform compilation is not relevant
for the core of the project, although it does increase the applicability of
the library. Finally, Kotlin Multiplatform compilation currently only has
limited support for reflection.
Similarly, the project will not consider supporting multiple protocols, e.g.
UDP, as this increases the complexity of the project greatly.

1.3 Thesis Structure
The thesis is divided into a number of chapters which will largely correspond to
the project objectives presented above. The chapters of the thesis are:

• State of the Art: Outlines the background knowledge for the area that
the thesis relates to, presents the existing methods for developing web
services and the problems that are currently relevant in this area.

• Design: Documents the design of the proposed solution to the problem
statement.

• Implementation: Documents the proof-of-concept implementation of the
proposed design, emphasizing the decisions taken during implementation
and justifying them. Also includes a guide to getting using the library with
examples.

• Evaluation: Documents the methods used to evaluate the proof-of-concept
implementation’s effectiveness at solving the problem statement.

• Discussion: Reflects on the project, based on the design process and
evaluation results, to determine what the project achieved and how it fits
into the existing research.

6 Introduction

• Conclusion: Summarizes the project outcome and proposes potential
future work.

Chapter 2

State of the Art

The purpose of this chapter is to present the knowledge that this thesis is based
on.

Firstly, a brief introduction to areas related to the thesis is given. This introduc-
tion will be "from the ground up", i.e. first explaining more general areas before
introducing the areas more specific to the thesis.

Secondly, existing research and industry practices related to the problem state-
ment of the Thesis is presented.

2.1 Distributed Systems

Unless stated otherwise, the theory presented in this section is based on the
book "Distributed Systems: Concepts and Design" by Coulouris et al. [8].

According to Coulouris et al., a distributed system is a system in which the
components are spread across multiple, networked devices, and where coordina-
tion occurs through message passing. Moreover, they specify three significant
characteristics of distributed systems:

• Concurrency of components, i.e. each component is able to carry out
actions concurrently with others.

• Lack of a global clock, i.e. components are not able to determine the
order of actions across components using a shared clock.

• Independent failures of components, i.e. one component may fail
while others continue operating.

8 State of the Art

Because of these characteristics, developing applications running in a distributed
context is more complex than a single-device application, as applications in a
distributed context must take them into account.

Communication between components in a distributed system is, at the most
basic level, facilitated by message passing. This allows components to invoke
behaviour in other components, e.g. invoking a method call.

Message passing may be synchronous, where each process waits for a message
before proceeding, or asynchronous, where processes may continue working on
other tasks while waiting for messages.

The asynchronous implementation useful, as it allows the components to operate
concurrently on various tasks and serve several components at the same time
and is thus ubiquitous in modern distributed systems.

2.1.0.1 Remote Procedure Calls

Remote procedure call (RPC) is a high-level implementation of message passing.
Whereas message passing has no requirements on the ordering of messages
between components, RPC is a request-response protocol. Thus, each procedure
call is initiated with a request describing the procedure to call along and concludes
with a response containing the result of the procedure.

Many implementations of RPC exist, e.g. JSON-RPC or Java RMI. Each
implementation defines its own protocol, e.g. how to encode content in the
message or how to determine the corresponding request for a response. Most
often, the protocols are not compatible with each other, and thus, for two
components to communicate using RPC, they must agree on the implementation
to use.

2.1.1 Distributed System Architectures

The architecture of a distributed system refers to how the components of the
system are distributed and what relationship they have to each other.

The two main distributed architectures are client-server and peer-to-peer.

2.1.1.1 Client-server Architecture

In a client-server architecture, two types of nodes exist: servers and clients. A
server provides services, while clients request them. This approach is analogous
to a function call: a client provides a request containing the details of the
service they want and how. The server parses the request, invokes the service as
described and responds with a result.

2.2 Computer Networks 9

As with the remote procedure call, the request-response protocol has the benefit
of hiding internal server details from the client. The client does not need to know
how a service result is found, or if any other clients are requesting the service,
only how to request the service and how to parse the response. How to request
the service and parse the result is defined using an application layer protocol, e.g.
HTTP (See section 2.2.1). The rules for how to make requests and responses
may be specified even further by defining an API for the server (see Section 2.3).

Client-server architectures are used ubiquitously for distributed systems. As an
example, the World Wide Web (WWW) is based on the use of the client-server
model: web servers accept requests for some resource and respond with the
requested content. Though originally centred around sharing of documents for
displaying web sites, the WWW has evolved into a system for sharing of resources
in general.

2.1.1.2 Peer-to-peer Architecture

In a peer-to-peer architecture, every node has the same role. Thus, contrary to a
client-server architecture, where each node either provides or consumes services,
peers both provide and consume services.

Peer-to-peer architecture is especially useful for applications that can benefit
from decentralization, e.g. file sharing. Rather than having a centralized network
where a server provides files, files are hosted by one or multiple peers, who can
provide them to other peers that request them. If one peer leaves the network,
the remaining peers can still provide the file, leading to high reliability.

However, peer-to-peer networking also suffers from lower stability, as the quality
of the service is based on the participants. In the file sharing example, a file may
be hosted by a number of nodes. If all of these leave the network, the file will no
longer be available, even though the network is still operational. By comparison,
it is easier to ensure that a server remains online and available.

While the thesis project could be expanded to also consider peer-to-peer systems,
the main focus will be on the field of web services, which is based on client-server
architecture.

2.2 Computer Networks
A computer network is a network of connected computers, referred to as "nodes"
in networking. The network allows them to share information between each
other, forming the infrastructure of a distributed system.

Communication over a network is facilitated by a protocol specifying the rules
for how messages are sent and received. However, it is infeasible to create a
protocol that fully specifies communication over a network, as there are too

10 State of the Art

many aspects to consider, e.g. converting physical signals to digital signals or
how to find the recipient of a message.

Instead, a layered protocol is commonly used. Low-level protocols solve issues at
a lower abstraction level, allowing high-level protocols built on top of them to
make certain assumptions and solve issues at a higher abstraction layer.

2.2.1 Relevant Protocols
In two of the most common conceptual models for networking, the OSI model
and TCP/IP model, layered protocols are divided into seven layers (OSI model)
or five layers (TCP/IP). Explaining the details of each layer and giving examples
of corresponding protocols is outside of the scope of the thesis, as most are not
relevant enough to warrant a full description. Instead, the protocols that are
most relevant will be described briefly.

2.2.1.1 Internet Protocol

The Internet Protocol (IP) facilitates communication between networks, allowing
nodes to communicate with nodes outside of their immediate network. Each
node is assigned an IP address to identify it and uses a forwarding algorithm
when receiving a message to determine when and how to forward messages to
other nodes.

Because the Internet is based on the use of the Internet Protocol and because
of the popularity of the Internet for resource sharing, the Internet Protocol has
become the standard protocol for communication between networks, and forms
the communication infrastructure used by many higher-level services together
with TCP.

2.2.1.2 Transport Layer Protocol

Transmission Control Protocol (TCP) is a transport layer protocol, and is
therefore responsible for providing a number of guarantees related to delivery of
messages. Some of the notable guarantees provided are:

• Error-checking of delivered messages.

• Reliable delivery of messages by retransmitting dropped messages.

• Ordering of messages.

Because of the guarantees provided by TCP, it is often used as the transport pro-
tocol for communication protocols and forms the communication infrastructure
for many higher-level services together with the Internet protocol.

The disadvantage of using TCP is that each packet has a larger header compared
to e.g. UDP and that each message requires more processing on reception.

2.2 Computer Networks 11

2.2.1.3 User Datagram Packet

As TCP, User Datagram Protocol (UDP) is a transport protocol. In contrast to
TCP, which provides reliable transmission of messages, UDP does not guarantee
that messages are delivered. Moreover, message ordering is not implemented,
and while message errors can be detected, they are solved by discarding the
message, not by using error recovery.

While UDP is less reliable, it is also a more lightweight protocol, with the UDP
header being 8 bytes compared to TCP header, which is between 20 and 60
bytes, depending on the header options used. Thus, it is commonly used for
time-sensitive applications where a loss of messages is acceptable, e.g. voice
communication or online games.

However, the guarantees provided by UDP are often insufficient for higher-level
protocols unless specifically compensated for. Supporting UDP is considered less
relevant to the thesis than TCP.

2.2.1.4 HyperText Transfer Protocol (HTTP)

HTTP is an application protocol for exchanging general application data, with
many applications, notably the World Wide Web, being based on the use of
HTTP. Because of the popularity of the World Wide Web for resource sharing,
HTTP is commonly used as a general-purpose application layer protocol, with
other application layer protocols instead being used for domain-specific purposes,
e.g. Simple Mail Transfer Protocol (SMTP) for sending emails or Domain Name
System (DNS) for resolving domain names to IP addresses.

A HTTP request always includes a URL and HTTP method. These are used to
identify a resource and what action to perform on it. Additionally, one or more
header fields can be added to the request to modify how the request should be
processed. A body may also be included to hold data that should be included
with the request. Similarly, a HTTP response always includes a status code,
indicating how the request was processed.

A typical HTTP request and response will consist of a client requesting the
server for some service or resource, passing any parameters for the action using
either the message body or the URL itself, and using the headers of the request
to pass additional information on how to parse the request, e.g. authentication
information or the requested format of the output.

On receiving the request, the server will attempt to process the request. Should
the request be valid and processed with no errors, it will respond with an
acknowledging status code to the client, potentially with a service result or
requested resource. Should the request fail to be processed, e.g. because of an
invalid request or because the server cannot process it as expected, the server
may provide a status code indicating what went wrong.

12 State of the Art

It is common for communication security to be implemented at the application
layer. In the case of HTTP, this is done by extending the HTTP protocol with
TLS encryption, denoted "HTTPS". Doing so provides encryption of all HTTP
messages at the cost of increased processing time for each HTTP message due
to the need for encrypting and decrypting them.

2.3 Service-Oriented Architecture and
Web Applications

Service-oriented architecture (SOA) is a software design type used for structuring
communication between distributed components. SOA is characterised by the
encapsulation of functionality as services, which are then provided to other
components through a communication protocol [30]. This provides the benefit of
abstracting the implementation details from other components; other components
only need to know how to request services and what response to expect, not how
the service results are computed. This can be contrasted to e.g. RPC where the
logic of the system may be fully exposed.

While SOA may be used to describe any network-based system that offers
functionality through services, it is commonly used in the context of the World
Wide Web. In this context, the term "web services" may be used to refer to
the services offered by the system and "web applications" to the systems that
offer them. Commonly, this will be achieved by defining an interface for the
application, known as a "web API", which defines services offered and how to
request them.

While the procedure for making requests to a web API is dependent on the
protocol used, some features are shared across protocols, notably endpoints.
Each endpoint specifies the location of a specific service on a server. For web
applications, endpoints are most commonly defined using a Uniform Resource
Locator (URL), in which case each service corresponds to a single URL. However,
the endpoint can also be encoded in the request, which may then be made to a
single URL used for any request.

Typically, web APIs are considered to follow one of two architectural types:
RPC-style or RESTful [49].

2.3.1 RPC-style APIs
RPC-style web APIs are based on the concept introduced in section 2.1.0.1. Each
request made by a client corresponds to a single procedure call, which ends with
a response from the server.

Any server may define its own communication protocol for how services should
be requested and what response should be expected. However, it is common

2.3 Service-Oriented Architecture and Web Applications 13

to use an existing protocol that implements fundamentals, e.g. how a message
should be formatted. Traditionally, Simple Object Transfer Protocol (SOAP)
has been the standard protocol for web services [3]. The protocol defines message
structure, rules for encoding of data and a convention for how to represent the
actual procedure call and response.

However, SOAP has been criticised for being overly verbose and complex [44], and
for requirement of using XML for messages [3]. Several alternative RPC protocols
have been developed since, notably JSON-RPC, which uses a more lightweight
format with fewer requirements, and gRPC, which uses a stricter specification for
encoding of data and provides tools for serializing and deserializing the content
of messages for various programming languages according to the rules of the
protocol.

2.3.2 RESTful APIs
Representational State Transfer (REST) is a specification for the design of web
APIs, with web APIs conforming to the requirements being denoted "RESTful".
Developing web APIs according to the principles of REST has arguably become
the industry standard. Therefore, it is also relevant to examine the importance
of conforming to a web API when the goal of the thesis is to generate both the
web API and API client library.

The constraints of REST are:

• Uniform interface: Resources must be identified using a URI, the action
to perform on the resource is represented by the HTTP method, and
all messages should be parseable based on the content of the message
only. Finally, each response should also include the actions now available
to the client, known as Hypermedia as the Engine of Application State
(HATEOAS).

• Client-server independency: Clients and servers must be able to evolve
independently of each other.

• Statelessness: The server holds no state information on the clients. Each
request made by the client should be treated independently of previous
requests.

• Cacheability: Resources provided by a server must be marked cacheable
when possible, allowing clients to improve performance by caching responses
and using these when repeating requests.

• Layered systems: Clients must not need to know if they are communi-
cating directly with a server or through an intermediary.

The Richardson Maturity Model [14] can be used to determine how well a web
API satisfies the constraints of REST (see Figure 2.1). According to this model,

14 State of the Art

web APIs can reach four levels of RESTfulness maturity. At the first three levels,
the web API is in essence still a RPC-based interface, albeit satisfying a number
of RESTful constraints that simplify development and maintenance of the web
API. Firstly, using multiple URLs to identify resources instead of using a single
endpoint and encoding the information in the request body. Secondly, using
HTTP methods to represent the action to carry out on the resource.

0

1

2

3

HTTP Verbs
Multiple URIs, multiple HTTP methods

Hypermedia
HATEOAS-based navigation

URI Resources
Multiple URIs, single HTTP method

Swamp of POX
Single URI, single HTTP method

AP
I M

at
ur

ity
Figure 2.1: Richardson Maturity Model, describing the recommended steps to

satisfy the REST specification

However, at this level, the client still relies on knowing the web API structure
beforehand, and changing the web API may break the client. Only upon
introducing HATEOAS are the client and server truly decoupled, and a RESTful
web API is actually achieved.

One of the major benefits of using REST for web APIs is client-server decoupling,
with HATEOAS allowing servers to evolve independently of clients. A resource
that is no longer exposed or changes address can simply be rediscovered by
the client. By contrast, a client accessing an RPC-based API expects a service
to be available at a specific endpoint, and may not function correctly if the
resource has been modified, e.g. by changing the address or response format of
the resource.

In practice, however, very few web APIs are actually designed around HATEOAS,
and thus do not gain the benefits from using this concept [22]. This may because
of the complexity in developing HATEOAS-based web APIs or because of a lack
of tools.

Thus, while designing web APIs to be RESTful may be considered the industry
standard, it is rarely achieved in practice, and thus conforming to the principles
of REST is mostly useful in aiding client application developers in discovering
and using the web API.

2.3 Service-Oriented Architecture and Web Applications 15

2.3.3 Naked Objects and Object-oriented User Interface

Naked Objects and Object-oriented User Interfaces are two related concepts,
both of which revolve around applications that are modelled fully around domain
objects, even in the user interface.

In object-oriented user interfaces, the user interface of the application must
directly represent the domain logic objects that the user is acting on [5]. Thus,
rather than designing the user interface to invoke methods which modify the
object attributes, the user modifies the object attributes directly.

The naked objects pattern extends object-oriented user interfaces by requiring
that the user interface should be generated automatically from the domain
objects [28].

The naked objects pattern is interesting in relation to this thesis, because it
encourages an approach similar to that of this thesis, i.e. focusing on domain logic
and automatically generating components for exposing it. However, requiring
the components to be automatically generated imposes strict constraints on the
developer, and it is therefore especially interesting to investigate the effectiveness
of the pattern in relation to the developers using it and how they react to it.

R. Pawson has researched the use of the pattern extensively, notably conducting a
study of the use of naked patterns in the Irish Department of Social Protection [29].
In this study it was found that, despite the strict constraints imposed by the
pattern on user interface design, developers reported that the pattern improved
the feeling of flexibility in development. The study concludes that as developers
get used to the imposed constraints and think purely in terms of domain logic,
they become more efficient.

This conclusion is in support of the intended approach encouraged by the thesis
project where developers are not allowed to implement the web API or API
client library manually.

However, the pattern has also been faced with criticism, mainly related to the
use of object-oriented user interfaces [6], which have been criticized for not being
adequately usable by humans.

These issues may also be present in the similar approach of using "application gen-
erators", applications used for generating other applications, e.g. JHipster [18].
The main benefit of using these generators is that they facilitate rapid develop-
ment, as a high amount of the code is automatically generated. However, the
automatically generated user interface may face issues similar to those described
above. Moreover, modifying the application after generation may carry a high
overhead, as developers must now understand the generated code.

16 State of the Art

2.4 Domain-Driven Design (DDD)

As Domain-driven design (DDD) is central to the problem statement of the
thesis, a brief introduction will be given. Unless stated otherwise, the theory
presented in this section is based on the book "Patterns, Principles and Practices
of Domain-Driven Design" by S. Millett and N. Tune [24], which in turn is based
on the book "Domain-driven design: tackling complexity in the heart of software"
by E. Evans [12].

DDD is a software development methodology which seeks to enable effective
development and maintenance of software for complex business domains, i.e. the
area in which the problems that the software relates to reside.

At the centre of DDD is the domain model. The domain model is an abstraction
of the domain, including only the aspects that are necessary to solve problems
in the domain. In DDD, a central task of development is iteratively improving
the domain model, continually identifying the aspects of the domain model that
must be refined.

Development of the domain model requires an understanding of the related
domain, which a developer may not have. Instead, domain experts are included
in the development process to give input on the domain model.

Developers and domain experts may encounter scenarios where they disagree on
the meaning of a term, or where one does not understand a term the other uses.
As a solution, a ubiquitous language is developed along with the domain model,
serving as the "shared language" of the developer and domain experts.

Developing a single, unified domain model with an associated ubiquitous language
is often infeasible. Multiple teams may work on the same domain model and
want to make changes independently, leading to multiple versions of the model
or slowing the process of making changes. Similarly, when the model grows,
the ubiquitous language becomes difficult to maintain, e.g. because of repeated
terminology with different meanings in different areas of the model. As an
example, in a banking application, the term "account" may be used to refer to
either a bank account owned by a customer or a user account, allowing a user to
access the services of the application.

To solve this, sub-domains are identified and bounded contexts are defined along
their boundary. Each bounded context uses a context map to explicitly define
the relationship between bounded contexts and how they may interact. Bounded
contexts may then be developed independently of each other, as long as the
context map is respected.

2.4 Domain-Driven Design (DDD) 17

2.4.1 Domain-Driven Design in Practice

Domain models are conceptual, identifying the domain concepts that are relevant
to problem-solving and their relationships. However, to be shared, the model
must be expressed in a physical format, e.g. as a visual model or description.
However, the end goal is to develop a system that expresses the domain model,
potentially supported by other formats as documentation, e.g. visual models or
textual descriptions.

DDD identifies several artifacts used to express the domain model in code,
notably entities as objects with an identity, immutable value objects as objects
identified by their attributes and aggregates as collections of objects bound by
one entity. Based on the artifacts of DDD, the domain layer is built, capturing
the concepts, relationships and rules of the domain model.

To avoid other systems having direct dependencies on the domain logic, an
application layer is defined, containing application services. This layer is used
to define the interactions that other systems may have with the system. As an
example, an application that wishes to login a user should not manually check
if the user exists and if the password is correct. Instead, an application service
should define an interaction for logging in a user, with the domain logic for
checking for user existence etc. being contained in the application service.

This leads to a layered architecture, nicknamed "onion architecture" (see Figure
2.2, where the domain layer is accessed by the application layer, which in turn
may then be accessed by outer layers, e.g. a web API for exposing the application
services.

The assertion that application services are used to expose the functionality
of a system and that a web API simply serves as a method of exposing the
application services is part of the motivation for this project. Instead of requiring
the developer to manually implement the web API to mirror the application
services, the application services could be "translated" into the web API.

2.4.2 Related Architectural- and Design Patterns

2.4.2.1 Model-Driven Engineering (MDE)

MDE is a software development methodology in which software development
is firstly considered to be the development of models. These models may be
expressed in multiple forms, e.g. using visual modelling languages, e.g. UML,
domain-specific languages or as executable code.

The rationale behind using this approach, rather than simply writing only the
executable code, is that models expressed using third-generation languages are
not as expressive as other model formats. Using domain-specific languages or

18 State of the Art

Domain
Layer

Application
Layer

Web Api
Pres

en
tat

ion

Inf
ras

tru
ctu

reTests

Figure 2.2: Onion architecture model.

visual model languages makes it easier to both understand and develop the
models [33].

Both MDE and DDD highlights the importance of using domain models, and
both considers the primary task of software development to be the development
of the domain model. However, MDE concerns itself less with how to create
good domain models, instead focusing on how to translate the model into other
formats, including executable code (for more on translation into executeable
code, see section 2.6.1.2).

2.4.2.2 Microservice Architecture (MSA)

MSA is a relatively new architectural pattern in which web applications are
built from small, autonomous services that are able to work together [25]. This
can be contrasted to monolithic services, where all services are provided by one
program.

In DDD, bounded contexts are used to "partition" the domain model into the
relevant areas with well-defined interactions between the contexts. Similarly,
applications in MSA are lightweight and responsible for tasks within a smaller
area and communicating with each other through interfaces without concerning
themselves with the internals of other services. Thus, DDD is useful for identifying
bounded contexts, which may then be translated into relevant microservices [31].

2.5 Developer Experience 19

2.5 Developer Experience
Developer Experience is a relatively novel concept inspired by the field of User
Experience. Fagerholm and Münch [13] proposed the definition of the field in the
article "Software Developers as Users: Developer Experience of a Cross-Platform
Integrated Development Environment" describing developer experience as "a
means for capturing how developers think and feel about their activities within
their working environments". Compared to software development methodologies,
which focuses on how to efficiently develop well-functioning software, developer
experience concerns itself with how to improve the experience of creating software.

The article divides the experiences of the developer into three categories, the
first one of which is named "development infrastructure", referring to tools,
technologies and methodologies used in software development. While existing
research has largely focused on tools used in the development process, e.g.
IDEs [20] and online collaboration environments, [27], the category also includes
the tools used the in software itself, e.g. libraries and frameworks.

This concept is considered relevant to the thesis because the thesis seeks to
develop a library that may affect how developer work with web applications.
Therefore, it is relevant to consider not only how the library affects developer
efficiency, but also how the library affects the developers’ feelings on web services
development.

2.6 Related Work
In a study by Tan et al. [43], the web service research community trends were
examined. Based on the findings, the authors suggested that future research
should be focused on pragmatic solutions that value practical approaches to
real-life problems, criticizing the use of formal methods to solve problems that
practitioners rarely encounter.

Several informal articles authored by industry practitioners share a similar
opinion, criticizing the output of research in software engineering for being either
too complex for common use, or solving problems that are largely irrelevant to
practitioners [21, 36, 48].

According to the study by Tan et al. [43], software engineering has largely been
shaped by industry practices, rather than academic research, and thus the state
of the art in this field is highly practical, intended to address the issues that
practitioners often face. Thus, the most commonly used solutions are pragmatic
and no more complex than necessary.

As a contrast to this study, B. Selic [35] argues that limiting research to practical
solution is detrimental to the field as a whole. B. Selic claims that software
engineering has suffered from conservatism in research, where practical solutions

20 State of the Art

for assisting in manual development of software is prioritized over automation of
the development process itself.

These articles, among others, have influenced the related work that was considered
most relevant to the thesis. The thesis is intended to fit into existing research,
exploring the area of code generation in web services. However, the solution
proposed in the thesis should also be practical and solve an actual real-life
problem.

For this reason, two types of related work will be presented:

• Academic research into approaches to code generation.

• Industry standard approaches of web services development.

2.6.1 Existing Research

2.6.1.1 Automatic Programming and Code Generation

Automatic programming refers to programming at a higher abstraction level to
generate code at a lower abstraction level [2]. Originally used in reference to the
use of compilers to translate higher-level languages into assembly code, the term
has over time come to refer to the general idea of programming at a higher level
than what is otherwise the norm.

In a modern context, the term may be used to describe methods for developing
software where part of or all of the code of a system is generated automatically
based on some high-level input, e.g. a model expressed in a human-readable
format.

While it is possible to implement a compiler that generates an executable program
directly from high-level input, it is more common to instead generate source
code for a high-level language and then using a compiler for this language to
generate the executable program [47].

Because high-level languages already provide abstraction over lower level lan-
guages, it can be argued that generating high-level code from even higher-level
input is superfluous. However, while high-level code may provide abstractions
of lower-level functions and computer architecture, it still requires the devel-
oper to concern themselves with how to achieve certain functionality, rather
than allowing them to focus on what functionality should be achieved. Using a
domain-specific language or visual modelling language to express a model and
translating it into code has been shown to provide several benefits of expressing
the model directly in high-level languages [32].

Firstly, generating the code allows code template to be used. By using the same
template for similar components and enforcing constraints in it, it can be ensured
that every component is implemented in the same way and satisfies the same

2.6 Related Work 21

constraints, providing standardization of the source code. However, this can
also be seen as a disadvantage, as requiring the same implementation to be used
everywhere reduces flexibility. If a template does not support a specific case, the
entire template must be modified rather than just that case.

Secondly, employing code generation may reduce the time to develop and mod-
ify systems, especially larger systems with often-repeated, similar sections of
code [32], colliqually referred to as "boilerplate code".

The approaches to automatic programming that are most relevant for this project
will be presented in the following sections.

2.6.1.2 Model-Driven Engineering (MDE)

As explained in section 2.4.2.1, MDE is a software development methodology
that focuses on the development of models and translation into other forms, e.g.
executable code.

According to B. Selic [35] in his article "The pragmatics of model-driven devel-
opment", also referenced in Section 2.6, different implementations of the same
model would ideally be translatable back-and-forth. As an example, a visual
model should be translatable into code, which should then be translatable back
into the same visual model. The translator that converts the visual model to
code may then be considered both a model transformer and code generator.

In the same article, B. Selic claims that this approach to software development
has gained little popularity, mainly due to a lack of tools for generating and
verifying code from models.

As this article is from 2003, it is interesting to investigate if this claim still
holds true today. In a study by Sebastián et al. [34], the prevalence of academic
papers investigating model-driven architecture (MDA) and code generation was
investigated. While not equivalent to model-driven engineering, MDA is closely
related to MDE, being based on the same concept of model transformation.

In this study, 2,145 MDA-related articles were identified, 50 of which also used
code generation. The paper concludes that MDA is still highly relevant, but
that most of these articles are related to transformation of models without
generation of code. MDA-based code generation is, however, still a researched
topic, especially in the fields of mobile- and web development.

This thesis does not concern itself with the transformation of models, instead
focusing on how to generate code for exposing the domain logic that expresses
the model. This domain logic, however, may be generated through transfor-
mation from a different model type. It may be interesting to investigate how
to incorporate the concepts of distributed systems development, notably the

22 State of the Art

exposure of domain logic through a web API, into the model transformation
concept of MDE.

2.6.1.3 Generative Programming

Generative Programming is an approach to automatic generation where programs
are assembled from a series of existing component and a high-level specification of
the desired functionality [9]. This can be contrasted to "one-of-a-kind" systems,
where a developer is responsible for the manual assembly of components to
develop the system.

For generative programming to be feasible, the following requirements must be
met:

• The components used must be suitable for automatic assembly by following
a standard architecture for generative programming [9].

• Some mapping from high-level requirements to required components must
exist [9].

Generative programming is interesting in relation to this thesis, as it could be
argued that it supports the thesis motivation. Generative programming does
not require that individual components are automatically generated, only that
they are developed for reuse and that the assembly of them to form the final
program should be automated.

It could be argued that a library for automatically generating a web API and
associated client library could be considered a component for use in the "assembly"
of a client-server system. Rather than manually writing the endpoints for a web
application server and the methods for requesting the services, this component
could be "plugged in" to automatically provide this functionality.

2.6.2 Industry and Open Source Projects
As mentioned in Section 2.6, the field of web services development may be
characterised as pragmatic with a high demand for solutions that address issues
commonly faced by developers. Several industry standards and open source
projects for addressing these problems exist, and will therefore be presented
here.

2.6.2.1 API Client Libraries

Commonly published by organisations that benefit from a rich ecosystem of
third-party clients, API client libraries are libraries published by web service
providers that can be imported and used in client applications. Examples of
organisations that offer API client libraries include Google[23], Slack[37] and
Discord[10].

2.6 Related Work 23

By providing an API client library, the provider of the associated web services
can simplify the development of client applications requesting these services.
Using the libraries, developers can treat the web API endpoints as method calls,
rather than having to set up the network calls.

However, providing the API client libraries requires them to be developed and
maintained for each language that is to be supported. This disadvantage can be
mitigated by automatically generating the API client library to mirror the Web
API, requiring only a template to be developed.

Ideally, client libraries abstract the network-based nature of Web APIs, instead
emulating making a method call to receive some resource. However, distributed
systems are inherently different from local programs[46], and thus it is necessary
to consider several potential abstraction leaks:

• Latency: Network requests are inherently slower than method calls due to
the multiple devices involved and the greater distance travelled. As a result,
method calls with network requests will most commonly be asynchronous,
allowing the application to work on other tasks while waiting for the
response.

• Network Failure: Network requests may fail, and thus method calls with
network requests must be prepared to handle requests that time out.

• Server Exceptions: In some cases, the server may not accept the request,
e.g. because it is not authenticated as required or because the parameters
provided are invalid. In these cases, the client application must be prepared
to handle an unexpectedly refused request.

As a result of these consequences, API client libraries are limited to providing
methods that "wrap" the network request, potentially providing features such as
static checking to catch illegal parameters at compile time or at run-time before
the request is made. However, callers of these methods must still compensate
for the potential issues mentioned above.

2.6.2.2 Specification Based API Tools

Specification-based approaches to generation of API client libraries is popular
in web services development. In this approach, a specification of the web API
is written and used to automatically generate related resources. These include
API client libraries, documentation of the web API describing the available
services, and web API code stubs. Examples of these tools are the OpenAPI
Generator[26], Swagger Codegen[38] and NSwag [42].

The approach encouraged by these tools differ from that explored in this thesis
in that the specification is actually independent of the actual web API, and thus
the two must be maintained to remain consistent. The web API specification

24 State of the Art

specifies what services should be published and how, but the task remains to
ensure that the web API remains consistent with the specification. Moreover,
the task of developing the web API and linking it to the underlying server logic
is also left to the developer.

A variation of this approach is to generate the specification from the web API, [16].
This ensures that the specification remains consistent with the web API, but still
doesn’t solve the problem of linking the web API to the underlying server logic.

By comparison, this thesis seeks to explore an approach that maintains a single
source of truth, i.e. the server logic. While this provides less control of how the
service logic is published, it also ensures that the web API is always consistent
with the underlying server logic.

For a comparison between the different approaches, see Figure 2.3.

2.6 Related Work 25

Application Service-based

Specification-basedWithout tools

Generates

OpenAPI
Specification

API Client Library

Uses

Client Logic

Exposed by

Server Logic

Provides
Services

Web API

Generates

Exposed by Generates

Server Logic

Provides
ServicesWeb API API Client Library

Uses

Client Logic

Client Logic

Exposed by

Server Logic

Provides
Services

Web API

Web API-based

Generates

OpenAPI
Specification

API Client Library

Uses

Client Logic

Exposed by

Server Logic

Generates

Provides
Services

Web API

Figure 2.3: Comparison between different approaches to web services devel-
opment. A dotted line indicates that the two artifacts are loosely
coupled, yet must be kept consistent. Color groups indicate that
all artifacts are generated from one source.

26 State of the Art

Chapter 3

System Design

In this chapter, the design for a library that solves the problem statement of
the thesis is proposed. Firstly, an analysis of the requirements for the library is
presented. Secondly, a design based on the identified requirements is presented.

3.1 Requirements Analysis
The purpose of this section is to identify the required functionality of the library
in order to satisfy the problem statement. This will be done in three steps:

• Identify design constraints.

• Identify artifacts to generate.

• Identify the functionality that these artifacts must have.

In addition to identifying required functionality, non-essential functionality will
also be discussed, with a justification for why this functionality was not included
in the design.

3.1.1 Design Constraints
3.1.1.1 Assumptions

For the design, three assumptions for the systems using the library will be made.

Firstly, it is assumed that the server runs a web application using a HTTP server
engine to handle incoming requests, and that these requests can then be routed
to the code block or method responsible for handling it. This is the case for most
web application frameworks, though the form in which it is implemented varies.

28 System Design

In such a web application, it is also assumed that requests may be routed through
multiple code blocks in a pipeline-like manner. As an example, a request may
first be intercepted by a code block for logging the request, then a code block
for authenticating the request before the code block responsible for routing the
request is executed.

Examples of web applications that support this behaviour are Ktor, which refers
to the concept as "installing features into the application pipeline" [41], and
ASP.NET, which refers to the concept as "installing middleware into the app
pipeline" [1].

These assumptions are important because it allows functionality to be installed
in multiple places, rather than requiring all functionality to be installed in one
code block.

Secondly, it is assumed that the client application makes requests to the server
using a configurable HTTP client which, in the same manner as with the server,
can route outgoing requests or incoming responses through multiple code blocks.
As before, this assumption allows the functionality to be installed in multiple
places. Notably, the client application may want to set specific HTTP request
headers which can be configured for the HTTP client itself rather than for each
request.

Examples of HTTP clients that support this behaviour are the Ktor Http-
Client [39] and the .NET HttpClient [7].

3.1.1.2 Configurable Functionality and Endpoint Functionality

One of the constraints of generated code is that the implementation is constrained
to that defined in the template. If a template is modified to add some functionality,
it will be applied to all instances of generated code. If this functionality is only
required in some cases, the code generation must be configurable to allow
adjustment of what code should and should not be generated.

Instead of modifying the template as necessary, it is desirable to instead let as
much functionality as possible be installed through configuration of the web
application or HTTP client, especially if the functionality is required for every
instance of generated code in the same manner. Thus, functionality should only
be present in the template if it is absolutely necessary and cannot be implemented
through configuration.

3.1.2 Artifacts

3.1.2.1 Web API Endpoints

The web API endpoints are used for exposing the application services. Each
endpoint, which in this context is to be understood as a single method or code

3.1 Requirements Analysis 29

block that is executed when a request to the associated URL is made, is associated
with the method of an application service.

The content of the endpoints should, at a minimum, consist of a method call of
the associated method. This, in turn, requires a reference to an instance of the
application service containing the method. The project integrating the library
is therefore responsible for ensuring that the endpoints have a reference to the
application services to be used in the endpoints.

The intention of generating the endpoints is that developers should only have to
concern themselves with how the domain logic is exposed through the application
services, not how the application services are exposed through a web API. Once
the application services have been defined and annotated, the web API should
be automatically generated to always match the application service.

It could be argued that the owner of the system publishing their application
services may want control over the methods that are published by the API, e.g.
by allowing only certain methods to be published. However, as the intention of
application services is to serve as the system interface, requiring only certain
methods to be exposed indicates that the application service should instead be
modified.

3.1.2.2 API Client Library

With the web API generated, client applications will be able to make requests
to the server, given that they know the request format.

However, this requires developers to manually write and maintain the methods
for making requests to each endpoint. Instead, these methods may be generated,
too. Given that the structure of the endpoints and the application services are
known beforehand, generating methods for making network requests to each
endpoint is relatively simple.

Similarly to how an endpoint is generated for each method in the application
service, the API client library should contain a method for each endpoint /
application service method. Each method should, at a minimum, make a request
to the server and parse the response.

Because the generated methods have the same function signature as the applica-
tion service used for the generation, static typing will be available to ensure that
the parameters passed and result returned is the same as in the web application.

It is worth noting that the URL of the server hosting the web API is not known
at compile-time. Therefore, this must either be configured as the base URL
in the HTTP client or passed as a parameter to be prepended to the URL at
runtime.

30 System Design

3.1.2.3 Documentation

In a specification-based approach to web API generation, it is common to also
generate documentation for the web API. This may provide a human-readable
description of the web API and instructions on how to use it, assisting developers
of applications that consume the Web API.

However, the intention of this library is that the web API and API client library
should reflect the application services. Thus, documentation of the application
services should be sufficient documentation of the web API and API client library
as well.

3.1.2.4 Server Engine / Client

During the design process, it was considered to expand on the project scope from
simply generating the endpoints and API client libraries to generating everything
necessary to facilitate communication between the server and client.

The assumption behind this idea was that some developers would be interested
in only having to write domain logic and letting the library configure everything
related to networking, i.e. starting and configuring a web application engine for
the server as well as a HTTP client for the client.

However, this was ultimately excluded from the project based on the following
arguments:

• Modifying the web application configuration is an infrequent task as it is
less susceptible to changes.

• The application server configuration is defined once only, making it ill-suited
for code generation, which is instead more suited for similar, repetitious
code.

• The configuration of the server may vary greatly, making it an ill-suited
task for a library that does not know of the individual project needs.

3.1.3 Generated Code Functionality

As mentioned in section 3.1.1.2, the functionality in the generated code should
be as minimal as possible to avoid cluttering the template with functionality
which is only occasionally required.

The functionality discussed in this section was identified as either being required
for the web API / API client library to function or as a notable optional feature
that cannot be installed through configuration of the web application or HTTP
client.

3.1 Requirements Analysis 31

3.1.3.1 Routing

In this context, routing will be used to refer to the actions to take when a request
to a specific URL is received by the server.

This functionality is the core functionality that the library seeks to offer, as
it provides a mapping between the URL of requests to the methods of the
application services of the system.

This functionality may be implemented by generating a method or code block
to execute when a request to a given URL is received. Inside the method, the
relevant underlying server methods are called and a response is returned.

Similarly, a corresponding client method should be created for each endpoint,
containing the code for sending a request to the corresponding endpoint and
parsing the response.

This functionality must be generated as the content depends on the method to
call.

3.1.3.2 Serialization

In order to send parameters with the request, it is necessary to serialize them.
Similarly, when receiving the request, it is necessary to deserialize the request
parameters. Thus, some serialization logic must be in place in the generated
code, instructing what object to serialize to and from.

The serializer in the endpoints and client methods does not necessarily need to
contain the logic on how to serialize the object. Instead, this can be defined
in a type-specific, format-specific serializer. Thus, the serialization logic in the
generated code can be minimal, simply containing instructions on what objects
to serialize from and to, not how to do so.

3.1.4 Configurable Functionality

The functionality in this section, while potentially important for the system, was
considered unsuitable to be included in the generated code, and should instead
configured in the web application.

3.1.4.1 Encryption / HTTPS

For HTTP, encryption may be implemented by using the HTTPS protocol.
Doing so requires having a SSL certificate, which identifies the server, and for
the application knowing the location of it. Furthermore, it can be argued that
HTTPS will typically be enabled for the entire application, not only for parts
of it, supporting the argument that including encryption functionality is the
endpoints is unsuitable.

32 System Design

3.1.4.2 Exception Handling

In a local system, exceptions may be handled by propagating them through the
call stack until it reaches a block of code suitable for handling it. As an example,
an exception thrown due to invalid user input may be propagated until it reaches
the presentation layer, where the user may be warned of the error.

Distributed applications provide a challenge in exception handling as the excep-
tions cannot inherently be propagated between components. It could also be
argued that doing so is not suitable, as the execution flow of the components
should be independent. Instead, the exception must be translated into a response
that informs the client of the error that occurred and how to act on it. In web
services, the web application can be configured to catch exceptions and use a
mapping to determine the status code to return.

For this library, two options for handling exceptions were considered. The first
is to simply allow the developer to configure exception handling as described
above. The second option was to serialize the exception thrown by the server,
sending it in the response, deserializing it again in the client and throwing it. If
the client and server are implemented in the same language, this would allow
the exception to essentially be propagated from the server to the client.

However, it could be argued that in most cases, the exception is not relevant
to the client. The client does not need to know how the server failed, only how
it should act next. Moreover, providing exceptions to the client may not be
desired, e.g. if the exception contains details that should not be leaked to the
client. Finally, the client may not be able to parse the exception, e.g. if it runs
on a different platform. Based on these arguments, the first approach was chosen
instead.

3.1.4.3 Caching

Caching allows responses to be stored in a cache, allowing them to be reused.
This may be implemented in the server, e.g. by storing the response for certain
requests in a cache, avoiding having to recompute them, or in the client, e.g. by
storing the received response for a request, avoiding having to resend it.

Caching is commonly implemented using a dictionary-like cache structure with
additional rules to limit memory use and ensure freshness of data, e.g. expiration
or prioritization based on the frequency of requests. Because caching can be
implemented in this manner, it is not necessary, nor suitable, to implement
caching in each endpoint or client method.

3.1.4.4 Logging

Logging allows monitoring of the operation of the system. This is most commonly
implemented in the web application configuration, and is therefore not considered

3.2 Proposed Design 33

relevant for the library.

3.2 Proposed Design

From the requirements identified in section 3.1, a design was made for a library
for automatically generating the endpoints and API client libraries. The library
has the following functionality:

• Generation of server endpoints for exposing application services.

• Generation of an API client library for making requests to the aforemen-
tioned endpoints.

The library is used by annotating application services to indicate that they should
have artifacts generated for them and including the library in the compilation
process.

During building of the web application, an annotation processor is used to find
all classes "tagged" for artifact generation. Introspection of the classes is used to
generate type specifications of the application services. These type specifications
are in turn used for generating the artifacts, which are finally compiled. For an
overview of this process, see Figure 3.1.

Application Service
Definition

Compiled from
Web API Source

Code

Compiled from
API Client Library

Source Code

Compiled from

Transfer Object
Source Code

Generated from
annotation processing

Extends
Application Service

Implementation

References

Compiled Web API

Compiled API Client
Library References

Client Application

References

References

Web Application

Compiled Transfer
Objects

Transfer Object
Source Code

Provides
Services

Figure 3.1: Graph showing the generated artifacts and their use in a project.

The generated server endpoint classes are built with the following structure:

• For each application service, build a class for hosting the endpoints, the
constructor of which takes the application service as a parameter.

34 System Design

• For each method:

– Await request at addresses specific to the corresponding methods of
the endpoint.

– If the method has been annotated to require authentication, attempt
to authenticate the request.

– Deserialize the function parameters in the request, if any.

– Call the method corresponding to the endpoint using the provided
application service.

– Serialize the method return value, if any, and send a response to the
client.

The API client library is constructed in the following:

• For each application service, build a class for hosting the client methods,
taking a base URL as a parameter.

• For each method:

– Create a method with the same signature as the application service
method.

– In the method, serialize the parameters, if any, and make a request at
the address specific to that method appended to the base URL.

– Await the response.

– Deserialize the response.

– Return the result, if any.

Any additional functionality required on the server’s end, e.g. caching or logging,
must be implemented by installing it in the web application pipeline. Similarly,
additional functionality required by the client must be implemented by configuring
the HTTP client.

Chapter 4

Implementation

In this chapter, a proof-of-concept implementation of the proposed code genera-
tion library, nicknamed "Kodegen", will be presented.

Firstly, an overview of the implementation is given. Because the implementation
will mostly reflect the proposed design, the overall implementation will not be
explained in-depth; instead, the overall structure of the project is presented.

Secondly, the third-party frameworks and libraries that were used for the project
will be presented and their inclusion justified.

Thirdly, an introduction on how to use the library, including examples of use, is
given.

The source code for the proof-of-concept implementation is publicly available on
Github [4].

4.1 Overview

The proof-of-concept implementation functions through annotation processing.
Annotations, which serve as a way of adding metadata to elements in Java and
Kotlin, may be added to application service types, indicating that they should
have code generated for them (See Figure 4.1 for an example). An annotation
processing tool may then be used to scan for any type with specific annotations
and use the type signature to generate code.

The logic for code generation is contained in the KodegenProcessor class. This
processor extends AbstractProcessor, a base Java class with methods that
facilitate annotation processing. Thus, the Kodegen

36 Implementation

Processor serves as the entry point for code generation. Moreover, two anno-
tation classes are defined: ApplicationService, to mark types which should
have code generated for it, and RequireAuthentication, to mark methods
that should require authentication.

On compilation, an annotation processing tool is used to provide the Kodegen-
Processor information on all types annotated with ApplicationService and
all methods annotated with the RequiresAuthentication annotations.

For each ApplicationService type, a function responsible for generating the
relevant artifact is called: generateServerEndpoints, generateClientMeth-
ods and generateTransferObjects.

Each of these functions uses a DSL-based template to generate a file specification
(see Section 4.2.4 for details), combined with inspection of type information to
fill out the specification. This results in a file being generated for each artifact
per annotated application service. These artifacts can then be used directly in
compilation of the project or distributed and imported in other projects.

The library uses third-party libraries for the generated artifacts, which must
therefore also be available in any other project using the library. For this reason,
the library uses transitive dependencies for the relevant third-party libraries.
While it is preferable to avoid doing so, not making the dependencies transitive
will cause issues while generating code, as the library will then attempt to use
libraries that are not available.

While the library can be used in any project setup that supports annotation
processing, it is highly recommended to use it in a Maven or Gradle project.
Firstly, this allows the annotation processing task to be declared a dependency
of a project, ensuring that code can be generated before any other code with
dependencies on the generated code is compiled. Secondly, it allows for automatic
resolving of the dependencies used by the library.

4.2 Technologies Used

In this section, the technologies used in the project, e.g. programming languages
and third-party libraries, will be presented and their use justified. This will be
done by explaining what feature is provided by the library and comparing it to
potential alternatives.

4.2.1 Programming Language - Kotlin

For this project, Kotlin was decided as the programming language for the
implementation of the project. This decision was made based on the following
points:

4.2 Technologies Used 37

• Kotlin offers experimental multiplatform compilation, which allows Kotlin
code to compile into Java bytecode, JavaScript or native code. This
makes Kotlin highly relevant for projects that are expected to run on
several platforms, e.g. client-server applications where the client may be a
website (JavaScript), a mobile application (JVM / native) or a desktop
application (native). As explained in Section 1.1, one of the main problems
associated with API client libraries is the need to maintain them for
multiple languages. However, with multiplatform support, the API client
library could be developed just once in Kotlin and then used in other
projects, regardless of the platform.

• Kotlin is interoperable with Java code, allowing Java libraries to be used for
Kotlin projects. Java, in turn, has rich support for annotation processing,
which is therefore also available to Kotlin.

4.2.2 Annotation Processing - Kapt, Java Annotation Pro-
cessing & Java Language Modelling

Annotation processing in Kotlin is supported using the "Kapt" plugin. Kapt
generates the environment for annotation processing, essentially serving as an
entry point for annotation processors by granting them access to the source code.

Kapt supports annotation processors implemented using Java Annotation Pro-
cessing, located in javax.annotation.processing. By implementing a class
inheriting from AbstractProcessor, the processing environment is made avail-
able, allowing inspection of files by scanning for annotations.

Because the annotation processor inherits from AbstractProcessor, the type
introspection provided by the processing environment is also provided using the
interfaces of the javax.lang.model package, which is used for modelling the
Java language.

However, this is a source for problems in Kotlin projects. Prior to annotation
processing, Kapt will generate code stubs to use for introspection. However,
these code stubs are generated as Java files, and thus Kotlin types are also
converted to Java types, e.g. kotlin.String to java.lang.String. This will
cause the annotation processor to generate code using Java types instead of
Kotlin types, leading to incorrect code.

To circumvent this problem, the annotation processor also uses the KotlinPoet
Metadata API [17] to inspect the metadata provided for each class along with
the code stub. Kotlin types are preserved in this metadata, allowing for the
generated code to use the correct types.

38 Implementation

4.2.3 Web Application Framework - Ktor

The web application framework is responsible for providing essential web applica-
tion functionality, notably routing based on the URL of the request. While this is
achievable without a framework, doing so would require manually implementing
this functionality, which is not suitable for a proof-of-concept project. Thus, an
existing framework was used. Two application frameworks were considered:

• Spring Framework [45], a mature Java framework.

• Ktor [40], a more recent Kotlin framework.

For this project, Ktor was chosen. This choice was made with the following
supporting reasons:

• Ktor is less complex, making it more suited for a proof-of-concept.

• Ktor is a Kotlin framework, supporting several Kotlin features such as
multiplatform compilation and Kotlin coroutines.

• The Ktor lifecycle is built on the concept of pipelines, and therefore
supports the assumptions of the library design (see Section 3.1.1.1.

The cost of using a web application framework is that the generated endpoints are
specific to that framework only, and thus the proof-of-concept library essentially
serves as a plugin for Ktor, providing additional functionality.

4.2.4 Code Generation - KotlinPoet

For code generation, two options were considered:

• Use a control flow-based to generate a string with the content of the code
to generate.

• Use a DSL-based template for writing files.

The approach chosen is mostly relevant for further development and maintenance
of the library, as the generated output will be the same regardless of the approach
chosen. For this reason, a library offering a domain-specific language for code
generation was chosen, KotlinPoet. Compared to a template engine, this allows
fast changes to the code generator, while still being more structured than using
a string-based approach, increasing maintainability.

4.3 Integration with Other Projects

The library is intended to be used with Gradle, allowing reflection and code
generation during compilation of the project using the library. Using the library
in this manner requires four actions:

4.3 Integration with Other Projects 39

• Add the Kodegen library as a dependency using the implementation
configuration. This makes the contents of the Kodegen library available to
the project, including the ApplicationService and RequireAuthenti-
cation annotations and the dependencies used in the generated code.

• Add the Kodegen library as a dependency using the kapt configuration.
This causes Kapt to be executed using the KodegenProcessor on project
build. Note that the Kapt plugin must also be enabled for the project.

• Annotate the services and methods to generate code for using Applica-
tionService and RequireAuthentication. This is used by the Kode-
genProcessor to find the types to generate code for.

• Install the ContentNegotiation feature in the Ktor web application
and a corresponding serialization feature in the Ktor HTTP client, e.g.
JsonFeature if using JSON. This is used to ensure that transfer objects
can be serialized and deserialized.

Thus, a project using the library will add the following to their build.gradle
file:

//..
dependencies {

//..
implementation "dk.cachet:kodegen:1.0.0"
kapt "dk.cachet:kodegen:1.0.0"
//..

}
//..

And annotate the service to generate the endpoints in the following manner:

@ApplicationService
interface SampleService() {

@RequireAuthentication
fun authenticatedMethod() {

// ...
}

}

This results in the following code being generated:

• A Ktor module with endpoints for each method.

• An API client library class containing client methods for each endpoint.

• Transport objects wrapping method parameters and return values. These
objects are simply used for convenience as they simplify the template of
the endpoints.

40 Implementation

Serialization is currently restricted to the formats available in the Kotlin serial-
ization library, i.e. JSON, CBOR and Protobuf. However, Ktor only provides
built-in support for JSON serialization in both the web application and HTTP
client. Therefore, using other formats also requires a related handler for that
format to be implemented for both the web application and HTTP client.

To use the built-in JSON serialization in the server web application, Content-
Negotiation should be installed into the application pipeline with a JSON
serializer:

fun Application.configurationModule() {
install(ContentNegotiation) {

json(anyJsonConfiguration, anySerialModule)
}

}

Similarly, in the HTTP client, JsonFeature should be installed, providing a
JSON handler as a parameter:

HttpClient() {
install(JsonFeature) {
serializer = KotlinxSerializer(json)

}
}

4.3.1 Usage of Generated Code
4.3.1.1 Ktor Modules

To use the Ktor modules, they must be imported into a Ktor application engine
environment. This is possible either by adding their qualified names to a Ktor
configuration file or by importing them in an application environment (for an
example, see Figure 4.3).

As each module corresponds to an application service, the constructor of which
may take one or multiple parameters, it is recommended to use the second
approach. This allows the application services to be instantiated elsewhere and
passed into the modules.

Once the modules have been imported into the application engine environment,
a server engine must be started using the environment. An example of this is
available in Figure 4.2.

4.3.1.2 API Client Library

For each application service, a class with client methods corresponding to each
method is constructed. The class takes the following parameters:

4.4 Example of Generated Code 41

• A Ktor HttpClient. While a default HttpClient can be used, it is rec-
ommended that the client is configured to add relevant headers to each
request, e.g. authentication or caching.

• A string with the base URL of the server to make the requests to, e.g.
"http://localhost:80".

Once the client has been created, it can be used as if accessing the application
service directly by calling the functions of the service. However, exception
handling and concurrency must still be handled outside the function call. An
example is available in Figure 4.4.

4.4 Example of Generated Code
The following section contains an example of a simple application service, Date-
Service, and the code generated when annotated with ApplicationService.

@ApplicationService
interface DateService {
suspend fun getDate(): Date

suspend fun getOffsetDate(offset: Int): Date

@RequireAuthentication
suspend fun setDate(newDate: Date)

}

Figure 4.1: The "DateService" interface used for the examples in Figures 4.2,
4.3, 4.4 and 4.5

"http://localhost:80"

42 Implementation

Application.DateServiceModule(
service: DateService,
varargs authSchemes: String) {
routing {

post("/kodegenApi/dateService/getDate") {
val result = service.getDate()
call.respond(DateServiceGetDateResponse(result = result))

}
post("/kodegenApi/dateService/getOffsetDate") {

val request = call.receive<DateServiceGetOffsetDateRequest>()
val offset = request.offset
val result = service.getOffsetDate(offset)
call.respond(DateServiceGetOffsetDateResponse(result = result))

}
authenticate(*authSchemes) {

post("kodegenApi/dateService/setDate") {
val request = call.receive<DateServiceSetDateRequest>()
val date = request.date
val result = service.setDate(date)
call.respond(HttpStatusCode.OK)

}
}

}
}

Figure 4.2: Generated Ktor module for the "DateService" interface

//..
val dateService: DateService = DateServiceImplementation()
val environment = applicationEngineEnvironment {

module {
DateServiceModule(dateService, "basicAuthentication")
// ..other modules

}
// ..other environment variables

}

val server = embeddedEngine(engine, environment)
server.start(wait = true)

Figure 4.3: Example of a Ktor project that uses a (here unspecified) HTTP
engine and imports the module shown in Figure 4.2

4.4 Example of Generated Code 43

class Date ServiceClient(
val client: HttpClient,
val baseUrl: String) {

suspend fun getDate(): Date {
val response = client.post<Date> {
url("$baseUrl/kodegenApi/dateService/getDate")

}
return response.result

}

suspend fun getOffsetDate(offset: Int): Date {
val messageBody = DateServiceGetOffsetDateRequest(offset = offset)
val response = client.post<Date> {
url("$baseUrl/kodegenApi/dateService/getOffsetDate")
contentType(ContentType.Application.Json)
body = messageBody

}
return response.result

}

suspend fun getOffsetDate(newDate: Date) {
val messageBody = DateServiceSetDateRequest(newDate = newDate)
val response = client.post<Unit> {
url("$baseUrl/kodegenApi/dateService/setDate")
contentType(ContentType.Application.Json)
body = messageBody

}
return

}

}

Figure 4.4: Generated client service invoker for the "DateService" interface

44 Implementation

@Serializable
data class DateServiceGetDateResponse(

val result: Date
)

@Serializable
data class DateServiceGetOffsetDateRequest(

val offset: Int
)

@Serializable
data class DateServiceGetOffsetDateResponse(

val result: Date
)

@Serializable
data class DateServiceSetDateRequest(

val newDate: Date
)

Figure 4.5: Generated transfer objects for the "DateService" interface

Chapter 5

Evaluation

The purpose of this chapter is to present the methods used to measure the
effectiveness of the library.

Firstly, the success metrics for the evaluation are identified. Secondly, the
evaluation methods used and their results are presented. Finally, the evaluation
results are presented.

The evaluation methodology used in this thesis is largely based on the eval-
uation framework presented by Gediga et al. [15] in "Evaluation of Software
Systems". Moreover, the interview questions were partially based on the concept
of "Developer Experience" as introduced by Fagerholm and Münch [13].

5.1 Evaluation Metrics

As mentioned in Section 1.1, the goals for the thesis were to eliminate redundant
code, reduce complexity and ensure consistent use of application services. This,
in turn, is expected to increase developer efficiency.

The metrics used to evaluate the library should reflect these goals as well as
possible. However, it is difficult to measure developer efficiency and experience,
and doing so generally requires empirical data from development teams.

As an example, a commonly used metric in iterative development is "lead time",
indicating the time from a product request to the delivery. While it would be
interesting to compare how the lead time of a team is affected when using the
library compared to without it, doing so is outside of the scope of this thesis.

Instead, metrics for which data can be made immediately available must be used.

46 Evaluation

Therefore, the following metrics were considered the most relevant:

• Reduction in Source Lines of Code as an indicator of reduced complexity

• Build time as a secondary metric to evaluate if the library negatively
developer efficiency by excessively increasing build times.

Furthermore, it was decided that while conducting an experiment to determine
developer efficiency was not feasible, a viable alternative would be to conduct
interviews with developers to receive feedback on the experience of using the
library.

5.1.1 Source Lines of Code (SLOC)

SLOC is intended to be a measurement of the size of an application, carried
out by counting the total number of lines of code in the application source code.
The determined size can then be used in deriving related metrics, e.g. the work
required to maintain or extend the application.

Using SLOC to derive other metrics is controversial for multiple reason:

• The lines of code does not necessarily correlate with the amount of func-
tionality offered by an application. This is especially true when comparing
software written using different programming paradigms, e.g. imperative
and declarative programming, or programming languages.

• The amount of lines of code varies greatly depending on the code layout,
e.g. by using a ternary conditional expression on a single line instead of a
traditional "if/else" conditional expression over multiple lines.

However, SLOC is somewhat effective in indicating the change in size or com-
plexity from increasing or decreasing the number of lines of code. Thus, while
not as useful in comparing different projects, it can be used in comparing the
size of project to itself.

For this project, SLOC is most relevant in relation to the effort required to
develop and maintain an application. For the evaluation, it will be assumed
that a higher count of source lines of code also results in a higher effort to
develop and maintain software, and thus reducing the amount of lines of code by
automatically generating them instead decreases this required effort.

5.1.2 Build Time

While build time does not relate directly to the problem statement of the thesis,
it is still relevant to measure, as excessive build times may decrease developer
efficiency, which is to be avoided.

5.2 Test Environment 47

Because the library adds additional steps to the compilation process, notably
annotation processing and writing of new files, the additional build time may
be significant, and thus it was deemed worthwhile to investigate how big of an
impact the library has on build times.

It should be noted that the library is based on the use of Gradle, which allows
incremental builds. Ideally, the build time should be unaffected when the code
has already been generated and the source from which it is derived has not been
modified.

5.1.3 Developer Experience

As mentioned in Section 1.1, part of the motivation of the thesis was to eliminate
certain unnecessary developer tasks in development of web applications, which
may affect both developer efficiency and the developer experience. Thus, it is
relevant to evaluate the library not only on objective software metrics, but also
by making qualitative measurements of the actual developer experience when
using the library.

The goal of using this metric is firstly to determine if the library actually helps
developers by reducing the amount of work necessary, and secondly to determine
if developers are accepting of how this is achieved.

5.2 Test Environment

For all of the tests, a sample project was used. This sample project consist of a
simple Ktor web application and an associated client application for requesting
the services of the web application. The intention of this project structure is to
reproduce a client-server web application environment that developers of this
type of software would normally use.

The project structure is as follows:

• kodegen-study-client: Client application with a dependency on kodegen-
study-core.

– ClientApplication: Simple application that uses the automatically
generated library from kodegen-study-core and a pre-configured URL
to make requests to an application running kodegen-study-server.

• kodegen-study-core: Library containing code shared by the client and
server.

– application: Contains a singe application service definition.

– domain: Contains domain logic used by the application service.

48 Evaluation

– infrastructure: Contains serialization modules and other code nec-
essary to facilitate correct operation.

• kodegen-study-server: Server application with a dependency on kodegen-
study-core.

– ServiceImplementation: Implements the application service defi-
nition found in kodegen-study-core.

– ServerApplication: Ktor web application that uses the generated
endpoints from kodegen-study-core to expose ServiceImplementation.

5.3 Test Methodology

5.3.1 Source Lines of Code
To determine the reduction in SLOC, it is assumed that the generated code uses
the same number of lines as would otherwise be written manually. Thus, the
number of lines generated can be used to determine the reduction in SLOC.

The lines of code are counted as the number of logical lines for each client method,
starting at the function declaration and ending at return statement, and for each
API endpoint, starting at the initial routing or authentication statement
and ending at the response statement.

Because the lines of code in both the client methods and endpoint is dependent
on the number of parameters of the function and whether it returns a value, an
assumption will be made that a function takes no more than five parameters.
The reduction in SLOC will then be given as a range, rather than a single value,
with the lower bound representing a function with no parameters or return value,
and the upper bound representing a function with five parameters and a return
value.

5.3.2 Build Time
To determine the change in build time when using the library, the study project
is built in several configurations. During each build, a timer is used to measure
the time taken for the build tasks, which are then added to get the total build
time. The builds are made using Gradle with the -no-daemon argument to
ensure that each build time is independent of previous builds.

The study project is built with the following configurations:

• Clean build with manually written code.

• Clean build with generated code.

• Rebuild with manually written code.

5.4 Results 49

• Rebuild with generated code and incremental processing disabled.

• Rebuild with generated code and incremental processing enabled.

• Rebuild but with generated code deleted.

• Rebuild after modifying the manually implemented API

• Rebuild after modifying the interface from which code is generated.

The intention of these build configurations is to give an overview of the increase
in compilation time that can be expected from generating code.

These tests are run again for a larger project where code must be generated for
20 application services. The intention of doing so is to see how the compilation
time increases with project size when the library is used.

Note that this version of the project is not included in the source code, but was
instead constructed by copying and renaming the existing application service
and its implementation until 20 copies existed.

5.4 Results

5.4.1 Source Lines of Code

For each client method, the following lines are generated:

• Method signature.

• (If the function takes at least one parameter) A declaration of the message
body.

• Network request

– URL assignment.

– (If the function takes at least one parameter) Content type assignment.

– (If the function takes at least one parameter) Request body assign-
ment.

• Return statement.

Thus, when the method takes no parameters and has no return value, 4 lines of
code are generated. When the method takes at least one parameter and returns
a value, 7 lines of code are generated.

For each endpoint, the following lines are generated:

• (If the function is annotated with RequireAuthentication) Authentica-
tion configuration.

50 Evaluation

• Routing configuration.

• Request reception method call.

• (For each method parameter) Parameter assignment.

• Service method call.

• Response method call.

Thus, when the method takes no parameters and has no return value, 4 lines
of code are generated. When the method takes five parameters and requires
authentication, 10 lines of code are generated.

Therefore, for each method declared in an application service, between 8 and
17 logical lines of code are generated. Therefore, the reduction in SLOC is 8
to 17 logical lines times the number of methods across all application services
annotated with ApplicationService.

5.4.2 Build Time
The results of the tests on build time can be seen in Table 5.1 and 5.2. Each
result is the average value of 3 tests.

5.4 Results 51

Test Build time
in millisec-
onds

Difference
from Test
#1

#1: Clean build without code genera-
tion

10935 0%

#2: Clean build with code generation 15219 39.2%
#3: Rebuild without code generation 2001 -81.7%
#4: Rebuild with code generation and
incremental processing disabled

7753 -29%

#5: Rebuild with code generation and
incremental processing enabled

2144 -80.3%

#6: Rebuild with generated code
deleted

6741 -38.4%

#7: Rebuild after modifying the web
API, API client library, the associated
application service and its implementa-
tion

8207 -24.9%

#8: Rebuild after modifying the inter-
face from which code is generated and
implementations of the interface

12443 13.8%

Table 5.1: Results from the build time tests with one application service con-
taining 4 methods.

Test Build time
in millisec-
onds

Difference
from Test
#1

#1: Clean build without code genera-
tion

25519 0%

#2: Clean build with code generation 38112 49.35%
#3: Rebuild without code generation 1974 -92.25%
#4: Rebuild with code generation and
incremental processing disabled

5686 -77.72%

#5: Rebuild with code generation and
incremental processing enabled

2036 -92.02%

#6: Rebuild with generated code
deleted

7133 -72.05%

Table 5.2: Results from the build time tests with 20 application services con-
taining a total of 80 methods.

52 Evaluation

5.5 Developer Interviews
For evaluating the developer experience of using the library, semi-structured
interviews were deemed the most viable method.

While surveys and questionnaires allow a higher amount of participants, the
information they offer is less suited for this type of evaluation. Firstly, the answers
may lean more towards a quantitative evaluation, e.g. by asking participants to
rate the experience of using the library and then making a statistical analysis on
the results.

Secondly, the participants are not expected to be familiar with the technolo-
gies used in the project, notably Kotlin and Ktor, nor the design paradigms
encouraged, notably domain-driven design. Thus, the participants may require
some introduction to the project context before the evaluation, which makes
one-on-one interviews a better option, as they allow for explanation of the project
as the participants are interviewed.

5.5.1 Interview Methodology
The interviews were intended to have the following format:

• Interviewee Introduction: The interviewee introduces themselves and
presents their background in software development.

• Introduction to the thesis context: The context of the project and
the functionality of the library is presented.

• Introduction to study project: A sample Kotlin project is presented
to the interviewee. The interviewee is allowed to examine the project to
become familiar with the project structure. Afterwards, the interviewee is
asked to make changes to the project to get a small amount of "hands-on"
experience using the library.

• Evaluation questions: The participants are asked open-ended questions
on the experience of using the library and their thoughts on the library
functionality. Participants are encouraged to share thoughts on both issues
they encountered or expect to encounter and the positive experiences of
using the library.

A series of questions were formulated to be asked at the beginning and end of the
interviews. The intention of these questions is to determine if the developers felt
that the library improved efficiency, improved understanding of the project and
how it affected the developer experience of developing. Because these metrics
are inherently qualitative, the questions are also open-ended.

The planned interview process, including the questions to be asked, can be seen
in Tables 5.3, 5.4 and 5.5.

5.5 Developer Interviews 53

Topic Questions
Experience
in Software
Engineering

What is your background in software development?
Do you have any experience with full-stack development of
web applications?
Have you ever worked with projects where the client and
server applications were built from a shared codebase?

Knowledge
of Thesis
context

Have you worked with projects using domain-driven design?
Have you worked with reflection / code generation?

Table 5.3: The questions used for assessing the background of the participants

Section Content
Introduction
to the thesis

The motivation and goal of the thesis is presented and an
introduction to the "Kodegen" library is given.

Introduction
to the
sample
project

A sample project integrating the library is presented. The
interviewee is given a quick overview of the project structure
to provide some familiarity with the environment.

Project
experimenta-
tion

The interviewee is asked to make a series of changes to
the project, notably to the application service to show how
library generates code.

Table 5.4: The scheduled project presentation for presenting the library to the
interviewee

5.5.1.1 Recruitment and Results

Recruitment for the interviews were made through personal inquiry in several
channels accessible to the author of this thesis. In total, approximately 60
persons were asked to participate in the interview. Of these, 3 agreed to do so.

It should be noted that the recruitment process took place during the lockdown
in Denmark due to the COVID-19 pandemic taking place. As a result, the
interviews took place using video conferencing rather than being conducted in
person. This, in turn, may have affected the ratio of people willing to participate
in an interview.

Interview notes containing paraphrasings of the answers given by the respondents
during the interviews are available in Appendix A.

54 Evaluation

Topic Questions
First
impression of
the library

What do you see as the advantages / disadvantages of using
a library as this?

Project
Complexity
and Under-
standing

Do you consider the abstraction of the API to be beneficial
or harmful to the understanding of a project?
Can you imagine scenarios where you would prefer one
approach over the other?

Limitations Can you imagine scenarios where this approach would not
work?

Interest in
use

When would / wouldn’t you use the library?
What would need to be different for you to want to use the
library and what additional features would you want from
a library as this?
How would you compare this approach to existing ap-
proaches, e.g. specification-based API client library and
documentation generation?

Table 5.5: The questions used for evaluation of the library in the semi-
structured interviews

Chapter 6

Discussion

In this chapter, the effectiveness of the library will be discussed and compared to
existing approaches based on the results found in the evaluation and an analysis
of the proof-of-concept implementation of the design.

6.1 Analysis of Evaluation Results

6.1.1 Source Lines of Code

As shown in section 5.4.1, the reduction in source lines of code when generating
code is between 8 and 17 logical lines of code per method.

As explained in Section 5.1.1, it is difficult to compare this to the overall size
of a project, the size of which may vary by orders of magnitude depending on
type and scope. Instead, it may be more worthwhile to consider the reduction in
SLOC as a contribution not to the overall size of the project, but to the area of
the project concerning the web application.

In this case, the reduction in SLOC may be significant. As mentioned in 3.1.2.4,
the web application must only be configured once, whereas each exposed service
requires a corresponding method. Thus, endpoints and client methods are
responsible for the most additional required code as the project grows in size
and complexity, and eliminating it may effectively reduce the task of developing
and maintaining the web application to just the configuration of the application.

56 Discussion

6.1.2 Build Times

As shown in section 5.4.2, the build times were longer when code had to be
generated. A clean build with code generation incurred a slowdown of 39.2%
compared to a clean build without code generation, while a rebuild after modifying
the interface and implementations took 13.8% longer than a clean build. By
comparison, making a similar change without code generation allowed the build
to complete in 24.9% less time.

In the tests with 20 application services, similar results were seen: a clean
build with code generation took 49.35% longer than a clean build without code
generation.

While this is a significant increase, it should be noted that the build times
remained relatively low despite the increase, with the smaller and larger project
compiling in approximately 15 and 38 seconds, respectively.

Rebuilding with code generation and incremental annotation processing provided
results similar to rebuilding without code generation.

Depending on the use of the library, these build times may be inconsequential. If
the generated artifacts are only generated once and then distributed, the increase
in build time has no relevance for projects using the generated artifacts. If,
however, the library is used to generate artifacts which are used immediately
after, the build time may be source to development inefficiency.

6.1.3 Developer Experience

According to Fagerholm and Münch [13], the developer experience is in part
impacted by "how developers perceive the development infrastructure". This
can be influenced positively by ensuring that the development infrastructure
gives a feeling of empowering the developer rather than restricting them.

For this project, the analysis of developer experience will not be applied to using
the library itself, but rather how using the library impacts the development
infrastructure by eliminating the task of developing and maintaining the web
API and API client library. This analysis will mainly be based on the interviews
presented in Section 5.5.

6.1.3.1 Usability and Impact on Feeling of Understanding

In the interviews, the participants were asked how they believe the library would
affect the understanding of a client-server project.

Two of the interviewees answered that the library did not negatively impact
the understanding, because the generated code simply served as a way to link
two individual components, the client and server, together. By automatically

6.1 Analysis of Evaluation Results 57

generating this code, the developer is instead allowed to focus on the underlying
services and domain logic.

Only one of the interviewees had worked with domain-driven design, and thus
little feedback was given on how well the library would support this. However,
given the answers on how the library allows the developer to focus on the domain
logic, rather than how it is published, it could be argued that the library aligns
with the goals of DDD.

One interviewee responded that while the library was intuitive to use, they would
imagine that it would not fare as well in edge cases, notably when the template
of the library does not support functionality which also cannot be configured in
the web application or HTTP client. Similarly, a second interviewee mentioned
that they would want a statement in each endpoint that uses the authentication
to authorise the user, which was not present in the template.

In this case, the library may negatively impact the developer experience. A
developer may first try to use the default approach but encounter problems
because the edge case is not supported. Then, they may attempt to investigate
if their desired functionality can be aligned with the functionality offered by the
library. Finally, on realizing that this is not the case, they will resort to manually
implementing the change without the library.

However, all interviewees responded that they felt the library was an attractive
option for development of web applications. Furthermore, during the project
demonstration, each interviewee quickly grasped the functionality of the library
and how to apply it, indicating that the library itself is also easy to use.

6.1.3.2 Impact on Feeling of Efficiency

In all interviews, the participants responded that they thought the library would
improve efficiency in development because the code generation eliminates the
task of writing and maintaining repetitious code. However, this benefit is further
amplified by two additional benefits: firstly, the generated artifacts are loosely
coupled but must remain consistent, which is ensured by generating the code.
Secondly, because the generated code is used for distributed systems, it allows
the code to remain consistent despite the applications using them potentially
being developed independently of the others.

Thus, the library provides a feeling of efficiency not only because it automates a
common task, but because that task is one that requires the developer to remain
vigilant of changes.

58 Discussion

6.2 Comparison to Existing Solutions

6.2.1 Specification-based Approach

The most relevant comparison to draw is to the specification-based approach
which was explained in Section 2.6.2.2. Furthermore, in two of the interviews,
the library was also compared to specification-based approaches.

In the specification-based approach, the web API may either be maintained
manually along with a human-readable specification of it or the specification may
be generated from the web API. In both approaches, it is left to the developer
to ensure that the web API is consistent with the underlying server logic. In the
first approach, the developer must also ensure that the specification matches the
web API.

By contrast, the library developed in this project only requires the developer to
maintain the application service definitions. From these, both the web API and
API client library can be developed.

The desired goals of each approach are similar, though not identical. In two of the
interviews, the interviewees cited development time and reduction in developer
errors as the reason that they use specification-based generation. Moreover,
these were also two of the benefits they identified for the library.

However, the project library has the additional benefit of preserving information
from the application service. In a specification-based approach is used, the web
API must be translated into a specification and from the specification back
into code. In the approach, the generated artifacts may preserve the original
application service information.

A benefit of the specification-based approach is that it is easily adaptable to any
platform, given that tools for that platform exists, because the specification is
technology agnostic. By contrast, a Kotlin library will only support the platforms
supported by Kotlin, and will otherwise require a similar library to be developed
for other technologies. Notably, interpreted languages, e.g. Python, must use
libraries that allow them to execute native code for this library to support them.

6.2.2 Hybrid Approach

An alternative approach that has not been attempted in this project is to combine
the application service-based approach with the specification-based approach.
This could be implemented by only generating the web API from the application
services, then using the specification-based approach to generate the remaining
artifacts.

One of the benefits of this approach is that it allows the integration of the existing
specification-based code generation ecosystem into the library. Given that a

6.3 Issues and Limitations 59

specification can be generated from a Ktor web API and API client libraries
from the specification, this would allow the generation of API client libraries for
all platforms support by the specification-based code generation tools. This may
negate the need for multiplatform compilation, assuming that the server web
application only needs to be compiled to JVM.

6.3 Issues and Limitations

This section explains the most relevant limitations of the proof-of-concept imple-
mentation of the library. These limitations are identified based on the evaluation
results and an analysis of the implemented library compared to the requirement
specification described in Section 3.1.

6.3.1 Flexibility

The artifacts generated by the library use a DSL-based template. This template
contains some decision-making based on the input provided, e.g. whether to
include a serialization of parameters or not based on whether a method takes
parameters. However, the only allowed adjustment of the template is through the
use of the RequireAuthentication annotation which adds an authentication
to the route in the endpoint.

The intention, as described in Section 3.1.1.2, was that most functionality should
be installed through configuration of the web application or HTTP client, with
the endpoint only containing essential functionality. As an example, using
encrypted communication can be enabled by installing it in the web application
without modifying the endpoints.

However, it is possible a developer will want specific functionality which must
be present in the endpoints which is not available to the library. As an example,
a developer may want an authorisation check using a private security library
before specific services are invoked.

In this case, it should be decided if the library should allow the template to be
modified, or if the library should only support the functionality it is built with.

While the first option greatly increases the complexity of the library and opens
up the potential for errors occurring due to invalid templates, the second option
also limits the utility of the library.

If it was decided that the template should be allowed to be modified, one method
of doing so would be to "break down" the structure of each generated artifact
into sections and allowing injection of new code between sections. As an example,
the endpoint could be broken into the following sections:

• Authentication

60 Discussion

• Routing

• Request reception and deserialization of parameters

• Service invocation

• Response

Implementing a customizable template that guarantees valid code could prove
an interesting task, but was considered outside the scope of this project.

6.3.2 Security and Authorization
In its current form, the proof-of-concept implementation supports authentication
but not authorisation based on the principal that the authentication provides.
For projects that require authorisation, this makes the library an unviable option.

The motivation behind not adding an option for authorisation in the same
manner as with authentication was that Ktor does not support authorisation.
Moreover, Ktor authentication returns a Ktor-specific principal type, which
therefore cannot be used for authorisation libraries outside of Ktor.

A second security-related issue is ensuring that serialization occurs as expected,
which was also brought up by an interview participant. On generation of the
transfer objects, the library checks the type of all parameters and return types to
see if they have a built-in serializer, as is the case with primitives, or if they are
annotated with Serializable. If neither are present, the parameter or return
type is annotated with ContextualSerialization, indicating that either a
serializer must be declared at runtime or the ContextualSerializer must be
used.

In cases where the ContextualSerialization annotation is applied, it should
ensured that a serializer specific to that object is defined and used by the web
application / HTTP client. Not doing so will result in the ContextualSerial-
izer being used for serialization, which may unintentionally expose fields that
should not be serialized.

6.3.3 Threats to Validity
In addition to the limitations of the library, the following could be considered
threats to the validity of the thesis:

• The library was designed specifically with an implementation in Kotlin in
mind because Kotlin supports multiplatform compilation. The premise was
that libraries would only have to be defined once and could be deployed
on multiple platforms. However, the Kotlin annotation processor, Kapt,
currently only works for projects that only target JVM. This could either
be considered a limitation of the current implementation or a threat to the

6.3 Issues and Limitations 61

premise of the thesis.
JetBrains s.r.o., the main developer of Kotlin, has not announced any
plans to support multiplatform annotation processing. An open-source
third-party annotation processor for multiplatform projects does exist,
MpApt [19], though it has not been investigated if it offers the same
functionality as Kapt.

• The number of participants that could be recruited for the interviews was
limited to just three. Having more participants would allow for a wider
array of opinions on the library and the approach it encourages. Moreover,
having more participants express the same opinion or thought increases
the trust that it is representative for software developers in general. In
addition to the limited number of participants, all participants had limited
professional experience with software development. Having interviews with
developers with more professional experience may have exposed concerns
that newer developers would not identify.

62 Discussion

Chapter 7

Conclusion

7.1 Project Findings

From the library design presented in Chapter 3 and the proof-of-concept imple-
mentation presented in Chapter 4, it was shown that it is possible to generate a
web API and API client library from application service definitions that allows
client applications to request web services provided by a web application.

Conceptually, the approach used by this library is considered an improvement
over the specification-based approach because it allows a single source of truth
to be maintained. This, in turn, eliminates the task of maintaining the web API
and either the API client library or the specification from which it is generated.

The proof-of-concept implementation of the library was evaluated using a series of
tests and interviews. The results from these indicate that the library is effective
in increasing developer efficiency by eliminating boilerplate code and eliminating
multiple code sources that must be kept consistent. Moreover, the evaluations
indicated that the library is effective in encouraging a domain-driven design
approach to web services development by allowing developers to focus on domain
logic rather than how to expose it.

The current design has a number of limitations. Most notably, the generated
code is restricted to a template defined in the library, limiting the flexibility of
use and available functionality in the generated code.

7.2 Future Work

The following areas would be the most relevant to further explore:

64 Conclusion

• Adapting the library to support Kotlin projects that target multiple plat-
forms.

• Configurable templates, allowing for more flexible code generation, notably
by allowing the use of third-party libraries in the template and generation
of templates for other web application frameworks than Ktor.

• Integration with specification-based approaches, e.g. by generating a web
API from application service definitions, a specification from the web API
and finally an API client library from the specification. This would also
allow implementations in languages that do not support multiplatform
compilation.

Bibliography

[1] Anderson, R., and Smith, S. ASP.NET Core Middleware |
Microsoft Docs. https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/middleware.

[2] Balzer, R. A 15 year perspective on automatic programming. IEEE
Transactions on Software Engineering SE-11, 11 (1985), 1257–1268.

[3] Belqasmi, F., Singh, J., Bani Melhem, S. Y., and Glitho, R. H. Soap-
based vs. restful web services: A case study for multimedia conferencing.
IEEE Internet Computing 16, 4 (2012), 54–63.

[4] Boon, M. E. Boonoboo/kotlin: Kotlin library for automatic generation of
Ktor Application modules and Ktor HttpClient methods. https://github.
com/Boonoboo/rad.

[5] Collins, D., and Collins, D. Designing object-oriented user interfaces.
Benjamin Cummings Redwood City, CA, 1995.

[6] Constantine, L. The Emperor Has No Clothes: Naked Objects Meet the
Interface, 2002.

[7] Corporation, M. HttpClient Class (System.Net.Http). https://docs.
microsoft.com/en-us/dotnet/api/system.net.http.httpclient.

[8] Coulouris, G., Dollimore, J., Kindberg, T., and Blair, G. Dis-
tributed Systems: Concepts and Design, 5th ed. Addison-Wesley Publishing
Company, USA, 2011.

[9] Czarnecki, K., and Eisenecker, U. W. Components and generative
programming. ACM SIGSOFT Software Engineering Notes 24, 6 (Jan
1999), 2–19.

[10] discordjs. discordjs/discord.js: A powerful JavaScript library for interact-
ing with the Discord API. https://github.com/discordjs/discord.js.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware
https://github.com/Boonoboo/rad
https://github.com/Boonoboo/rad
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://github.com/discordjs/discord.js

66 BIBLIOGRAPHY

[11] Espinha, T., Zaidman, A., and Gross, H.-G. Web API growing pains:
Loosely coupled yet strongly tied. Journal of Systems and Software 100
(2015), 27–43.

[12] Evans, E. Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[13] Fagerholm, F., and Münch, J. Developer experience: Concept and
definition. In 2012 International Conference on Software and System Process
(ICSSP) (2012), pp. 73–77.

[14] Fowler, M. Richardson maturity model: steps toward the
glory of rest. Online at http://martinfowler.com/articles/
richardsonMaturityModel.html (2010), 24–65.

[15] Gediga, G., Hamborg, K.-C., and Düntsch, I. Evaluation of Software
Systems, vol. 72. CRC Press, 11 2002, pp. 127–153.

[16] Huang, Z. zijianhuang/webapiclientgen. https://github.com/
zijianhuang/webapiclientgen.

[17] Inc., S. KotlinPoet Metadata - KotlinPoet. https://square.github.
io/kotlinpoet/kotlinpoet_metadata/.

[18] JHipster. JHipster. https://www.jhipster.tech/.

[19] Klingenberg, J. Foso/MpApt: Kotlin Native/JS/JVM Annotation Proces-
sor library for Kotlin compiler plugins. https://github.com/Foso/MpApt.

[20] Kuusinen, K. Software developers as users: Developer experience of a
cross-platform integrated development environment. In Product-Focused
Software Process Improvement (Cham, 2015), P. Abrahamsson, L. Corral,
M. Oivo, and B. Russo, Eds., Springer International Publishing, pp. 546–552.

[21] Larus, J. What happened to the promise of software tools?

[22] Liskin, O., Singer, L., and Schneider, K. Teaching old services new
tricks. Proceedings of the Second International Workshop on RESTful Design
- WS-REST 11 (2011).

[23] LLC, G. API Client Libraries | Google Developers. https://developers.
google.com/api-client-library.

[24] Millett, S., and Tune, N. Patterns, principles, and practices of domain-
driven design. John Wiley & Sons, 2015.

[25] Newman, S. Building microservices: designing fine-grained systems. "
O’Reilly Media, Inc.", 2015.

[26] OpenAPITools. OpenAPI Generator. https://github.com/
OpenAPITools/openapi-generator.

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
https://github.com/zijianhuang/webapiclientgen
https://github.com/zijianhuang/webapiclientgen
https://square.github.io/kotlinpoet/kotlinpoet_metadata/
https://square.github.io/kotlinpoet/kotlinpoet_metadata/
https://www.jhipster.tech/
https://github.com/Foso/MpApt
https://developers.google.com/api-client-library
https://developers.google.com/api-client-library
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator

BIBLIOGRAPHY 67

[27] Palviainen, J., Kilamo, T., Koskinen, J., Lautamäki, J., Mikkonen,
T., and Nieminen, A. Design framework enhancing developer experience
in collaborative coding environment. In Proceedings of the 30th Annual
ACM Symposium on Applied Computing (New York, NY, USA, 2015), SAC
’15, Association for Computing Machinery, p. 149–156.

[28] Pawson, R. Naked Objects. IEEE Software 19, 4 (2002), 81–83.

[29] Pawson, R., and Matthews, R. Naked objects: A technique for designing
more expressive systems. SIGPLAN Not. 36, 12 (Dec. 2001), 61–67.

[30] Perrey, R., and Lycett, M. Service-oriented architecture. In 2003
Symposium on Applications and the Internet Workshops, 2003. Proceedings.
(2003), pp. 116–119.

[31] Rademacher, F., Sorgalla, J., and Sachweh, S. Challenges of
domain-driven microservice design: A model-driven perspective. IEEE
Software 35, 3 (May 2018), 36–43.

[32] Ray, W. J., and Farrar, A. Object model driven code generation for the
enterprise. In Proceedings 12th International Workshop on Rapid System
Prototyping. RSP 2001 (2001), pp. 84–89.

[33] Schmidt, D. C. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY- 39, 2 (2006), 25.

[34] Sebastián, G., Gallud, J. A., and Tesoriero, R. Code generation
using model driven architecture: A systematic mapping study. Journal of
Computer Languages 56 (2020), 100935.

[35] Selic, B. The pragmatics of model-driven development. IEEE Software
20, 5 (Sep. 2003), 19–25.

[36] Shepherd, D. C. The Value of Applied Research in Soft-
ware Engineering. http://blog.ieeesoftware.org/2016/09/
the-value-of-applied-research-in.html.

[37] SlackAPI. slackapi/python-slackclient: Slack Python SDK. https://
github.com/slackapi/python-slackclient.

[38] Software, S. Swagger Codegen. https://github.com/swagger-api/
swagger-codegen.

[39] s.r.o., J. Http Client - Clients - Ktor. https://ktor.io/clients/index.
html.

[40] s.r.o, J. Ktor - asynchronous Web framework for Kotlin. https://ktor.
io/.

[41] s.r.o., J. Pipeline - Advanced - Ktor. https://ktor.io/advanced/
pipeline.html.

http://blog.ieeesoftware.org/2016/09/the-value-of-applied-research-in.html
http://blog.ieeesoftware.org/2016/09/the-value-of-applied-research-in.html
https://github.com/slackapi/python-slackclient
https://github.com/slackapi/python-slackclient
https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen
https://ktor.io/clients/index.html
https://ktor.io/clients/index.html
https://ktor.io/
https://ktor.io/
https://ktor.io/advanced/pipeline.html
https://ktor.io/advanced/pipeline.html

68 BIBLIOGRAPHY

[42] Suter, R. NSwag. https://github.com/RicoSuter/NSwag.

[43] Tan, W., Fan, Y., Ghoneim, A., Hossain, M. A., and Dustdar,
S. From the service-oriented architecture to the web api economy. IEEE
Internet Computing 20, 4 (2016), 64–68.

[44] Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., and Lau, A. Migration
of soap-based services to restful services. In 2011 13th IEEE International
Symposium on Web Systems Evolution (WSE) (2011), pp. 105–114.

[45] VMware, I. Spring | Home. https://spring.io/.

[46] Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. A note
on distributed computing. In International Workshop on Mobile Object
Systems (1996), Springer, pp. 49–64.

[47] Watson, D. A Practical Approach To Compiler Construction, 1st ed.
Springer International Publishing, USA, 2017.

[48] Welsh, M. Academics, we need to talk. http://matt-welsh.blogspot.
com/2016/01/academics-we-need-to-talk.html.

[49] Xinyang Feng, Jianjing Shen, and Ying Fan. Rest: An alternative to
rpc for web services architecture. In 2009 First International Conference
on Future Information Networks (2009), pp. 7–10.

https://github.com/RicoSuter/NSwag
https://spring.io/
http://matt-welsh.blogspot.com/2016/01/academics-we-need-to-talk.html
http://matt-welsh.blogspot.com/2016/01/academics-we-need-to-talk.html

Appendix A

Interview Notes

This appendix contains the notes taken during each interview.

Please note that the notes are paraphrasings of the answers given by the inter-
viewees.

Interview 1, June 7th - Software Developer #1

Introduction

Question: What is your background in software development?

The interviewee is a software developer with a master’s degree in computer
science. They have 6 years of academic experience and 3,5 years of professional
experience.

In their job, they primarily work with full-stack development using Angular and
ASP.NET Core.

Question: Do you have any experience with full-stack development of
web applications?

They have worked on developing and maintaining full-stack projects for 2 to 2,5
years.

70 Interview Notes

Question: Have you ever worked with projects where the client and
server applications were built from a shared codebase?

Several of the projects mentioned previously are intranet websites, and thus the
client (web page files) is served from the back-end.

Question: Have you worked with projects using domain-driven de-
sign?

They have tried to use it during development, but believes that progress in
implementing it is very limited due to resistance from team members, as well as
a lack of knowledge on how to apply it.

Question: Have you worked with reflection / code generation?

They have used reflection through annotation processing in a C# project for
modifying methods during compilation.

Moreover, they have used a specification-based approach to generating API
client libraries and web API documentation for the intranet projects mentioned
previously. They state the it is very convenient, since it saves the time to manually
write the API client library, but has limitations, e.g. when encountering edge
cases that the generation is not capable of handling. In these cases, the option
of either overriding or implementing the method manually must be available.

Introduction to the Thesis
The interviewee is introduced to the thesis context as described in the introduc-
tion.

Introduction to the Study Project
The interviewee is introduced to the library functions through the study project.

After ensuring that they understand the project structure and library func-
tionality, they are asked to make changes to an interface annotated with
ApplicationService and to add the RequireAuthentication annotation to
a method.

Evaluation
Question: What do you see as the advantages / disadvantages of using
a library as this?

They see the advantages of this library being the ease of use, stating that simply
annotating a class or interface is simpler than manually maintaining a web API
specification.

71

Moreover, automatically generating both the web API and API client libraries
both saves the developer time from having to do so manually, and reduces the
number of errors occurring due to code mistakes, e.g. mistyping URLs or using
wrong types.

They support using a template-based approach over manually implementation,
arguing that it ensures high quality and consistent code, given that the template
is high quality.

They see the main disadvantages as being the lack of control of implementation for
edge cases or cases where there must be a total control over the implementation,
e.g. in security-critical projects.

They give an example of an endpoint that served a file, which the specification-
based code generation tool was unable to serialize correctly. The code was still
generated, but did not function as expected.

Moreover, they explain that for security-critical projects, they would not trust
the implementation used for the generated code, primarily because the template
used is not immediately available.

Question: Do you consider the abstraction of the web API / client
network requests to be beneficial or harmful to the quality of a project
and / or the developers understanding of the project, and can you
imagine scenarios where you prefer one approach over the other?

They believe that this library could be beneficial for certain types of projects.

Of the two approaches that were tried out in the demonstration (first gener-
ating from an interface in the shared kernel, secondly by generating from the
implementation in the server), they believe that the first holds the most promise,
because it ensures that not only is the API client library and web API kept con-
sistent, but the client and server also have to use the same interface, providing a
much-desired consistency. They explain that a common issue in the development
of the intranet projects is having to redefine object types in the client that have
already been defined in the client, even though the project holds both. Being
able to use a shared interface, despite the client and server being developed
in different languages, would greatly improve the workflow in development of
client-server systems.

Question: Can you imagine scenarios where you would prefer this
"black-box" approach over manually implementing the web API?

As answered previously, they would prefer manually implementing the web API in
security-critical projects, as they would want full control over the implementation,
especially regarding authentication, authorization and ensuring that objects are
serialized correctly to avoid including sensitive data.

72 Interview Notes

However, they are are leaning towards code generation being a better approach,
primarily because it saves the developer a lot of time and improves the experience
of developing client-server systems.

Question: Can you imagine scenarios where this approach would not
work?

They repeat that they would not use it for security-critical projects.

Additionally, they explain that one of the advantages of using a specification-
based approach that this library lacks is the adaptability to any project due to
the extensive amount of tools. This library being restricted to Kotlin and the
platforms it can compile to restricts use in e.g. Python projects without having
to go through additional steps to adapt native code to the language.

Question: Do you think abstracting the endpoints behind a service
invoker / service provider increases or decreases understanding of the
project?

They find that if you are already familiar with the project and library functions,
it does not decrease understanding of the project, since the web API and client
methods can be considered "glue code" to allow server functions to be called
from the client.

However, a developer who is not aware of the library being used or who does not
understand how the library works may make false assumptions on e.g. latency and
delivery guarantees. Thus, it should be made clear that the generated functions
are simply wrappers for networking calls, and that providing guarantees must
be implemented by the developer, e.g. by making asynchronous calls, providing
error handling etc.

Question: When would / wouldn’t you use the library?

Given that the generated code would be available for multiple platforms, they
would be interested in using the library for web applications where

They would not be interested in using the library for security-critical projects or
projects where the developer cannot trust a third-party template, as is the case
with this library, but wants to have manual control over the implementation.
They add that, in general, they only trust generated code for simple cases such
as wrapping a function call with primitive parameters and returns types in a
client-server application running in a secured environment.

73

Question: How would you compare this approach to existing ap-
proaches, e.g. specification-based API client library and documen-
tation generation?

They find that web API specifications, specifically OpenAPI, are difficult to
write manually and are prone to developer errors. However, this can be mitigated
by generating the specification from an existing API.

Thus, instead of writing and maintaining the specification directly, they prefer
writing the web API, generating the specification from this and the remaining
artifacts from the specification. This ensures compatibility between the web
API and the client, and since the web API is compiled with the services, static
checking is available to improve consistency between the web API and the
underlying services. They concede that this does require manual maintenance
of the web API along with the underlying services, as opposed to generating it
from the services.

They explain that despite this, they would still use a specification-based approach
over the approach proposed by this library simply because the tool support for
the specification-based approach is far more mature. Moreover, as answered
previously, specification-based approaches are adaptable to multiple languages,
which allows them to use it despite the languages used by the client and server.
Being restricted to developing the shared kernel in Kotlin and compiling it to
multiple platforms reduces the interest in the library.

Question: What additional features would you want from a library as
this, and what would need to be different for you to want to use the
library?

They answer that they would want to be able to customize the template used,
allowing the generated code to be customized to the needs of the individual
projects. Notably, they would want fine control over serialization and to be able
to choose between different content types.

As a general note, they point out that generated code is an excellent tool for
saving time and reducing errors. However, when the template used does not
support a specific case and they have work around it, the interest in code
generation decreases notably. Thus, either being able to "override" the template
or easily integrating manual implementations would provide a lot more interest.

74 Interview Notes

Interview 2, June 8th - Master’s Student #1

Background
Question: What is your background in software development?

The interviewee is a master’s student in computer science specializing in software
engineering. They are currently writing their thesis.

They have 5,5 years of academic experience as a a software developer and 3,5
years of professional developer, having held a student job related to software
development.

Question: Do you have any experience with full-stack development of
web applications?

They have worked with both front-end (client) and back-end (server) projects,
mainly React-based front-end development and ASP.NET-based back-end devel-
opment.

Question: Have you ever worked with projects where the client and
server applications were built from a shared codebase?

They explain that the previously mentioned project was a website application
where the back-end provided the client for the front-end.

Question: Have you worked with projects using domain-driven de-
sign?

They have heard of it, but never used it.

Question: Have you worked with reflection / code generation?

They state that they have used specification-based tools for generation of API
client libraries and documentation.

Introduction to the Thesis
The interviewee is introduced to the thesis context as described in the introduc-
tion.

Introduction to the Study Project
The interviewee is introduced to the library functions through the study project.

After ensuring that they understand the project structure and library func-
tionality, they are asked to make changes to an interface annotated with

75

ApplicationService and to add the RequireAuthentication annotation to
a method.

Evaluation

Question: Do you consider the abstraction of the web API / client
network requests to be beneficial or harmful to the quality of a project
and / or the developers understanding of the project, and can you
imagine scenarios where you prefer one approach over the other?

They states that they like this approach, as it hides the implementation details of
the web API, instead allowing the developer to focus on the underlying domain
logic.

Moreover, they state that, since the goal of the web API simply is to facilitate
communication, abstracting the web API does not reduce understanding of the
project.

They state that they would prefer generating both the web API and the API
client library over manually implementing them because it:

• Saves time due to having to write less code.

• Reduces developer errors, e.g. from type mismatching or use of wrong
URLs.

Question: Can you imagine scenarios where this approach
would not work?

They cannot.

Question: Comparing this approach to specification-based
generation, which pros and cons do you see for each ap-
proach over the other?

They would prefer using the specification-based approach because they are
familiar with them, and because they are at a much higher maturity level. It is
emphasized that trust in the capabilities of the tool is important. The benefits
of this approach, i.e. saving time and reducing the number of developer errors,
are also achieved when using the specification-based approach.

76 Interview Notes

Question: What additional features would you want from
a library as this, and what would need to be changed for
you to be interested in using the library?

They state that they would want both authentication and authorization to be
available in the web API, e.g. by authenticating the user to create a principal,
then using this in the authorization process.

Interview 3, June 8th - Master’s Student #2

Background

Question: What is your background in software development?

The interviewee is a master’s student in computer science currently writing their
thesis.

They have 6 years of academic experience and 3 years of professional experience.
During their professional experience, they have worked primarily with mobile
applications (Android and iOS) and developing libraries/frameworks for use in
mobile applications.

Question: Do you have any experience with full-stack development of
web applications?

They have worked on web application using the LAMP stack (Linux, Apache,
MySql, PHP)

Question: Have you ever worked with projects where the client and
server applications were built from a shared codebase?

The LAMP application they had worked on was a web service project, and thus
served the client (web page files) from the back-end.

Question: Have you worked with projects using domain-driven de-
sign?

The projects they have worked on during their student job are likely developed
using DDD, but that they have not participated in the design process itself.

Question: Have you worked with reflection / code generation?

They have some understanding of reflection, and have attempted to use code
reflection for a project written using Dart.

77

They wanted to generate methods for specific types, but that the tool support
for Dart did not support doing so.

Introduction to the Thesis

The interviewee is introduced to the thesis context as described in the introduc-
tion.

Introduction to the Study Project

The interviewee is introduced to the library functions through the study project.

After ensuring that they understand the project structure and library func-
tionality, they are asked to make changes to an interface annotated with
ApplicationService and to add the RequireAuthentication annotation to
a method.

Evaluation

Question: Do you consider the abstraction of the web API / client
network requests to be beneficial or harmful to the quality of a project
and / or the developers understanding of the project, and can you
imagine scenarios where you prefer one approach over the other?

They state that generating code has several advantages over manually developing
it, mainly because it reduces developer errors, e.g. due to mistyping URLs or
using wrong types.

Moreover, they state that automatically generating the web API is useful, because
it saves the developer from having to understand how the web API is implemented,
and allows them to focus on the services it publish and the underlying domain
logic.

They state that this is especially useful for larger projects.

Question: Can you imagine scenarios where this approach would not
work?

They state that they would not use the library for smaller projects, because
the overhead from understanding the annotations processing etc. outweighs the
overhead from manually implementing and maintaining the web API.

When it is mentioned that other interviewees brought up authorization and
security issues, they stated that they would solve this at a different level than at
the web API, as they would only use the web API for transferring of data, not
as a method of implementing logic.

78 Interview Notes

Question: Can you imagine scenarios where you would / wouldn’t
you use the library?

They repeat the answer from before.

Question: What additional features would you want from a library
as this? What would need to be changed for you to be interested in
using the library?

They request that it should be clarified that the generated code is not to be
modified.

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background and Project Motivation
	1.1.1 Development of Client-server Systems
	1.1.2 Domain-Driven Design in Distributed Systems

	1.2 Problem Statement
	1.2.1 Project Proposal
	1.2.2 Project Delimitation

	1.3 Thesis Structure

	2 State of the Art
	2.1 Distributed Systems
	2.1.1 Distributed System Architectures

	2.2 Computer Networks
	2.2.1 Relevant Protocols

	2.3 Service-Oriented Architecture and Web Applications
	2.3.1 RPC-style APIs
	2.3.2 RESTful APIs
	2.3.3 Naked Objects and Object-oriented User Interface

	2.4 Domain-Driven Design (DDD)
	2.4.1 Domain-Driven Design in Practice
	2.4.2 Related Architectural- and Design Patterns

	2.5 Developer Experience
	2.6 Related Work
	2.6.1 Existing Research
	2.6.2 Industry and Open Source Projects

	3 System Design
	3.1 Requirements Analysis
	3.1.1 Design Constraints
	3.1.2 Artifacts
	3.1.3 Generated Code Functionality
	3.1.4 Configurable Functionality

	3.2 Proposed Design

	4 Implementation
	4.1 Overview
	4.2 Technologies Used
	4.2.1 Programming Language - Kotlin
	4.2.2 Annotation Processing - Kapt, Java Annotation Processing & Java Language Modelling
	4.2.3 Web Application Framework - Ktor
	4.2.4 Code Generation - KotlinPoet

	4.3 Integration with Other Projects
	4.3.1 Usage of Generated Code

	4.4 Example of Generated Code

	5 Evaluation
	5.1 Evaluation Metrics
	5.1.1 Source Lines of Code
	5.1.2 Build Time
	5.1.3 Developer Experience

	5.2 Test Environment
	5.3 Test Methodology
	5.3.1 Source Lines of Code
	5.3.2 Build Time

	5.4 Results
	5.4.1 Source Lines of Code
	5.4.2 Build Time

	5.5 Developer Interviews
	5.5.1 Interview Methodology

	6 Discussion
	6.1 Analysis of Evaluation Results
	6.1.1 Source Lines of Code
	6.1.2 Build Times
	6.1.3 Developer Experience

	6.2 Comparison to Existing Solutions
	6.2.1 Specification-based Approach
	6.2.2 Hybrid Approach

	6.3 Issues and Limitations
	6.3.1 Flexibility
	6.3.2 Security and Authorization
	6.3.3 Threats to Validity

	7 Conclusion
	7.1 Project Findings
	7.2 Future Work

	Bibliography
	A Interview Notes

