
M.Sc. Thesis
Master of Science in Engineering

Master’s Thesis
A Flutter Package for Real-Time Mobility Feature
Computation

Thomas Nygaard Nilsson, s144470

Kongens Lyngby, Denmark 2020

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 303B
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary
Research has shown that mobility features derived from location data can be used to
describe behavior changes in people suffering from depression-related diseases. Exist-
ing contributions dealing with the computation of mobility features are cumbersome
to reproduce due to a lack of publicly available source code. Furthermore, the algo-
rithms provided have not been considered for real-time computation on a smart-phone.
This means they cannot necessarily be used on demand to support psychotherapeutic
interventions. These two research problems were addressed in this thesis, by imple-
menting the Mobility Features Package - a software package for the Flutter framework.
The package supports the computation of the features Home Stay, Number of Places,
Distance Travelled, Location Variance, Entropy, Normalized Entropy, and Routine
Index. The package makes it possible for an application programmer to compute
these features with just 3 lines of code. Furthermore, the application programmer
can flexibly choose any Flutter plugin for tracking location data. This makes it very
easy for researchers within mobile health to include mobility features in their mobile
health applications.

A field study was conducted with 10 participants in which their location was tracked
via an iOS application over 3 weeks. This application used the Mobility Features
Package to compute features several times a day. Participants filled out a daily ques-
tionnaire pertaining to 3 of the features, and these answers were afterward compared
to features computed during the study. We found that the Mobility Features Package
computes the Number of Places visited with an RMSE of 0.99 places, the Home Stay
percentage with an RMSE of 14.3%, and the Routine Index with an RMSE of 22.5%.
However, many non-uniform gaps were observed in the collected location data which
impacted the RMSE of the features. For future improvement of the package, it is
highly relevant for the algorithms to use an imputation method to handle missing
data.

ii

Preface
This Master’s thesis was prepared at the department of Applied Mathematics and
Computer Science at the Technical University of Denmark in fulfillment of the re-
quirements for acquiring a MSc degree in Human-Centered Artificial Intelligence.

Kongens Lyngby, Denmark, June 27, 2020

Thomas Nygaard Nilsson, s144470

iv

Acknowledgements
I would like to thank by supervisor Jakob Bardram for providing the initial idea for
the project and for guiding me through the project with regular supervision sessions.
In addition a big thanks to Jonas Busk for providing Python source code prior to
starting the project, this helped the thesis a great deal in succeeding.

It was planned that I should write most of my thesis while psychically sitting at the
chair of Information Systems (Krcmar) at the Technical University of Munich. How-
ever due to the Coronavirus outbreak in early 2020, I had to travel home to Denmark
in March. However, I would like to give a big thanks to Georg Groh and Martin Lurz
and Jakob Bardram for making this quasi-exchange semester possible. An additional
thank you goes out to Georg Groh for introducing me to Brazilian Jiu Jitsu while I
was in Munich.

For conducting the study I would like to thank Jakob Eg for addressing my questions
regarding the subjective data collection and which challenges they faced in the study
conducted by Cuttone et al. [CLL14] where Jakob was a co-author.

For helping with the thesis writing I would like to thanks Jakob Bardram as well as
Darius Rohani and Marie Mørch for reading and correcting my thesis which improved
it a great deal.

vi

Nomenclature
API Application Programming Interface

BA Behavioural Activation

CACHET Copenhagen Center for Health Technology

CAMS CARP Mobile Sensing

CARP CACHET Research Platform

DBSCAN Density-based spatial clustering of applications with noise

MDD Major Depressive Disorder

HCI Human-Computer Interaction

ME Mean Error

mHealth Mobile Health (Technology)

RMSE Root Mean Squared Error

viii

Contents
Summary i

Preface iii

Acknowledgements v

Nomenclature vii

Contents ix

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Background . 2
1.3 Research Question . 3
1.4 Goals and Methods . 3
1.5 Results . 5
1.6 Thesis Overview . 6

2 Background and Related Work 7
2.1 Mobile Sensing and Digital Phenotyping 7
2.2 Inferring User State from Location Data 8
2.3 Mobile Sensing Frameworks . 16

3 Theoretical Background 19
3.1 Location Data . 19
3.2 Algorithms . 19

4 Software Design 31
4.1 System Design . 31
4.2 Domain Model . 36

5 Flutter Implementation 39
5.1 Flutter, Packages, and Plugins . 39
5.2 Package Implementation . 40
5.3 Using the Package . 52

6 Validation 57

x Contents

6.1 Field Studies . 57
6.2 Study Application . 60
6.3 Application Implementation . 62

7 Results and Discussion 69
7.1 Data Analysis of Study . 69
7.2 Future Work . 80

8 Conclusion 85

A Questionnaires 87
A.1 PHQ-9 (Patient Health Questionnaire) 87

B Package Documentation 89
B.1 Structure . 89
B.2 Publishing . 90

C Python Demo 93

D Source Code 111

E Unit Testing 115

F Installation Manual 121

G Data Analysis - Extra Plots 125
G.1 Missing Data . 125

Bibliography 127

CHAPTER 1
Introduction

This chapter will provide an introduction to the thesis by laying out the motivation
and background as well as the problem statement and the goals which were set out
to be achieved.

All source code used in this thesis is publicly available on Github1.

1.1 Context and Motivation
Research has shown that changes in a user’s location can reveal a lot about their
behavior and mental state [Sae+15b; CM15; Pal+17]. A set of daily metrics called
mobility features can be derived from collected location data which correlate highly
with the user’s mental state. This coherence between mobility features derived ob-
jectively from a user’s phone and their mental state could be a vital step to support
psychotherapy in the clinic.

Numerous contributions exist within the field of using smartphone data for predicting
the various states of the user. It is however not common practice for researchers to
publish their source code such that it may be used by other researchers in the fu-
ture. Also, most research in the field of mobility data (see [Sae+15b; Pal+17; CM15;
Dor+18]) seems to develop for the Android platform exclusively, possibly since An-
droid is more prevalent in most countries2. This means even if the source code was
released, researchers interested in using the iOS platform would have to rewrite the
source code more or less from the ground up. Furthermore, source code tends to get
deprecated over time, meaning maintenance by the researcher is required.

Furthermore, it is common practice to gather all of the data first and then perform fea-
ture computation and data analysis together afterward [Sae+15b; Sae+15a; CLL14;
Dor+18]. Also, the algorithms used have not been considered for real-time computa-
tion on a smart-phone. This means they cannot necessarily be used ’in the field’ which
is when features can support psychotherapeutic interventions. Some features rely on
the historical data being available which also complicates real-time computation since
historical data will need to be stored and computed on a resource-constrained device.

1https://github.com/thomasnilsson/mobility-features-thesis
2https://gs.statcounter.com/os-market-share/mobile/worldwide

https://github.com/thomasnilsson/mobility-features-thesis
https://gs.statcounter.com/os-market-share/mobile/worldwide

2 1 Introduction

This thesis describes the design and implementation of the Mobility Features Pack-
age, a software package capable of computing mobility features in a smart-phone
application. The research problem is focused on the software engineering aspect of
developing such a package and will address the lack of re-usable source code in re-
search and lack of support for on-device, real-time feature computation. By real-time,
we refer to on-device computation at any time of the day. A researcher within mobile
health (mHealth) using this package will be able to move their focus from away from
software engineering to focus on data analysis and study design.

1.2 Background
Major Depressive Disorder (MDD), commonly known as depression, is a serious ill-
ness that is currently treated with medication or through therapy. Dobson et al.
[Dim+06] discusses how medication is the current treatment standard for severe
cases of depression, with cognitive therapy, a form of psychotherapy, being the most
widely investigated treatment for more moderate cases. Traditional psychotherapy
is resource-intensive since it relies on traditional methods that involve face-to-face
consultations. Chartier and Provencher [CP13] describe the need to identify effective,
evidence-based treatments that are time and cost-effective to increase the popula-
tion’s accessibility to treatments. The treatment form of behavioral activation, a com-
ponent of cognitive-behavioral therapy, is receiving increased attention and empirical
support as a stand-alone psychotherapy method for treating depression. Dobson et
al. found that behavioral activation performed similarly to antidepressant medication.
Furthermore, the findings were also that behavioral activation is less expensive and
longer-lasting alternatives to medication in the treatment of depression.

Mobile sensing involves the use of the phone’s sensors to collect objective user data
and may include predicting the user state from this data. The objectivity of the data
stems from the data being collected from sensors in contrast to subjective user data
such as questionnaires. Mobile sensing has become especially prevalent in the last
few years due to the rise of ubiquitous computing. Applications of mobile sensing
include mental health monitoring also known as digital phenotyping or user context
generation. Within mental healthcare, mHealth opens the potential for practical and
low-cost solutions for psychological interventions [Ebe+17]. MHealth also enables
mental healthcare to reach populations that do not have access to traditional psy-
chotherapy [Moh+13], such as developing countries. Gravenhorst et al. [Gra+15]
describes how mobile phones, in particular in the area of mental disorders, can result
in a better treatment that can reach more users, at a lower cost compared to tradi-
tional methods.

Within the context of mHealth for behavior and mental state, location data is com-
monly used. Rohani et al. [Roh+18] found in a review of 46 studies that several
of them showed consistent and statistically significant correlations between objective

1.3 Research Question 3

behavioral features collected via mobile and wearable devices and depressive mood
symptoms. In addition, they conclude that continuous- and everyday monitoring of
behavioral metrics could be a promising supplementary objective measure for estimat-
ing depressive mood symptoms. As behavioral activation requires an understanding
of the user’s mental state and behavior it is an ideal application for using objective
mobility features.

1.3 Research Question
Existing contributions within the field of generating mobility features are cumber-
some to reproduce due to a lack of publicly available source code. Furthermore, the
algorithms that exist in the literature have not been considered for real-time com-
putation which has implications on algorithm design and resource constraints. How
these two things can be achieved will be investigated in this thesis and are addressed
in the following research questions:

Question 1: Which mobility features are relevant to include in a software package?

Question 2: How can these features be computed in real-time, on a smartphone
device?

Question 3: How does the design of such a software package look like?

1.4 Goals and Methods
The research goals closely match the research questions and will explain how the
different sub-questions are answered, and which methods are used to do so.

Goal 1: Implement the Off-line Mobility Feature Algorithms
Saeb et al. [Sae+15b] and Canzian et al. [CM15] describes a list of mobility features,
some of which they prove to strongly correlate with depressive behavior. These fea-
tures need to be implemented in their most simple form, i.e. off-line, where all the
location data for a given day is readily available. This will be carried out in Python
with a synthetic dataset and later in Dart. This is done in order to demonstrate
the quality of the algorithms. A pre-processing algorithm inspired by Cuttone et al.
[CLL14] for finding certain features was used.

4 1 Introduction

Goal 2: Adapt Algorithms to Work in Real-time
The features described above will be implemented such that they can be evaluated on
a partial dataset, i.e. an incomplete day’s data. Many of the features will have minor
changes applied to their calculation and a larger effort is needed to ensure real-time
capabilities. This adaptation will be carried out in Python.

Goal 3: Implement Real-time Mobility Features on the Smartphone
A procedure that runs the mobility feature algorithms on a smart-phone has to be
written which involves a couple of steps. Location data has to be collected and
stored on the smartphone, and then it has to be demonstrated that features can be
computed whenever they need to be. However, storing raw data every day would
end up taking up too much disk space and is therefore not an ideal solution when
working with a smartphone. This means the solution has to be able to compute these
history-dependent features without relying on storing raw data of each day. This
implementation will be carried out in the Dart programming language.

Goal 4: Design and Release Flutter Software Package
The software package should be designed to perform feature computation in a way
that is easy to use for an application programmer. In addition, this package should
have proper documentation and be released on the Dart package manager 3.

Goal 5: Develop a Demo Mobile Application
To demonstrate how the software package containing the algorithm will be used in
practice, a Flutter demo app will be developed in parallel with the software package.
By developing an actual application and seeing the algorithms in use, a programming
interface that is easy to use from an application programmer’s perspective will emerge.

Goal 6: Conduct a Field Study
To test the quality of the mobility features, a small scale study of 5-10 participants is
planned to run for at least 2 weeks. The participants will use the demo application
in which they will have to fill out a small diary in order to evaluate the features
computed by the algorithms. Participants should be reminded daily to fill out the
diary such that as much user data is collected as possible.

3www.pub.dev

www.pub.dev

1.5 Results 5

1.5 Results
The Mobility Features Package was implemented in the Flutter framework and pub-
lished4. Through the package, an application programmer can compute mobility
features with just 3 lines of code. From the work of Saeb et al. [Sae+15b], Canzian
et al. [CM15] the features Home Stay, Number of Places, Distance Travelled, Loca-
tion Variance, Entropy, Normalized Entropy, and Routine Index were chosen to be
included in the package. A set of additional features: Stops, Places and Moves, were
included as well, inspired by the work of Cuttone et al. [CLL14] and Canzian et al.
[CM15]. Features are computed in real-time using historical Stops and Moves stored
on the phone which lowers the storage requirements greatly compared to using raw
location data for feature computation.

The package does not depend on any specific location plugin due to its design, which
allows the programmer to flexibly choose their plugin for tracking location data. Be-
ing independent of any specific location plugin enables easier maintenance and allows
the package to be used among other packages dependent on location tracking, without
causing dependency issues. Through a field study with 10 participants, the capabili-
ties of the package were demonstrated. For this study, a Flutter application collected
the participants’ location for 3 weeks and used the package to compute the partici-
pants’ features multiple times daily. Participants also filled out a daily questionnaire
about the features, which were compared to the computed features. In the 3-week
study, the following insights concerning the Mobility Features Package were drawn:

• The Mobility Features Packages successfully allowed mobility features to be
computed several times a day. However, non-uniform gaps were observed in the
collected location data, reducing the accuracy of the computed features.

• When comparing the daily features with subjective user data we found that
the Mobility Features Package computes the Number of Places visited with an
RMSE of 0.5 places, the Home Stay percentage with an RMSE of 14.3% and
the Routine Index with an RMSE of 22.5%.

• The algorithms tend to undershoot in predicting the Number of Places and
Home Stay, which is likely due to gaps in the collected data. There is no
consistent over- or undershooting shown when it comes to computing the Rou-
tine Index. This likely stems from the between-subject variance in the routine
answers as well as the gaps in the location data.

The thesis lastly discusses different approaches to mitigate the errors in computing
features, i.e. how the algorithms can be improved and how gaps in the data can be
handled in the future.

4https://pub.dev/packages/mobility_features

https://pub.dev/packages/mobility_features

6 1 Introduction

1.6 Thesis Overview
The process of developing the Mobility Features Package is documented in the follow-
ing chapters for which a brief overview is given below.

Chapter 2: Related Work will outline a set of relevant contributions related to
behavior and mental state tracking through mobile sensing.

Chapter 3: Theoretical Background will describe the mathematical theory be-
hind computing the features. This includes algorithm design and definitions of all
the features in mathematical terms. This section lays the groundwork for the later
implementation in any programming language.

Chapter 4: Software Design will discuss the design choices and principles used to
model a software system capable of computing the mobility features. Design pertains
to both how the internal system of the package works as well as the public-facing API
which is the interface the application programmer talks to when using the package.

Chapter 5: Flutter Implementation will describe how the domain model and
the feature algorithms were implemented in the Dart language. How a user may use
the final version of the package is also described.

Chapter 6: Validation will outline the field study that was conducted in which
participants were tracked with a mobile application that used the Mobility Features
Package to compute daily features based on their location data. Implementation of
the mobile application is also discussed in this chapter.

Chapter 7: Results and Discussion will include data analysis of the study in
which the computed features are compared with the subjective answers given by
participants. Additionally, further work is discussed including improvements to the
package and future integration into other projects.

Chapter 8: Conclusion will report the major findings of the thesis and answer the
research questions in detail.

CHAPTER 2
Background and Related Work

Providing a software package for computing mobility features is a novel idea which
does not exist in the literature. What does exist however are contributions describing
how a user state used for phenotyping can be inferred from location data as well
as contributions describing mobile sensing frameworks for digital phenotyping. The
work of this thesis lies somewhere in between these two topics.

2.1 Mobile Sensing and Digital Phenotyping
The work by Insel [Ins18] deals with the topic of collecting and aggregating user data
into a so-called digital phenotype. It is predicted that by 2050, the biggest impact
in psychiatry and mental health will have been the revolution in technology- and
information science. Smartphones have become ubiquitous in the past decade and
there are over three billion smartphones with a data plan worldwide, each of which
has computing power which surpasses supercomputers of the 1990s. In areas around
the world without access to resources such as clean water and food, ownership of a
smartphone, and access to information has become a symbol of modernity. Insel also
notes that smartphones offer an objective form of mental-state measurement which
uses built-in sensors such as geo-location, accelerometer, and human-computer inter-
actions (HCI) to infer the state of the patient. This makes it possible to assess people
by using data in a real-time fashion, rather than in retrospect as is currently is done.
Digital phenotyping could in theory fill the role of a smoke detector which provides
early signs of relapse and recovery, without replacing the face-to-face consultations
entirely. In addition, this also allows researchers to track patients in their own envi-
ronment, rather than in a clinical environment.

In the realm of psychiatry, a current data collection problem is the dependence on
self-reporting of sleep, appetite, and emotional state, even though it is recognized
that depression will impair people’s ability to remain objective in assessing their own
behavior and thus data is prone to be faulty. Another problem discussed by Insel is
how people suffering from mental illness tend to not seek help before it is too late.
Depressive relapses are therefore also often reported with considerable delay for pa-
tients currently in treatment.

Palmius et al. [Pal+17] explain that early identification and intervention for emer-
gent mood episodes are highly important for managing mood disorders. Educating

8 2 Background and Related Work

the patients to be able to self-identify early symptoms of relapsing has been associ-
ated with improvements in the patient’s ability to recover from relapses. Ubiquitous
mobile computing has made it possible to develop low-cost, long-term solutions for
mood state and behavior monitoring. Early contributions focused on self-reporting
of daily symptoms which suffer from decreased patient engagement whenever the pa-
tient relapses. Passively monitoring patient through background data collection via
the smart-phone require no manual input from the patient is, therefore, a promising
venue.

2.2 Inferring User State from Location Data
Mobile sensing is the ability to unobtrusively collect sensor data from built-in phone
sensors, and within the realm behavior and mental state inference, location data is
commonly used. The work by Saeb et al. [Sae+15b], Canzian et al. [CM15] and
to some extend Cuttone et al. [CLL14] forms the basis of this thesis with regard to
mobility features. The work by Palmius et al. [Pal+17] is a continuation of the work
by Saeb et al., and provides a highly insightful discussion of their findings.

Saeb et al. provides a list of mobility features and relate them to mental state and
user behavior. The features are outlined in Table 2.1. Out of these features, the
authors found that Home Stay, Location Variance, Normalized Entropy, and Circa-
dian movement correlate strongly with the PHQ-9 score (see Appendix A). Clinical
assessment of depressive symptoms is usually done using questionnaires, such as the
patient health questionnaire (PHQ-9). These questionnaires evaluate symptoms re-
lated to the patient’s state of mind, which for depressed patients tend to change.
Their findings, therefore, indicate that it is possible to monitor depression passively
using GPS data tracked via the smart-phone. They explain that most people are
unwilling to answer questions repeatedly over long periods, which is the case with
an evaluation system based on the PHQ-9 questionnaire. Passive monitoring via the
patient’s smartphone could greatly improve the management of depression in popu-
lations by discovering relapses of high-risk patients earlier, so that they may receive
the treatment they need before it is too late.

Canzian et al. provides a contribution similar to Saeb et al. and additionally discuss
how existing digital systems for diagnosing depression require the user to interact
with the device. These interactions can be inputs such as mood-state provided a few
times a day, which is highly subjective and thus error-prone. Canzian et al. address
this issue with objective patient data, namely the mobility patterns of users. These
patterns were derived from unobtrusive monitoring of location data through smart-
phone apps. These patterns are described by the mobility metrics (i.e. features) listed
in Table 2.2. The authors found a significant correlation between these metrics and
depressive moods similar to [Sae+15b] for which the PHQ-8 questionnaire is used as
a reference. This is the same questionnaire as the PHQ-9, although only containing

2.2 Inferring User State from Location Data 9

Feature Description
Number of Clusters Number of clusters found by the clustering

algorithm
Home Stay Percentage of time stayed at the home clus-

ter
Location Variance Variance of the location of stationary

points
Location Entropy Entropy of the time distribution wrt. clus-

ters
Normalized Location Entropy Entropy normalized by the maximum pos-

sible entropy. Invariant to the number of
clusters

Transition Time Percentage of time not stationary
Total Distance Total distance travelled
Circadian Movement The degree to which changes in the location

follow a 24 hour rhythm

Table 2.1: The Mobility Features defined by Saeb et al. [Sae+15b].

the first 8 questions. The Routine Index feature from Canzian et al. roughly corre-
sponds to the Circadian Rhythm feature in [Sae+15b]. Canzian et al. [CM15] uses
the notion of trajectories including places and moves defined by Spaccapietra et al.
[Spa+08] to define the mobility trace feature. This feature is used to derive the rest of
the features, which is also the approach used for this thesis, although the terminology
differs slightly.

Cuttone et al. [CLL14] investigates how accurate significant locations can be inferred
from sparsely sampled location data using the GPS tracker in smartphones. For lon-
gitudinal studies, it can be a problem for the phone battery if the sampling rate is too
high. Therefore a more low-energy approach is used where the sampling rate- and the
location accuracy are low. A small-scale study was conducted in which location data
was collected continuously and the users filled out an online diary on a daily basis.
The aim was to compute features Stops and Places of Interest (POI) for each user
and match them with the provided answers. These features are described in Table 2.3.

The work by Palmius et al. [Pal+17] aims to identify periods of depression using
location data collected from mobile phones in a study of individuals suffering from
bipolar disorder. The authors conclude that location data features can provide a
useful tool for identifying depressive symptoms in bipolar patients. Palmius et al.
use many of the same features as Saeb et. al [Sae+15b; Sae+15a] which are found in
Table 2.4.

10 2 Background and Related Work

Feature Description
Place A location the user frequently visits
Significant Place One of the top 10 most visited places out

of all places
Move A trajectory between two places
Mobility Trace The stops and moves a given time interval
Total Distance Distance travelled for a given time interval
Max Distance Maximum distance between any two points

for a given time interval
Radius of Gyration Radius of the area covered for a given time

interval
Standard deviation of Displace-
ment

Standard deviation for stop locations for a
given time interval

Max Distance from Home Maximum distance from home to any place
visited in a given time interval

Number of Places The number of unique places visisted for a
given time interval

Number of Significant Places The number of unique significant places vis-
ited for a given time interval

Routine Index The average difference between the mobility
behaviour of the user for a given interval,
on a given day, compared to the same time
interval on other days

Table 2.2: The Mobility Features defined by Canzian et al. [CM15].

Feature Description
Place of Interest (POI) Location of relevance frequented by the

user, e.g. home, gym or workplace
Stop A visit to a POI with an arrival- and de-

parture timestamp

Table 2.3: The Mobility Features defined by Cuttone et al. [CLL14].

2.2.1 Data Collection
Saeb et al. used a custom Android application, Purple Robot, which collected the
users’ GPS data with a sampling rate set to once every 5 minutes. Participants had
the application manually installed on their existing phones or were given an Android
phone with the app pre-installed on it which they were to use as their primary phone.
Participants filled out a PHQ-9 questionnaire just prior to starting the study, and
once again when the study concluded after 14 days.

2.2 Inferring User State from Location Data 11

Feature Description
Entropy (E) A measure of the variability in the time that

participants spend in the different locations
recorded

Normalized Entropy (NE) Entropy normalized by the maximum pos-
sible entropy.

Location Variance (LV) An indication of how much the individual
is moving between different locations based
on the sum of statistical variances in the
latitude and longitude

Home Stay (HS) The percentage of time that the participant
is recorded in their home location.

Transition Time (TT) The percentage of all the time spent trav-
elling between stationary locations in the
data recorded

Total Distance (TD) The sum of Euclidean distances between the
consecutive location points recorded in the
data

Number of Clusters (N) The number of distinct location clusters ex-
tracted in the week-long data sections using
the K-means method

Diurnal Movement (DM) A measure of daily regularity quantified us-
ing the Lomb-Scargle periodogram to deter-
mine the power in frequencies with wave-
lengths around 24 h.

Diurnal Movement on Normalised
Coordinates (DMN)

Similar to the DM feature but calculated
on a normalised set of coordinates, where
the latitude and longitude are both scaled
to have zero mean and unit variance within
the period being classified.

Diurnal Movement on the Dis-
tance From Home (DMD)

Similar to the DM and DMN features
but calculated using the Euclidean distance
from home, rather than latitude and lon-
gitude, normalised to have zero mean and
unit variance within the period being clas-
sified.

Table 2.4: The mobility features described by Palmius et al. [Pal+17].

12 2 Background and Related Work

Canzian et al. built a custom Android app (MoodTraces) that collected data from
46 users over almost 10 months. The app had participants fill out a survey daily
between 16:00 and 02:00 the subsequent day, where a phone notification prompted
the participant to fill out the survey. Each survey contained a ’trap’ question which
asked whether the user was currently at home or work. The answer to this question
could be verified in the data analysis and was used to filter out invalid surveys. The
survey asked the user to name all the depressive symptoms they had on that day.
The PHQ-8 score is normally done by asking every 14 days, and have the participant
answer how many times they had a symptom over the last 14 days. By using the
questionnaires, the PHQ-8 scores could be computed by summing the number of days
with the symptoms, which in total adds up to a score. It sometimes happened that
users forgot to fill out their questionnaire or gave an invalid survey response, in which
case an interpolation method was used to cover gaps in the data.

Cuttone et al. conducted a study with 7 participants including the author, with the
author being tracked for four months and the other participants being tracked for two
months. Data collection was done with a custom smartphone app developed using
the Funf Open Sensing framework 1, where participants were provided an Android
phone to use as their main phone. Sampling was carried out with a very low sampling
rate of once were 15 minutes which had the upside of not draining the phone battery
much. Participants were also instructed to fill out a daily diary of the place they
had been at, and their movements. This was done through an online spreadsheet and
participants were reminded via email. The authors commented that using diaries as
ground truth is difficult due to participation compliance decreasing over time since
filling out a diary is tedious. In addition, the concepts of stops and POIs are sub-
jective which means that even if participants do fill out their diary, the answers are
error-prone. This was evident in the study where participants would sometimes fill
out sequences of POIs in the wrong temporal order, and entries were prone to have
typos in them which later had to be manually corrected by the researcher. At the
end of the study, the participants were asked to create a subjective list of their POIs
with coordinates obtained through Google Maps.

Palmius et al. collected data from 49 participants over 3 months in which an open-
sourced Android application was used. Participants were provided an Android smart-
phone with the app pre-installed in order to track their location for the duration of
the study. Two groups of participants were recruited for the study:

• Healthy patients with no symptoms (20)

• Patients diagnosed with bipolar disorder or borderline personality disorder (29)

Patients self-reported via a questionnaire with 16 questions on a weekly basis which,
similar to the PHQ questionnaire, scores the patient on a depression scale. Partici-

1https://www.funf.org/

https://www.funf.org/

2.2 Inferring User State from Location Data 13

pants were reminded to fill out the questionnaire via e-mail on a weekly basis. The
questionnaire could be completed at any time during the week, and an interpola-
tion method was used to account for the varying response times as well as missing
responses.

2.2.2 Data Processing
Saeb et al. use a two-stage pipeline for location data processing:

• Each data point is labeled as either being in a stationary or transitional state
by using the speed of each data point. Points are labeled using a threshold of
1 km/h; a speed lower than the threshold indicates the state is stationary and
higher is a transitional point.

• The K-means clustering algorithm is used to group the stationary points into
frequently visited places.

After this pre-processing procedure was applied, the features described in Table 2.1
were derived.

Canzian et al. uses an algorithm for sampling location data that identifies places
as data is collected. This method uses an activity recognition algorithm, using the
accelerometer, to determine the user’s activity state. This is done by modeling the
user as being a state-machine with 3 states:

• Static (S)

• Moving (M)

• Undecided (U)

A user is said to arrive at a place if the transition M → U → S happens and a
departure is noted when S → U → M happens. By using all the location samples
in between the arrival and departure, the centroid of the place can be found using a
clustering algorithm. In addition, an iterative clustering algorithm is used to merge
places with close proximity to each other, specifically, a distance of 200 meters is used
as the merging criterion.

Cuttone et al. describe two approaches for finding stops and POIs. The first involves
finding stops first and then grouping stops into POIs. The second approach works
the other way around and identifies POIs first by clustering the location data and
inferring the stops from these POIs afterward. For finding the stops, 2 different
algorithms, distance grouping and speed thresholding, were tried each yielding similar
results.

14 2 Background and Related Work

• Distance grouping involves iterating location points temporally and grouping
them based on a max-distance measure. Each stop is created with a single
location point loci and each subsequent location point loci+k is then added
to the stop, with k being incremented by 1 each iteration. This is done until
distance(loci, loci+k) > dmax where dmax is the maximum allowed distance. By
increasing the max-distance fewer stops of longer duration will be found. For
finding the optimal value of this parameter, the f1 score was calculated for the
specific dataset.

• Speed thresholding determines which location points belonged to stops, and
which points did not. The max-speed parameter was determined by grouping
data samples based on their timestamp, each group having a duration of T .
Choosing the max-speed parameter was then done by considering the speed
between the median location of each bin.

For both these algorithms, the DBSCAN clustering algorithm by Ester et al. [Est+96]
was applied afterward, which groups stops into places and marks noisy stops as not
belonging to a place.

The second approach used a Gaussian Mixture Model to cluster the raw location data
into places, and infer the stops from these clusters. The upside to this method is that
it is much simpler to perform on paper, but the downside is that it does not consider
the temporal dimension at all which can contain a lot of useful information. This
means the GMM uses more computing power than the other two approaches.

For this thesis, a modified version of the distance grouping algorithm was chosen, is
described in Chapter 3.
Palmius et al. performed a de-noising of the location data by removing points sam-
pled close to each-other, analogous to how Cuttone et al. finds stops. The dataset
was further down-sampled to a sample rate of 12 samples per hour. Additionally,
data imputation was applied to cover gaps in the location data by using the mean
latitude and longitude of the sample before and after the gap.

For extracting location clusters, the down-sampled and imputed data were subjected
to speed-thresholding using a speed of 1.5km/h as the threshold. Samples with a speed
lower than this were considered stationary and were clustered with the K-means++
algorithm, an improvement to the original K-means algorithm. The optimal number
of clusters, K, was found by setting K = 1 and increasing K until the centroids of all
clusters were less than 400 meters apart. This parameter value was specific to their
dataset.

The home location cluster was identified by computing the most visited cluster be-
tween 02 AM and 07 AM. The remaining features were computed in a similar fashion
to Saeb et al. from which the authors have drawn a lot of inspiration. The Diurnal

2.2 Inferring User State from Location Data 15

Movement feature is equivalent to the Circadian Movement feature from Saeb et al.
(see Table 2.1). In addition to the features listed in Table 2.4, Palmius et al. also
creates a weekday (WD) and weekend (WE) subset of the features which are used in
the feature selection process. It is expected for individuals working full-time to have
very different feature values on weekdays where they work compared to the weekend.

A classification accuracy of 85% was achieved by using 5 features, found through
cross-validation, which were:

• Entropy (WD)

• Number of Clusters

• Time Travelled (WD)

• Diurnal Movement on the Distance From Home

• Diurnal Movement

Here, WD refers to the feature computed on weekdays only.

2.2.3 Feature Discussion
Saeb et al. finds that the features that correlated the strongest with the PHQ-9 score
were

• Circadian Movement (negative)

• Location Variance (negative)

• Normalized Entropy (negative)

• Home Stay (positive)

The authors discuss how the negative correlation of the Circadian Movement feature
suggests that depressed individuals tend to have a less regular routine compared to
people with non-symptomatic people. This relationship also exists for the Location
Variance and Normalized Entropy which indicates that spending time at many differ-
ent places is correlated with being depressed. A positive relationship exists between
the Home Stay feature and the PHQ-9 score, indicating that depressed individuals
tend to stay at home a lot of the time. This means there is a duality; it is a sign of
being depressed to spend time at many places, but also to spend most of the time at
a single place, i.e. home.

Palmius et al. also points this duality out and attributes their misclassification to
how certain features may correlate differently with depressive symptoms, based on

16 2 Background and Related Work

the patient. As an example, they mention that being employed at a full-time job will
keep you in a routine, but does guarantee that you are not unwell. Another example
provided is that some people choose to stay at home for reasons unrelated to their
pathology.

2.3 Mobile Sensing Frameworks
The AWARE Framework by Ferreira et al. [FKD15] is an open-source toolkit and
a reusable platform for collecting data and generating user-context on mobile de-
vices. Phones possess high-quality sensors but are resource-constrained with regards
to their processing speed and battery capacity, which must be considered when com-
puting contexts in real-time. The AWARE Framework aims to reduce the software
development effort of researchers when building mobile tools for developing context-
aware apps. By concealing the underlying implementation of sensor data-retrieval
and context-generation from the programmer, AWARE shifts the focus from software
development to data collection and analysis. Currently AWARE is available on both
iOS and Android natively, meaning two code bases will have to be maintained if one
wishes to write both an Android and iOS application. AWARE supports a number of
data channels 2 such as the built-in sensors, as well as more HCI-based data sources
such as Application Usage, SMS, and Phone Call Logs. Some of the channels are
however not available on iOS due to the iOS developer API being more restrictive
than that of its Android counterpart for most data channels.

Inspired by AWARE, the CARP Mobile Sensing (CAMS) Framework by Bardram
[Bar20] is a mobile sensing framework for adding digital phenotyping capabilities to a
mobile-health app. A number of technological platforms for mobile sensing have been
presented over the past years and a lot of knowledge on how to facilitate mobile sens-
ing has been accumulated. CAMS is a modern cross-platform software architecture
providing a reactive and unified programming model that emphasizes extensibility,
maintainability, and adaptability. CAMS is written in Flutter and in contrast to
AWARE uses a single code base to compile to both Android and iOS.

CAMS is designed to collect research-quality sensor data from the many smartphone
data channels such as sensors and location data, in addition to external sensors that
the phone is connected to, such as wearable devices. The main focus of the framework
is to allow application programmers to design and implement a custom mobile health
app without having to start from scratch, with regards to the sensor integration. This
is done by enabling the programmers to easily add mobile sensing data channels to
their application. This would include adding support for collecting health-related
data channels such as ECG, GPS, Sleep and format data according to standardized

2https://awareframework.com/sensors/

https://awareframework.com/sensors/

2.3 Mobile Sensing Frameworks 17

health data formats (like Open mHealth schemas 3).

Last but not least, the collected data should be uploaded to a server, using an API
(such as REST), and should come in a standardized format such that it may easily
be imported for data analysis. To include as many data channels as possible the
application should also be able to support different wearable devices for ECG moni-
toring and activity tracking. Hence, the focus is on software engineering support by
providing a high-level programming API and a run-time execution environment. In
order to simplify the process for the researcher further, the researcher only has to
maintain a single code base - in contrast to AWARE. This is because CAMS is writ-
ten in the cross-platform framework flutter where one common code-base in the Dart
programming language is used. Maintenance of the framework will be ongoing and
is required for it to stay relevant as the underlying mobile phone operating systems
and APIs are evolving.

An integration of the Mobility Features Package for the CAMS Framework is planned
but is a future goal beyond this thesis (see Future Work in 7).

3https://www.openmhealth.org/documentation/#/schema-docs/schema-library

https://www.openmhealth.org/documentation/##/schema-docs/schema-library

18

CHAPTER 3
Theoretical Background

This chapter will describe the theoretical background for the Mobility Features Pack-
age including all the features chosen to be included and how they are computed.

3.1 Location Data
The Navbar Global Positioning System (GPS) is a space-based radio-navigation sys-
tem developed by The US Office of the Department of Defense [Dep20] that provides
location data to GPS receivers such as the one found in smart-phones. GPS is capable
of delivering information such as latitude and longitude coordinates which indicates
where on the Earth’s surface the receiver is located, in addition to the altitude, i.e.
the distance from the surface. Previously one would have to use a stand-alone GPS
receiver as it was done by Ashbrook et al. in 2002 [AS02] in order to collect GPS data.

Nowadays, smart-phones contain GPS receivers which enable users to use a variety of
navigation services and applications with their phones alone. For calculating distances
between points, a standard Euclidean distance metric should ideally not be used
since the Earth’s surface is not a plane. Multiple methods of calculating the distance
between GPS coordinates exist, one of the fastest to compute being the Haversine
formula [Bru13]. The Haversine distance computes the great circle distance between
two points on a sphere. The Earth is however not exactly spherical, and therefore the
Haversine distance is an approximation that works for shorter distances. Given the
radius of a sphere r and two points on the sphere, A and B, the haversine distance
between the two points can be directly computed as

d = 2r · arcsin

(√
sin2

(
latB − latA

2

)
+ cos(latA) · cos(latB) · sin2

(
lonB − lonA

2

))
(3.1)

3.2 Algorithms
In this section, an overview of the algorithms used by the Mobility Feature Package
will be provided including formal definitions and the considerations behind. The ac-

20 3 Theoretical Background

tual implementation will be discussed in chapter 5.

The Mobility Features included in the Mobility Features package is a subset of the
features described by Saeb et al. [Sae+15b], Canzian et al. [CM15] and Cuttone et
al. [CLL14] and are outlined in Table 3.1.

Feature Description
Stop A collection of location samples representing visit at

a known place with an arrival and departure times-
tamp

Place A cluster of stops found the DBSCAN algorithm
Move A travel between two stops with a path of location

samples
Number of Places The number of places visited today
Home Stay The percentage of the time spent at the home place

today
Routine Index The overlap of the time-place distribution that be-

tween today and the max 28 previous days
Location Variance The statistical variance in the latitude and longitude

coordinates today
Distance Travelled The total distance travelled today in meters
Entropy The entropy of the time-place distribution today
Normalized Entropy The entropy normalized the by the max possible en-

tropy. Invariant to the number of places visited
today

Table 3.1: The features included in the Mobility Features Package.

3.2.1 Dates and Periods
For collecting data over time, we define today’s date as dt and the date yesterday as
dt−1 in order to define a period as the set of today’s date and it’s preceding 28 dates
defined as D = {dt−28, dt−27, ..., dt}. This definition is necessary for computing the
Routine Index feature since the feature is computed by comparing today with the
last 28 days.
The reason for choosing 28 days, i.e. 4 weeks is that we wish to capture the user’s
routine at the moment. Peoples’ habits will inevitably change somewhat over time,
and if one compares the routine of a certain person now to what their routine looked
like a year ago, it is likely somewhat different. A routine will change over time, and
therefore it makes the most sense to base the Routine Index around recent dates.

3.2 Algorithms 21

3.2.2 Location Sample
A location sample is a timestamped location and is defined by the tuple x = (T, l)
where T is the timestamp and l is the location defined as a geographical point on the
globe. The distance between two location samples xa and xb is defined as δ(xa, xb) =
δ(la, lb) where δ is the haversine distance function.

3.2.3 DBSCAN
The DBSCAN algorithm by Ester et al. in 1996 [Est+96] is an algorithm for clus-
tering GPS data points. The core concept of DBSCAN is to cluster data based on a
density measure rather than a pure distance measure, such as is done in the K-means
clustering algorithm. This allows the clusters to take on nearly any shape and size,
in contrast to being constrained to rounder shapes by using the K-means algorithm
or a Gaussian Mixture Model, see figure 3.1 for examples.

Figure 3.1: Data from three different databases with very distinct cluster shapes.
Database #1 has very round clusters which would identified correctly
with K-means whereas database #2 and #3 have clusters which would
require a density-based clustering approach such as DBSCAN. Source:
[Est+96].

GPS data has a higher density inside clusters than outside the clusters and the den-
sity in noisy areas is lower than density in clusters. Here, noisy refers to points that
are spread randomly within some areas and do not cluster around a centroid.

The DBSCAN algorithm will, given a set of geospatial data points find these dense
clusters, as well as noisy data points. Clusters will in our case correspond to places

22 3 Theoretical Background

and the noisy data points are outlier-stops that do not belong to a place. The output
of the algorithm is the labeling of each point in the input dataset as either belonging
to a cluster or being a noisy data point.

For finding clusters, DBSCAN takes three different parameters as input:

• A distance measure, in the Mobility Feature Package the haversine distance
function is used

• A distance threshold for two points to be considered to lie within the same
cluster

• The minimum number of points required to make a cluster, which by default is
1.

3.2.4 Finding Stops
Finding stops is done by applying a modified version of the distance grouping pro-
cedure described by Cuttone et al. [CLL14]. The modified algorithm traverses the
location samples in temporal order and adds the next location sample if it lies within
the max-radius of the current stop. The modification is that when comparing each
new location sample, the median location of the current stop is used rather than the
distance between the current- and next location sample. Another modification is the
duration-filtering, which removes stops shorter than a given minimum duration. The
max-distance parameter is set to rstop = 25 meters and the minimum duration is set
to tstop = 3minutes. Using a very high sampling frequency will result in noisy stops,
which was not accounted for the original definition by Cuttone et al. [CLL14]. A
stop is defined in Equation (3.2).

S = {s1, s2, ..., s|S|} | si = (Tarr, Tdep, l) (3.2)

The triple (Tarr, Tdep, l) denotes the arrival timestamp, the departure timestamp and
the cluster location for the stop si, respectively. Given a stop s, ∆T (s) is the function
for calculating the duration of the stop. Stops are found using Algorithm 1.

3.2 Algorithms 23

Algorithm 1 The algorithm for finding Stops
Input: set of time ordered data points, X
Output: set of stops, S

S ← {} while at least one point x′ remains in X do
X ← X − x′;
s← {x′};
for x ∈ X do

if δ(x,s) ≤ rstop then
s← s ∪ {x};
X ← X − x;

else
S ← S ∪ {s};
break for-loop;

end
end

end
S′ ← S|∆T (si) > tstop for all si ∈ S;
return S′

Given a stop s, the arrival is denoted s.arrival and departure s.departure.

3.2.5 Finding Places
Similar to Cuttone et al. places are found by clustering stops using the DBSCAN al-
gorithm by Esther et al. [Est+96]. The epsilon parameter of the DBSCAN algorithm
is set to rplace = 50 meters - this parameter value was found in a self-study described
in Chapter 6. A single place consists of a set of unique stops, and each of these stops
belongs to exactly one place. All the stops today in the period D should be used for
finding places, for reasons explained in subsection 3.2.7. That is, given a set of stops
S for the period D, the set of places P for the period D is defined by Equation (3.3).

P = p1, p2, ..., pN | pi = {s1, s2, ..., s|pi|} (3.3)

The procedure for finding places defined in Algorithm 2.

24 3 Theoretical Background

Algorithm 2 The algorithm for finding Places
Input: set of stops, S
Output: set of places, P
L = DBSCAN(S, rplace) where si has label li;
group each stop si ∈ S by li;
S′ = {si | li ≥ 0}, |S′| = N ;
pi = S′

i where each stop s ∈ S′
i has the label li;

return P = {pi : i = 0, ..., N};

3.2.6 Finding Moves
A move is calculated using the stops- and the location sample by going through each
step and calculating the distance between the current stop and the following stop. The
distance is computed by going through all the location samples which were sampled
in the time interval between the two stops. These points form the path which was
taken between the two stops and the path is used to calculate the exact distance
traveled. In addition, two placeholder stops are created by using the first and the
latest location sample. This is done to avoid edge cases where tracking was started
while moving. In such a case no moves can be created before the user is stationary
for some time and at least one stop has been discovered. These stops are not used
for finding places. A set of moves is defined in (3.4).

M = {m1, m2, ..., m|M |} | mi = (sa, sb, Xi), Xi = {x1, x2, ..., x|Xi|} (3.4)

Moves are found using the following procedure outlined in Algorithm 3.

Algorithm 3 The algorithm for finding Moves
Input: set of stops, S, set of time ordered data points, X
Output: set of moves, P
M = {}
S = S ∪ {x0, x|X|};
for si ∈ S do

Xi = x for which si.departure ≤ x.timestamp ≤ si+1.arrival;
di =

∑
xj∈Xi

δ(xj , xj+1);
mi = (si, si+1, di);
M = M ∪ {mi};

end
return M ;

3.2 Algorithms 25

3.2.7 Hour Matrix
The Hour Matrix is an auxiliary feature used to compute the home stay and Routine
Index feature. It is a matrix with 24 rows, each row representing an hour in a day, and
columns equal to the number of places. The Hour Matrix represents the time-place
distribution for the user during a day.

Place #1 Place #2 ... Place #N
00 - 01
01 - 02
...
16 - 17
17 - 18
18 - 19
...
23 - 00

Figure 3.2: An Hour Matrix.

This matrix is constructed from all the stops on a given day, each of which belong
to certain place and has an arrival and departure timestamp. From this, it can be
calculated exactly which hour slot(s) to fill out and the duration to fill that slot with.
We define the following constraints on the Hour Matrix:

• The Hour Matrix has exactly 24 rows, each representing 1 hour in a day.

• The number of columns represents the number of places for the period.

• An entry represents the portion of the given hour-slot that was spent at a given
place.

• Each row can maximally sum to 1.

Formally, given a period (D) for which the number of places is given as N the Hour
Matrix H for today (dt) is defined as:

H(dt) ∈ [0, 1]24×N ,

N∑
j=1

Hdt
i,j ≤ 1 (3.5)

Given a stop s, let i = hour(s.arrival), j = hour(s.departure).

Hi,p ← Hi,p + T (3.6)

If i = j then T = ∆T (s.departure − s.arrival), otherwise the following algorithm is
applied:

26 3 Theoretical Background

Hi,p = 1− T (3.7)

Where the value of T depends on the variable k = i up to j:

T (k) =

∆T (Tdep − Tarr) if i = k = j

1− (hour(Tarr)− Tarr) if i = k < j

1 if i < k < j

hour(Tarr)− Tarr if i < k = j

(3.8)

3.2.8 Home Stay Feature
The homestay feature indicates the percentage of time spent at the Home cluster, out
of all the time of the day. Saeb et al. define the home cluster as the cluster which
the user spends the most time between 00:00 and 06:00. In the work by Saeb et al.
and Canzian et al. [Sae+15b; Sae+15a; CM15] the home cluster was evaluated over
the duration of the whole study, however, we define it on a daily basis since the home
cluster may change from day to day. Formally, the home place ph(dt) for the date dt

where the index h is found using Equation (3.10).

h = argmax
n

6∑
m=1

N∑
n=1

H(dt)m,n (3.9)

In the work by Saeb et al. [Sae+15b] and Canzian et al.[CM15] it is not stated how
this would be calculated for an incomplete day. It was chosen to use the time elapsed
from midnight until the departure of the last known stop. The Home Stay feature
is computed using (3.10) where the duration of a stop s will be denoted ∆T (s) and
similar the duration spent at a place p is defined as ∆T (p).

∆T (ph(dt)) =
∑

i ∆T (si) | si ∈ ph(dt)
Tnow − T0

(3.10)

Where Tnow is the departure time of the last known stop, and thus Tnow − T0 is the
time elapsed since 00:00:00 today.

3.2.9 Total Distance Travelled Feature
First, we define the distance of a move mi as the sum of all the distances in the path
of location samples in Xi, i.e.

δ(mi) =
|Xi|−1∑

j=1
δ(xj , xj+1) (3.11)

The Total Distance Travelled for today dt is defined as

3.2 Algorithms 27

δ(dt) =
|M |∑
i=1

δ(mi) (3.12)

where M refers to the moves today dt.

3.2.10 Number of Places Feature
By using the DBSCAN algorithm to cluster a set of stops, each stop is given a
cluster label, either being non-negative if it belongs to a cluster, or the label -1 if it is
considered noise. The Number of Places is defined as the size of the set of non-negative
cluster labels K = {k1, k2, ..., kN}, i.e.

N = |K| (3.13)

3.2.11 Location Variance Feature
Defined by Saeb et al. [Sae+15b], the Location Variance is defined as the natural
logarithm to the variance of the latitude and longitude coordinates summed together:

σ2 = log(σ2
lat + σ2

lon) (3.14)
The logarithm is applied in order to compensate for the skewness in the location
distribution of location variances across users.

3.2.12 Entropy and Normalized Entropy Features
Within the field of Information Theory, entropy is described in MacKay [Mac03] as
a quantity associated with a random variable, and can be interpreted as the average
level of information contained within the outcomes of that variable.

The Entropy E(X) of the set of outcomes X = {x1, x2, ..., xn} is defined as

E(X) = −
n∑

i=1
p(x) log p(x) (3.15)

The Entropy is maximised if p(x) = 1
n for all x ∈ X, i.e. all outcomes are equally

likely. If this is the case, the Maximum Entropy becomes

Emax(X) = −
n∑

i=1
p(x) log p(x) = −

n∑
i=1

1
n

log 1
n

= −n
1
n
· − log n = log n (3.16)

We define the Normalized Entropy as the Entropy normalized using the maximum
possible entropy Emax:

28 3 Theoretical Background

EN (X) = E(X)
Emax(X)

∈ [0, 1] (3.17)

The Normalized Entropy (NE) makes it easier to compare Entropy values of different
distributions since they all reside on the same scale, being a scalar value between 0
and 1. A NE value near 1 indicates that the X follows a uniform distribution where
every outcome is equally likely. A small NE value indicates that the distribution
is very skewed, with certain outcomes having very high likelihood and some having
much lower likelihood. In the context of user mobility, we can view the time user
spends at a certain place as the outcome of the place variable, i.e.

E(P) = −
N∑

i=1
Pr(pi) log Pr(pi) · − log N = log N (3.18)

where N is the Number of Places feature. By further using (3.19) and (3.18) we get
the Normalized Entropy for the time-place distribution:

EN (P) = E(P)
log N

∈ [0, 1] (3.19)

where P is the set of places visited today and Pr(pi) refers to the time spent at
place pi today. It must holds that Pr(p) > 0 for p ∈ P , otherwise the term log P (pi)
cannot be evaluated since log(0) is undefined. The concept of NE gives us a tool to
say something about where the user spends their time; a high NE value indicates they
spend their time uniformly among the places, whereas a low value indicates that the
user spends most of their time at very few places.

3.2.13 Routine Index Feature
The Routine Index describes how similar the place-time distribution of a given day is,
compared to previous days for a period D. The place-time distribution for a day is
defined by how much time was spent for each of the 24 hours, at different places. For
computing the Routine Index a period length of 28 days was chosen, which means the
Routine Index of today describes how similar today was to each day during the last
month. The definition of the Routine Index in Equation (3.23) using the concept of
an Hour Matrix is novel and models the feature as a similarity measure between two
Hour Matrices. More exact, the Routine Index is a similarity measure between the
Hour Matrix today and the Routine Matrix for the last 28 days. The result of the
similarity measure is a scalar between 0 and 1 - a low value indicating a small degree
of overlap and a high value indicating a high degree of overlap.

Given an array of Hour Matrices for a period D′ = D − dt (i.e. the historical dates
preceding today dt) the Routine Matrix is defined as the average entry for each Hour

3.2 Algorithms 29

Matrix given in Equation (3.20). The days contained in |D′| are indexed with the
integer k:

R(D) =
|D′|∑
k=0

1
|D′|

H(dk)i,j (3.20)

The overlap function produces a matrix O given two matrices A and B of equal
dimensions:

O(A, B) =
24∑

i=1

N∑
j=1

min(Aij , Bij) | Aij ≥ 0, Bij ≥ 0 (3.21)

The maximum potential overlap is limited by the minimum of the two matrix sums,
this is reflected in (3.22).

Omax(A, B) = min(
∑

A,
∑

B) (3.22)

The Routine Index for today dt given the historical dates D, is defined as the overlap
normalized by the maximum potential overlap of today’s Hour Matrix and the Routine
Matrix (Equation (3.23)).

r(dt, D) =
∑

(O(H(dt), R(D)))

min
(∑

H(dt),
∑

R(D)
) (3.23)

Comments on the Routine Index Equation (3.23) uses the smallest sum of the
two matrices to normalize the overlap, which is done to avoid punishing days with
gaps in the data too much. In addition, this also makes the feature reflect the time
of the day at which it is calculated: Entries for the hours later than the current time
are not yet observed and are therefore ignored.

An alternative, a simpler definition is to use 24 hours as the maximum potential
overlap. However since travels between places are not reflected in an Hour Matrix,
this would lead to gaps in the data since it takes time to move between places.

Since the feature can indirectly be computed from the stops of the last 28 days, only
the stops are necessary to store. In a field study (described in chapter 6), the author
was found to have had just around 20 stops per day which amounts to under 600
stops for a 4 week period. Computing the feature requires the places to be found,
i.e. to run DBSCAN on the stops, and can result in the feature being expensive to
compute. However, 600 data points is a manageable number to work with.

30 3 Theoretical Background

Routine Index Examples
In Equation (3.24) we see the Hour Matrix (H) which tells the story of a user doing
the following:

• Timeslot 1: The user visits Place #1 for exactly one hour

• Timeslot 2: The user visits Place #2 for exactly one hour

• Timeslot 3: The user visits Place #1 again for exactly one hour

When compared to the Routine Matrix (R) it only overlaps with one hour in total,
where the maximum potential overlap is 3 hours, since both matrices sum to 3 hours.
The Routine Index for these two matrices is thus

H =

1 0 0
0 1 0
1 0 0

 , R =

0 0 1
0 1 0
0 0 1

 , O(H, R) =

0 0 0
0 1 0
0 0 0

 (3.24)

For (3.24) the Routine Index becomes:

RI = 1
1 + 1 + 1

= 1
3

(3.25)

In Equation (3.26) we see the Hour Matrix (H) which indicates the user does the
following:

• Timeslot 1: The user visits Place #1 and #3 for exactly half an hour each

• Timeslot 2: The user visits Place #2 for exactly one hour

• Timeslot 3: The user visits Place #1 and #3 for exactly half an hour each once
again

When compared to the Routine Matrix (R) there is a total overlap of 2 hours. The
maximum potential overlap is 2 hours, since the minimum matrix sum is

∑
R = 2

the Routine Index becomes 1 (See 3.27).

H =

0.5 0 0.5
0 1 0

0.5 0 0.5

 , R =

0 0 0.5
0 1 0
0 0 0.5

 , O(H, R) =

0 0 0.5
0 1 0
0 0 0.5

 (3.26)

RI = 1
1 + 0.5 + 0.5

= 1
2

= 1 (3.27)

CHAPTER 4
Software Design

This chapter deals with the design of the software architecture on a high level and
will describe the package in terms of its components. Components may sometimes
be referred to as classes and vice versa, where component refers to the general term
and class refers to the programming language equivalent of a component.

4.1 System Design
The core idea of the Mobility Feature Package is to provide a very simple program-
ming interface such that computing features can be done with very few lines of code.
This requires hiding the implementation of the package such that the programmer has
very limited ways in which he/she can interface with it. The design of the package
API went through two main iterations which consisted of many smaller iterations.
Mainly, the difference between the final iteration and the earlier iterations is the
amount of code required by the programmer to compute features. Early iterations
put the responsibility on the application programmer to manage historical data. Af-
ter developing the field study app discussed in chapter 6 it was decided to move most
of this logic inside the package. The final iteration is the one discussed in this the-
sis including the choices and lessons learned on the way of designing and developing it.

The flowchart in Figure 4.1 displays the task which the software system must be able
to carry out, as well as which parts are done by the package, and which are done
by the programmer. Namely, the task of collecting location data was chosen to be
carried out by the programmer which was a major design choice. Two reasons led
to this decision, the first of which being that the Mobility Features Package becomes
more loosely coupled. Secondly, it gives the programmer flexibility to collect location
data in the way they see fit. Thirdly, if the package was to implement location data
collection then it becomes harder to maintain since any change to the location plugin
would imply changes to the Mobility Features Package as well.

4.1.1 Component Overview
Figure 4.2 displays how the final iteration looks like as a software system: The main
component is the Context Generator component which is the interface that the pro-
grammer will have access to. This component exposes two interfaces to the program-
mer allowing the user to store their collected LocationSamples as well as generate a

32 4 Software Design

Start

End

Collect Location
Samples

Store Location
Samples

Load Stops,
Moves &

LocationSamples
Compute Features Store Stops and

Moves

Done by the programmer through the package

Done by the programmer

Done by the package

Figure 4.1: Flowchart of the feature computation process.

Mobility Context, which is an abstraction containing all the daily features. The two
exposed interfaces are provided by the programmer through the mobile application.
The Context Generator is also responsible for storing and loading data via the Mo-
bility Serializer component, here the Serializable type refers to any data type that
needs to be stored as historical data.
Figure 4.3 shows the external software system that includes the mobile application
using the package. The design choice of letting the programmer collect location data
themselves is also reflected in the usage of an external location plugin. This location
plugin will deliver location Data Transfer Objects (DTOs) as defined by y Fowler
[Fow+02] [p. 401] to the mobile health application. These objects hold location data,
i.e. latitude, longitude, and a timestamp and can be converted to LocationSamples
and saved through the

4.1.2 Sequence Overview
To display the information flow between the components, sequence diagrams are used.
Figure 4.5 shows the system from an external point of view, where the application
subscribes to location updates via the location plugin, saves location data via the
Mobility Features Package and generates a Mobility Context through it.
From an internal point of view, the Context Generator component calls the Mobility
Serializer for storing and loading historical data, uses the loaded data to generate a
MobilityContext.

4.1 System Design 33

Mobility Features Package

Load Serializable

Context Generator Mobility Serializer

File System

Store Serializable

Read file Write file

Mobility Context

Generate

Store LocationSamples

Generate MobilityContext

Figure 4.2: Component diagram for the Mobility Feature Package from an internal
point of view.

Generate MobilityContext

Mobile Health App
Mobility Features

Package

Store LocationSamples

Location Plugin

Subscribe to GPS data
stream

Figure 4.3: Component diagram for the Mobility Feature Package from an internal
point of view.

34 4 Software Design

Figure 4.4: Component diagram for the Mobility Feature Package from an internal
point of view.

4.1 System Design 35

Figure 4.5: Sequence diagram for mobile health application using the Mobility Fea-
tures Package, i.e. viewed externally from the package.

36 4 Software Design

4.2 Domain Model
The domain model displays the relationships between the smaller components related
to feature computation.

1

Move
2

delimitsbelongs to
Stop

centroid

GeoPosition

Place

MobilityContext

«interface»
Serializable

LocationSample

1

1 1
1

1
1

1...*
1...* 1...* 1...*

11..*

optional

0..*

«interface»
Geospatial

1

1

0..*

centroid

Figure 4.6: UML diagram for the classes used in the Mobility Features Package.

To capture the data model in an object-oriented programming language, the UML
diagram shown in Figure 4.6 was maintained as the implementation went along to
keep track of relationships between the classes.

A GeoPosition represents a 2D position on the Earth’s surface with a geographical
latitude and longitude.

A Location Sample is a time-stamped GeoPosition. By having a time-stamp, a
collection of Location Samples may be ordered and grouped by the time of day. In
essence, the class is a Data Transfer Object (DTO) as defined by Fowler [Fow+02]
[p. 401] which is used to transfer GPS data from an arbitrary Location plugin to the
Mobility Features Package.

An Hour Matrix class is used to calculate the Routine Index feature, as well as to
identify the Home Cluster, which is the place most visited during 00:00 and 06:00.

4.2 Domain Model 37

An Hour Matrix is constructed from a list of Stops which all have the same date.

Stop is a centroid of a data point cluster (i.e. a GeoPosition) with an arrival- and
departure timestamp and a place ID indicating which place it belongs to.

A Place is defined by a GeoPosition computed from a list of Stops and found with
the DBSCAN algorithm. Many Stops can belong to the same Place, but a Stop can
only belong to one specific place.

A Move is constructed from a pair of Stops as well as the set of Location Samples
that was sampled in the time interval between the two Stops. This set of Location
Samples is the path the user took between the two Stops.

A Mobility Context is a component that holds all the mobility features. This
includes the location features (i.e. stops, places, and moves) as well as the derived
features. The component is created from daily stops and moves as well as a list of
places for the whole period. Also, a set of Mobility Contexts from previous days
needs to be provided if the Routine Index feature is to be calculated, but is optional.

The GeoSpatial (Interface) forces any component implementing it to have a GeoPo-
sition. This allows the Haversine distance to be calculated between components of
different types.

The Serializable (Interface) forces any component implementing it to be serializ-
able and deserialize. This is the case for GeoPositions, LocationSamples, Stops, and
Moves.

38

CHAPTER 5
Flutter Implementation

The final version of the package allows the programmer to compute mobility features
with the 3 lines of code displayed in Figure 5.13. This chapter will describe how
the package design described in Chapter 4 was implemented in Flutter such this
programming interface was achieved. The Flutter and Python source code for this
thesis can be found at https://github.com/thomasnilsson/mobility-features-
thesis.

/// Collect data with a location plugin
List<LocationSample> locationSamples = ///

/// Store data via the package
await ContextGenerator.saveSamples(locationSamples);

/// Compute Features via the package
MobilityContext context = await ContextGenerator.generate();

Figure 5.1: All the three lines of code necessary for the application developer to
write.

5.1 Flutter, Packages, and Plugins
Flutter is a cross-platform app development framework developed by Google and re-
leased in 2018. It allows an application programmer to write a mobile application
using a single codebase written in the Dart programming language, and compile this
source code to a native Android and iOS application. This has the clear advantage
of reducing the amount of code needed to produce mobile applications which most of
the time need to be released on both platforms. Packages and Plugins are the Flut-
ter equivalent of a software library that is hosted on the Dart package manager at
pub.dev, the Mobility Features Package is hosted at pub.dev/packages/mobility_
features. The author has written several packages for the Flutter framework re-
leased under the CACHET publisher1.

1https://pub.dev/publishers/cachet.dk/packages

https://github.com/thomasnilsson/mobility-features-thesis
https://github.com/thomasnilsson/mobility-features-thesis
pub.dev
pub.dev/packages/mobility_features
pub.dev/packages/mobility_features
https://pub.dev/publishers/cachet.dk/packages

40 5 Flutter Implementation

The Mobility Features Package uses a library file of the same name as the package
mobility_features.dart which is the central point of import statements for all the
source code. All import statements are made within this file, and each file belonging
to the library are declared using the part keyword.

library mobility_features;

import 'dart:math';
...

part 'mobility_functions.dart';
...

Each file included in the library will have the equivalent part of keyword at the top
of their file, which allows the file to import all dependencies from the library, and
makes the file public to other files within the library and vice versa.

part of mobility_features;
...

Packages also come with a set of unit tests. Unit testing is discussed in Appendix E
where selected tests are shown.

5.2 Package Implementation
The package was implemented in Flutter according to the design in Chapter 4 in
which a series of components and the domain data model was outlined. This section
will go through selected examples of source code to demonstrate how the non-trivial
parts of the package were built. This implementation deals with allowing features to
be computed in real-time, on the device.

In the Dart programming language, fields, constructors, and methods are declared pri-
vate by using the underscore prefix, i.e. the field routineIndex becomes _routineIndex.
This is used throughout the implementation to prevent the application programmer
from accessing the inner parts of the package. Preventing access is a key factor in
achieving a high level of abstraction.

Storing and loading data is a big part of the implementation, but it is very generic and
has been moved to Appendix D. Furthermore, the offline algorithms for computing
features were developed in Python with a large part being carried out by Jonas Busk2.
The source code for these algorithms can be found in Appendix C.

2https://www.researchgate.net/scientific-contributions/2129480702_Jonas_Busk

https://www.researchgate.net/scientific-contributions/2129480702_Jonas_Busk

5.2 Package Implementation 41

5.2.1 Domain Model Implementation
The components specified in the domain model in Chapter 4 were implemented ac-
cording to 4.6. All classes except LocationSample and GeoPosition were given private
constructors. These two classes were given public constructors to allow the user in-
stantiate a LocationSample with data from a given Location DTO. The GeoPosition
class a field for the latitude and one for the longitude and a fundamental class used
by the GeoSpatial interface. The interface is a private abstract class which means it
is only visible internally in the package library.

abstract class _Geospatial {
GeoPosition get geoPosition;

}

This interface allows other classes to promise the Dart compiler that it has a GeoPo-
sition field which allows it to be compared to other classes that implement the same
interface. In Dart interfaces and abstract classes are the same thing, and the abstract
class keyword is used for implementing them. The GeoPosition class even imple-
ments this interface since a GeoPosition object itself has a GeoPosition. This may
seem superfluous but will come in handy when finding Stops (see Subsection 5.2.2).

class GeoPosition implements _Serializable, _Geospatial {
double _latitude;
double _longitude;

GeoPosition(this._latitude, this._longitude);

GeoPosition get geoPosition => this;
double get latitude => _latitude;
double get longitude => _longitude;

}

5.2.2 Computing Features
Finding the location features Stops, Moves, and Places were done according to the
algorithms described in Chapter 3.

Stops
The Stop class has two constructors: A factory constructor which takes a set of
LocationSample objects from which the centroid of the set is computed, as well as
the earliest timestamp, which will be the arrival time, and the latest timestamp which
will be the departure time. After these attributes are found, the normal constructor
is used.

42 5 Flutter Implementation

factory Stop._fromLocationSamples(List<LocationSample> locationSamples,
{int placeId = -1}) {

GeoPosition center = _computeCentroid(locationSamples);
return Stop._(center, locationSamples.first.datetime,

locationSamples.last.datetime, placeId: placeId);
}

The normal constructor uses a GeoPosition, in addition to an arrival and departure
time. A place ID may also be specified at construction, but often it is not yet known
at construction time hence it is optional.

Stop._(this._geoPosition, this._arrival,
this._departure, {this.placeId = -1});

The Stop algorithm takes a List of LocationSample objects as input and uses two
while-loops, and two pointers (start and end) to delimit a subset of the input data.
Every time the outer loop iterates, the start pointer is moved past the end pointer,
to skip already seen data. The inner loop is responsible for moving the end pointer:

• With each iteration of the inner loop, the centroid of the current subset is
computed.

• If the distance from this centroid to the latest added sample is within the given
stopRadius parameter, then the subset is expanded by incrementing the end
pointer and the process is continued.

• Otherwise, the inner loop terminates and a Stop is created from the subset. The
Stop is created without a place ID since Places have not yet been identified.

Stops with a duration shorter than the duration specified by the stopDuration pa-
rameter are removed since they are noisy.
The distance calculation is carried out using the GeoSpatial interface previously
mentioned. The distance function fromGeoSpatial takes two objects which imple-
ment the interface and unpacks the latitude and longitude from these objects. The
haversine distance can then be computed afterward.

Finding Moves
The Move class has two constructors which are both private. Common for both con-
structors is that they take two Stops as arguments, the third argument being either
a path of LocationSample objects or a distance (a double). The factory construc-
tor called _fromPath calculates the distance of the path and then uses the normal
constructor to create a Move.

5.2 Package Implementation 43

int start = 0;
while (start < n) {

int end = start + 1;
List<LocationSample> subset = data.sublist(start, end);
GeoPosition centroid = _computeCentroid(subset);

while (end < n &&
Distance.fromGeospatial(centroid, data[end]) <= stopRadius) {
end += 1;
subset = data.sublist(start, end);
centroid = _computeCentroid(subset);

}

Stop s = Stop._fromLocationSamples(subset);
stops.add(s);

start = end;
}

Figure 5.2: Source code for finding Stops..

class Distance {
static double fromGeospatial(_Geospatial a, _Geospatial b) {

return fromList(
[a.geoPosition._latitude, a.geoPosition._longitude],
[b.geoPosition._latitude, b.geoPosition._longitude]);

}

static double fromList(List<double> p1, List<double> p2) {
/// Haversine implementation

}
}

Figure 5.3: The source code for handling distance computation of objects of differ-
ent types.

factory Move._fromPath(Stop a, Stop b, List<LocationSample> path) {
double d = _computePathDistance(path);
return Move._(a, b, d);

}

Move._(this._stopFrom, this._stopTo, this._distance);

44 5 Flutter Implementation

The normal constructor is used for de-serialization (see Appendix D) whereas the
factory constructor is used to create a Move given two Stops and the path of samples
between them.
The algorithm for finding Moves takes a List of LocationSample objects and the Stops
found from the samples as input.

• The algorithm first checks if the set of Stops is empty, and if so returns an
empty set of Moves.

• If the set of Stops is not empty, then the two placeholder Stops are created and
added to the set of Stops. These two additional stops are created from the first
and last element in the set of LocationSample objects.

• For each Stop in the set of Stops, it is calculated which samples lie in between
the current and next Stop. A Move is created using the current Stop, the next
Stop, and the path between.

Stop first = Stop._fromLocationSamples([data.first]);
List<Stop> allStops = [first] + stops;

if (data.first != data.last) {
Stop last = Stop._fromLocationSamples([data.last]);
allStops.add(last);

}

for (int i = 0; i < allStops.length - 1; i++) {
Stop cur = allStops[i];
Stop next = allStops[i + 1];
List<LocationSample> samplesInBetween = data

.where((d) =>
cur.departure.leq(d.datetime) && d.datetime.leq(next.arrival))

.toList();

moves.add(Move._fromPath(cur, next, samplesInBetween));
}

Figure 5.4: The source code for finding Moves.

Finding Places
The Place class only has one normal constructor which takes an ID (an integer) and
a List of Stops.

5.2 Package Implementation 45

Place._(this._id, this._stops);

The Place algorithm takes a set of Stops for a given period, i.e. Stops over multiple
days. The DBSCAN algorithm by Ester et al. [Est+96] is used to cluster the Stops
and label each Stop with a cluster-ID, this is the place ID previously discussed. Once
the labels are computed, the Stops are grouped by their place ID and for each group,
a Place object is created with the group label and all the Stops with that label. Lastly,
the placeId attribute for each Stop in the group is set to the group label.

DBSCAN dbscan = DBSCAN(
epsilon: placeRadius, minPoints: 1,
distanceMeasure: Distance.fromList);

List<List<double>> stopCoordinates =
stops.map((s) => ([s.geoPosition.latitude,

s.geoPosition.longitude])).toList();

dbscan.run(stopCoordinates);

Set<int> clusterLabels = dbscan.label.where((l) => (l != -1)).toSet();

for (int label in clusterLabels) {
List<int> indices =

stops.asMap().keys.where((i) => (dbscan.label[i] == label)).toList();

List<Stop> stopsForPlace = indices.map((i) => (stops[i])).toList();

Place p = Place._(label, stopsForPlace);
places.add(p);

stopsForPlace.forEach((s) => s.placeId = p._id);
}

Figure 5.5: The source code for finding Places.

Hour Matrix Computation
The Hour Matrix is an auxiliary feature used for internal computation and is therefore
private. The class is implemented using a 2D double array as a field, representing the
matrix of 24 rows, equal to the number of hours in a day, and columns equal to the
Number of Places visited on the day. The construction of the Hour Matrix is done
with a factory constructor that takes a List of Stops and the number of places visited.
The matrix is filled out using the arrival- and departure timestamp of each Stop.

46 5 Flutter Implementation

factory _HourMatrix.fromStops(List<Stop> stops, int numPlaces) {
List<List<double>> matrix = new List.generate(

HOURS_IN_A_DAY, (_) => new List<double>.filled(numPlaces, 0.0));

for (int j = 0; j < numPlaces; j++) {
List<Stop> stopsAtPlace = stops

.where((s) => (s.placeId) == j).toList();

for (Stop s in stopsAtPlace) {
for (int i = 0; i < HOURS_IN_A_DAY; i++) {

matrix[i][j] += s.hourSlots[i];
}

}
}
return _HourMatrix(matrix);

}

Figure 5.6: Implementation of the construction of an Hour Matrix.

Next, the routineMatrix() factory constructor is discussed. This is a method for
creating the Routine Matrix, given a list of other Hour Matrices. The method is quite
simple since it uses two for loops to fill out an empty zero-matrix with the average
value of each position indexed by i and j, for each matrix.

factory _HourMatrix.routineMatrix(List<_HourMatrix> matrices) {
int nDays = matrices.length;
int nPlaces = matrices.first.matrix.first.length;
List<List<double>> avg = zeroMatrix(HOURS_IN_A_DAY, nPlaces);

for (_HourMatrix m in matrices) {
for (int i = 0; i < HOURS_IN_A_DAY; i++) {

for (int j = 0; j < nPlaces; j++) {
avg[i][j] += m.matrix[i][j] / nDays;

}
}

}
return _HourMatrix(avg);

}

Figure 5.7: Computation of the Routine Matrix (i.e. average Hour Matrix).

5.2 Package Implementation 47

Lastly, the computeOverlap method is discussed: This method computes the overlap
similarity function discussed in Equation (3.21). Another Hour Matrix is provided as
parameter referred to as other and the current Hour Matrix is referred to as this
since the method is called on a specific object.

The max overlap is computed according to Equation (3.22) in Chapter 3, and if the
max overlap is 0, then -1 is returned, meaning there is insufficient data in either matrix.
The overlap for each entry-pair we defined in Equation (3.21) as the minimum value
of the two, given that both values are non-negative, and the total overlap is computed
as the sum of overlapping entries.

double computeOverlap(_HourMatrix other) {
assert(other.matrix.length == HOURS_IN_A_DAY &&

other.matrix.first.length == _matrix.first.length);

double maxOverlap = min(this.sum, other.sum);
if (maxOverlap == 0.0) return -1.0;

double overlap = 0.0;
for (int i = 0; i < HOURS_IN_A_DAY; i++) {

for (int j = 0; j < _numberOfPlaces; j++) {
if (this.matrix[i][j] > 0.0 && other.matrix[i][j] > 0.0) {

overlap += min(this.matrix[i][j], other.matrix[i][j]);
}

}
}
return overlap / maxOverlap;

}

Figure 5.8: Construction of the Hour Matrix.

Home Stay Computation
The algorithm for computing Home Stay uses the stops of today and does the follow-
ing:

• First, the total time elapsed today is calculated using the departure timestamp
of the last known Stop of today.

• Next, the Stops are used to identify the home place by constructing an Hour
Matrix and then extracting the homePlaceId from the Hour Matrix.

48 5 Flutter Implementation

• Then, the total duration spent at the home place is calculated by summing the
duration of the Stops which belong to the home place. The Home Stay is then
calculated as the time at home divided by the total time elapsed.

double _calculateHomeStay() {
DateTime latestTime = _stops.last.departure;

int totalTime = latestTime.millisecondsSinceEpoch -
latestTime.midnight.millisecondsSinceEpoch;

_HourMatrix hm = this.hourMatrix;
if (hm.homePlaceId == -1) {

return -1.0;
}

int homeTime = stops
.where((s) => s.placeId == hm.homePlaceId)
.map((s) => s.duration.inMilliseconds)
.fold(0, (a, b) => a + b);

return homeTime.toDouble() / totalTime.toDouble();
}

Figure 5.9: Source code for computing the Home Stay feature.

Routine Index
The Routine Index is the most difficult to compute by far. The method for comput-
ing this feature inside the MobilityContext class is very short due to all the matrix
computations being done in the HourMatrix class, i.e. the averaging and overlapping
of matrices. The algorithm first checks if any contexts are provided if not then the
Routine Index should be -1.0. Next, the Hour Matrices for each historic date is com-
puted, and from these, the Routine Matrix is computed. Lastly, the Routine Index is
found by computing the overlap between the Hour Matrix of today, and the Routine
Matrix, using the a.computeOverlap(b) method of the Hour Matrix class.

5.2.3 MobilityContext
A MobilityContext object is a collection of features for a given date. The class has
a private constructor that takes a List of Stops and Moves from today, and a List of
Places from the current period, i.e. the last 28 days including today. When the class

5.2 Package Implementation 49

double _calculateRoutineIndex() {
if (contexts == null) {

return -1.0;
} else if (contexts.isEmpty) {

return -1.0;
}

List<_HourMatrix> matrices = contexts
.where((c) => c.date.isBefore(this.date))
.map((c) => c.hourMatrix)
.toList();

_HourMatrix routine = _HourMatrix.average(matrices);

return this.hourMatrix.computeOverlap(routine);
}

Figure 5.10: The method for computing the Routine Index feature.

is instantiated the date of today is automatically inferred, if not provided through the
date parameter, which is an optional parameter. This parameter can be overridden
in the case of unit testing for specific dates or if the programmer wishes to compute
a MobilityContext for a date in the past.

MobilityContext._(this._stops, this._allPlaces, this._moves,
{this.contexts, this.date}) {
_timestamp = DateTime.now();
date = date ?? _timestamp.midnight;

}

Another optional parameter is a List of MobilityContext objects is used for computing
the Routine Index - how this is achieved will be explained in Subsection 5.2.4. The
’derived’ features are implemented as doubles (except for Number of Places which is
an integer) and are fields in the MobilityContext class.

Lazy Evaluation
Lazy evaluation lazy evaluation described by Fowler [Fow+02] [p. 200], in this context
is the idea of postponing computation of a given feature until the first time it is needed.
After being computed, the feature is stored and can be retrieved henceforth without
any computational cost. In practice, this is done by letting the features be initialized
to null, and checking for null in the getter method. If the value is null then the feature

50 5 Flutter Implementation

class MobilityContext {
// Field
double _routineIndex;

// Getter
double get routineIndex {

return _routineIndex;
}

}

Figure 5.11: The getter method for a feature field.

is calculated and then its value is updated after the computation. If the field is not
null then the feature has already been computed and can be returned immediately.

class MobilityContext {
// Field
double _routineIndex;

// Getter
double get routineIndex {

if (_routineIndex == null) {
_routineIndex = _calculateRoutineIndex();

}
return _routineIndex;

}
}

Figure 5.12: Lazy evaluation of a feature.

5.2.4 Context Generation
The instantiation of a MobilityContext object is done through the ContextGenerator
class, which is the interface between the programmer and the core of the package. All
computation and storing and loading of data is done through this class. The central
part of the ContextGenerator class is the generate() method, which is where a
MobilityContext is computed. The method is asynchronous since it requires loading
data from the file system before computation can take place. It does not require any
parameters to call, but has two optional parameters:

5.2 Package Implementation 51

• usePriorContexts: A boolean option to compute the MobilityContext using
prior MobilityContexts which is false by default.

• today: A date parameter which allows the user to override today’s date, which
is automatically set to today’s date if not specified

static Future<MobilityContext> generate(
{bool usePriorContexts: false, DateTime today}) {...}

First, the file system is queried by initializing the three different MobilitySerializers
(see Appendix D), i.e. one for LocationSample objects, another for Stops and the third
one for Moves. Next, LocationSample objects are loaded and filtered; any samples
with a date different from today are thrown away since they have already been used
on a previous day and are no longer relevant to keep. After this the Stops and Moves
are loaded from disk and filtered; any Stops and Moves that are either from today or
older than 28 days are thrown away.

List<LocationSample> samplesToday = await sampleSerializer.load();
List<Stop> stopsHist = await stopSerializer.load();
List<Move> movesHist = await moveSerializer.load();

samplesToday = _filterSamples(samplesToday, today);
stopsHist = _stopsHistoric(stopsHist, today);
movesHist = _movesHistoric(movesHist, today);

The reason for throwing away elements from today is that they need to be recomputing
using all the LocationSample objects collected today, including those collecting since
the last time the features were computed. After recomputing today’s Stops and
Moves, the historical and recent Stops are merged to represent the whole period, and
likewise for the Moves. Places are then computed using all the Stops of the period.

List<Stop> stopsToday = _findStops(samplesToday, today);
List<Move> movesToday = _findMoves(samplesToday, stopsToday);

List<Stop> stopsAll = stopsHist + stopsToday;
List<Move> movesAll = movesHist + movesToday;

List<Place> placesAll = _findPlaces(stopsAll);

Next, the Stops and Moves for the period are stored to disk, but before they are
stored, the flush method is used for the serializers in order to delete the old content
permanently.

stopSerializer.flush();
moveSerializer.flush();
stopSerializer.save(stopsAll);
moveSerializer.save(movesAll);

52 5 Flutter Implementation

Lastly, if prior MobilityContexts are to be used then the historical dates are extracted
from the historical stops, and for each date, the Stops and Moves are extracted and
used to construct a MobilityContext, with each context being added to a List of prior
MobilityContexts.

List<MobilityContext> priorContexts = [];

if (usePriorContexts) {
Set<DateTime> dates = stopsHist.map((s) => s.arrival.midnight).toSet();
for (DateTime date in dates) {

List<Stop> stopsOnDate = _stopsForDate(stopsHist, date);
List<Move> movesOnDate = _movesForDate(movesHist, date);
MobilityContext mc =

MobilityContext._(stopsOnDate, placesAll, movesOnDate, date: date);
priorContexts.add(mc);

}
}

The method returns a MobilityContext object using the Stops and Moves of today
and the Places for the period. Also, the date of today is chosen to be overridden
and the computed contexts are also provided. If no contexts were computed, then
priorContexts will be an empty List.

return MobilityContext._(stopsToday, placesAll, movesToday,
contexts: priorContexts, date: today);

5.3 Using the Package
This section will be a mirror of the official instructions on how to use the package, as
of version 1.2.0. For getting started, the programmer has to download the package
by adding it as a dependency in their pubspec.yaml file of the Flutter project and
running the following command:

flutter packages get

Once the dependency has been downloaded it can be imported as follows:

import 'package:mobility_features/mobility_features.dart';

Features are computed using the 3 lines of code displayed in Figure 5.13:
The exact method for arriving at this stage is outlined in the following 4 steps.

5.3 Using the Package 53

/// Collect data with a location plugin
List<LocationSample> locationSamples = ///

/// Store data via the package
await ContextGenerator.saveSamples(locationSamples);

/// Compute Features via the package
MobilityContext context = await ContextGenerator.generate();

Figure 5.13: All the three lines of code necessary for the application developer to
write.

Step 1: Collect location data
Location data collection is, as mentioned, not part of the Mobility Features package.
The location plugin can be flexibly chosen by the programmer. An example of such
a plugin the GeoLocator plugin3. From here, each incoming location object has to be
converted to a LocationSample via the constructor
Below is shown an example where incoming Position objects are coming in from
the GeoLocator plugin and are being handled after saved to a list, in the _onData()
call-back method.

List<LocationSample> locationSamples = [];
...

void _onData(Position d) async {
GeoPosition geoPos = GeoPosition(d.latitude, d.longitude);
LocationSample sample = LocationSample(geoPos, d.timestamp);
locationSamples.add(sample);

}

Step 2: Save location data
The location data must be saved on the device such that it can be used in the future.
Saving the data to persistent storage prevents it from being lost should the RAM
reset. Given that the programmer has collected the samples in a list, the samples can
be serialized using the save() method of the MobilitySerializer.

await ContextGenerator.saveSamples(locationSamples)

Ideally, saving the data is done with a certain interval, such as every time 100 samples
are collected.

3https://pub.dev/packages/geolocator

https://pub.dev/packages/geolocator

54 5 Flutter Implementation

Step 3: Compute features
The Features can be computed using the static class ContextGenerator which uses
the stored location samples, as well as historic features to compute the features for
today.
There most basic computation is done as follows:

MobilityContext context = await ContextGenerator.generate();

Note: it is not possible to instantiate a MobilityContext object directly. It must be
instantiated through ContextGenerator.generate().

Step 3.1: Compute features with prior contexts
Should the programmer wish to compute the routine index feature as well, then prior
contexts are needed. Concretely, the application needs to have tracked data for at
least 2 days, to compute this feature. The generation of a Mobility Context using
prior contexts is done by overriding the usePriorContexts argument and setting it
to true.

MobilityContext context =
await ContextGenerator.generate(usePriorContexts: true);

Step 3.2: Compute features for a specific date
By default, a MobilityContextobject uses the current date as a reference to filter and
group data, however, should one wish to compute the features for a specific date, then
it is possible to do so by overriding the today argument and providing the desired
date.

DateTime myDate = DateTime(01, 01, 2020);
MobilityContext context =

await ContextGenerator.generate(today: myDate);

Step 4: Get features
All features are implemented as getters for the MobilityContext class and can, there-
fore, be retrieved using the dot-notation.

MobilityContext context = // Generate context

List<Place> places = context.places;
List<Stop> stops = context.stops;
List<Move> moves = context.moves;

5.3 Using the Package 55

int numberOfPlaces = context.numberOfPlaces;
double homeStay = context.homeStay;
double entropy = context.entropy;
double normalizedEntropy = context.normalizedEntropy;
double distanceTravelled = context.distanceTravelled;
double routineIndex = context.routineIndex;

56

CHAPTER 6
Validation

To validate the Mobility Features Package in a real world setting, a small-scale field
study was conducted in which 10 participants were tracked over 3 weeks. For this
study a mobile application was developed in Flutter that used the package to compute
features on a daily basis. Subjective user-data also collected through the application
in the form of a small questionnaire. This chapter will go through the choices made
in developing the app and conducting the study.

6.1 Field Studies
During the development of the study application, the author tracked himself to select
appropriate parameters for the algorithms. The first part of the parameter tuning
happened at the Technical University of Munich where the author sat in the large
Computer Science building and visited different offices. Once a day the author would
eat lunch at the canteen in another building. In Figure 6.1 the places and the stops
at the university are displayed and as can be seen which are very close. Had the
radius parameter for finding places been higher, then some of the found places would
have been merged into a single place. Here, the place-radius parameter was set to 25
meters, such that individual offices were clustered into one place. Had the distance
parameter been higher then some of the offices would have been merged into a single
place.

The author returned to Denmark due to the outbreak of COVID-19, where the pa-
rameter tuning continued. Movement patterns varied a lot between the two cities: In
Munich the author visited many small places next to each other, whereas in Denmark
places were further apart, and it was found that a place-radius of 50 meters was more
suitable.

The main study was a small-scale study that ran for 3 weeks between April and May
2020 and included 10 participants (including the author). All the participants were
recruited through friends and family and non of them, to the knowledge of the author,
were diagnosed with a mental illness. The country of residence was the following:

• Denmark (8 participants)

• Germany (1 participant)

• United Kingdom (1 participant)

58 6 Validation

Figure 6.1: A map of TUM Garching, displaying the Places (red clusters) as well
as the Stops which make up these places (blue markers) visited by the
author.

Since the majority of the participants lived in the Capital Region of Denmark, it was
decided to keep the place-radius of 50 meters.

The goal of the study was to validate the accuracy of the features produced. In the
study the participants used the application discussed in Chapter 5 to collect their
location data and computed mobility features daily. Also, the participants answered
a questionnaire daily to get subjective user data. In addition to this, the application
also had a diary consisting of 4 questions that the participant had to fill out each
day. To make it easy for the user to remember filling out the diary, a reminder was
sent to the participants at 8 PM. The time 8 PM was chosen due to being relatively
late while still being early enough in the day that people would still be checking their
phone. Some people go to bed at 9-10 PM which had to be taken into account.

6.1 Field Studies 59

6.1.1 Evaluating Features
The diary questions were related to 3 of the mobility features which were Number of
Clusters, Home Stay and Routine Index. The purpose of the questions was to get
subjective estimates of the values of these features. Answers were expected to be
very subjective since the definition of a place and a routine will vary from person
to person. Answers were collected through a diary to evaluate the accuracy of the
computed features. The features inquired about had to be easy to formulate as
a question such that participants could provide reliable answers. Features such as
entropy and location variance were ill-suited for this, whereas Home Stay, Number of
Places, and Routine Index were chosen instead. The questions were the following:

#1 How many unique places (including home) did you stay at today?

#2 How many hours did you spend away from home today? (Rounded-up)

#3 Did you spend time at places today that you don’t normally visit?

#4 On a scale of 0-5, how much did today look like the previous, recent days?
(Where 0 means ’Not at all’ and 5 means ’Exactly the same’)

Collection of the subjective Number of Places visited, was done by asking the partic-
ipant how many places they had visited today, including their home. Technically a
user may visit no places at all if they are consistently moving throughout the day,
but this is highly unlikely.

For collecting the subjective Home Stay percentage, the participant was asked the
inverse question, i.e. how many hours they were away from their home today (from
which Home Stay can then be calculated later). This question is much easier for the
participant to answer, and there was no need to explain to the participant that time
spent during the night counts towards the Home Stay.

The Routine Index was more difficult to formulate as a question since there is no
succinct way of putting it. It was decided upon rating today scale from 0 to 5,
where 0 indicates that today looks nothing like previous days and 5 indicating that
today looks identical to the previous days. Ideally, the scale should be more fine-
grained such as a 0 to 10 scale. However, for the user it may for example be hard to
distinguish between a 6 and 7 on a 0-10 scale, whereas distinguishing between 3 and
4 on a 0-5 scale is easier. The information we wished to draw out was whether or
not today looked like the previous days, which is still possible with a coarse-grained
scale. Question #3 also related to the Routine Index feature but was not used for
later data analysis since it was hard to compare directly to the Routine Index and
would require looking at the Hour Matrix instead.

60 6 Validation

6.1.2 Hindrances
The Coronavirus pandemic leads to countries closing borders and urging people to
stay at home as much as possible. This included workplaces, gyms and restaurants
shutting down. This had some implications for the study in that people would spend
most of their time at home, and they would likely not visit very many places.

Also, it was probably not common for most people to go visit new places during the
pandemic. However, all in all, the pandemic only shaped the results of the field study
and did not prevent the study from taking place at all. Also, the Android platform
closed down the access needed for tracking location data in the background without
interruption as of February 2020 1,2. It was made a priority to conduct the study
as soon as possible and therefore the app was released for iOS only, due to time
constraints.

6.2 Study Application
This section will describe the study application in terms of components and will
illustrate how the application looked.

6.2.1 Installing the Application
The application was only released on iOS as previously mentioned and was distributed
exclusively via Apple’s TestFlight service.
Once the user had such an invitation the installation process was the following:

• The user installs the TestFlight application via the App Store.

• The user installs the Mobility Study app via the TestFlight application.

• Once the Mobility Study app is installed, it will ask for permission to track the
user’s location as well as sending the user notifications.

The location tracking is necessary for the collection of location data whereas notifica-
tions are not necessary, but do help the user be reminded to fill out a daily question-
naire. An installation manual (see Appendix F) was provided to the participants to
ensure the applications were set up correctly and the installation process is shown in
Figure 6.2.

1https://nakedsecurity.sophos.com/2020/02/25/android-11-to-clamp-down-on-
background-location-access/

2https://developer.android.com/training/location/background

https://nakedsecurity.sophos.com/2020/02/25/android-11-to-clamp-down-on-background-location-access/
https://nakedsecurity.sophos.com/2020/02/25/android-11-to-clamp-down-on-background-location-access/
https://developer.android.com/training/location/background

6.2 Study Application 61

Figure 6.2: The initial installation- and setup process for the user.

6.2.2 App Screens
The Main Page of the application displays a list of instructions and does not have any
interesting functionality. From the main screen, it is possible to navigate to the Info
Page and the Diary Page, from the navigation bar at the top. The Info Page is made
to inform the user of how the data will be used, and an email address to contact the
researcher in case of any questions.

The Diary Page contains the questionnaire the user has to answer daily. The user
can either navigate to this page themselves or tap the notification they receive each
evening. The four questions can be answered by pressing the Pick an Answer-button
which will show a wheel of possible values to pick an answer from. Once all questions
have been answered, the submit button will be enabled. Submitting the answers will
upload the answers to a server, and store them on the device as well. When storing is
done, the last screen will appear which informs the user the answers have been saved
and thanks them for their contribution.

6.2.3 Displaying Features
An initial version of the application included a display of the real-time calculated
features, which were recalculated each time a button was pressed. It was decided to
not display the features in the final version for the study since they would influence

62 6 Validation

Figure 6.3: The different screens which the user is taken through for submitting
answers.

the answers given by the users. This display of features may be relevant for a real-
world application where it makes sense to inform the user of the feature values, such
as how much they have stayed at home.

6.2.4 Data Storage
To store the data from the study online, such that it could later be extracted for data
analysis, a Firebase file storage server was used for uploading files multiple times daily.
Concretely, the LocationSamples, Stops, and Moves were stored locally on the device.
Whenever a Feature calculation was triggered, the calculated MobilityContext was
serialized and uploaded as a file, in addition to the data points for the day and all
Stops and Moves on the phone for the last 28 days (see Chapter 3).

6.3 Application Implementation
The application used for the study used an earlier version of the Mobility Features
Package which required the programmer to write a lot of code to compute the features.
This section will provide source code examples of how the application should be
implemented with the latest version of the package. The functionality of the study app

6.3 Application Implementation 63

Figure 6.4: An early iteration of the study app in which the feature values were
shown.

has not changed but the source code for the application related to feature computation
takes up much fewer lines.

6.3.1 Architecture Overview
To provide a high-level overview of the different classes which make up the study
application, a high-level class diagram is displayed in Figure 6.5. The MobilityStudy
class is responsible for managing the application state but does not do much outside
of this since the application state management required is minimal. The Main Screen
class is spawned from the MobilityStudy class and runs an instance of the AppPro-
cessor class. The AppProcessor instance is responsible for a multitude of tasks, such
as asking for permissions, collection location data, and computing features. Storing
and loading from the disk is done through the FileManager class which includes Lo-
cationSamples Stops, Moves, MobilityContexts, and diary answers. This class is also
responsible for uploading the stored data to a Firebase server.

64 6 Validation

AppProcessor

FileManager

Constants
imports

MobilityStudyApp

InfoPage

store/upload answers

DiaryPage

MainPage

store/load/upload
features

navigate navigate

imports
creates

creates

go backgo back

Mobility
Features Package

Figure 6.5: The class diagram for the study application displaying the different
building blocks and the interactions between them.

6.3.2 Custom Location Plugin
For collecting Location Samples, a custom version of the Geolocator3 plugin was devel-
oped for the purpose of this package to achieve reliable background location streaming.
The current implementation of Geolocator was missing a flag in the Objective-C im-
plementation for iOS, which allows the app to continue streaming location data while
the app is minimized. The flag for background updates has to be set for an instance
of a Location Manager which is the access to the Location API:

_locationManager.allowsBackgroundLocationUpdates = YES;

If this flag is not set to ’YES’ (i.e. True), the location stream will die shortly after
the application is minimized. It is important to note that this plugin is not part of
the Mobility Features Package, but is needed for high-frequency background location
tracking. A Github issue was created4 and the features were accepted and merged
into a development branch for the GeoLocator plugin. The functionality is however
not public as of yet, and the custom plugin was, therefore, necessary to use when
developing the application.

3https://pub.dev/packages/geolocator
4https://github.com/Baseflow/flutter-geolocator/issues/390

https://pub.dev/packages/geolocator
https://github.com/Baseflow/flutter-geolocator/issues/390

6.3 Application Implementation 65

6.3.3 Collecting Location Samples
The custom Geolocator plugin was used to set up a stream of location data. The
DTO of the plugin called Position, and contains latitude, longitude, and timestamp,
in addition to other GPS information. The stream is set up with a subscription using
a call-back method that is invoked every time a Position object is generated by the
stream.

await _geoLocator.isLocationServiceEnabled().then((response) {
if (response) {

streamingLocation = true;
_subscription = _geoLocator.getPositionStream(options).listen(_onData);

} else {
print('Location service not enabled');

}
});

This call-back method is the _onData method which is responsible for saving the
collected data. It does so by first converting the Position DTO object into a Loca-
tionSample DTO object, and then adding it to a buffer. This buffer is implemented as
a List of LocationSamples and when the number of samples in this buffer exceeds 100,
the content of the buffer will be stored to disk via the ContextGenerator. Afterward,
the buffer is emptied, and the process starts anew.

6.3.4 Firebase Services
Firebase file storage was used to host all the data generated by the study application.
File storage hosted on a centralized server made it easy to oversee the study and check
in on users to see if they remembered to provide answers and track their location.

Additionally, the Firebase Cloud Messaging (FCM) service was set up such that push
notifications could be delivered to the participants’ phones via the application, to
remind them to fill out the diary. Push notifications are sent out from a centralized
server and can be edited at any time without access to the physical phones. In was
sometimes useful to send out extra notifications to specific users if they forgot to fill
out many days in a row.

6.3.5 Computing Features and Async Calls
Every time the buffer has been filled and stored to the disk 5 times, features are
computed. This was done to demonstrate the real-time capability of the Mobility
Features Package, i.e. computing features multiple times a day on an incomplete
dataset. Features were also computed when the user navigated to the DiaryPage,
such that they are generated close to answers being given. This, however, did not

66 6 Validation

void _onData(Position x) async {
GeoPosition gp = GeoPosition(x.latitude, x.longitude);
LocationSample sample = LocationSample(gp, x.timestamp);
_buffer.add(sample);

if (_buffer.length >= BUFFER_SIZE) {
/// Save buffer locally, empty it, then upload data
await ContextGenerator.saveSamples(_buffer);
_buffer = [];
await FileManager().uploadSamples(uuid);

/// If enough data has been collected, evaluate features
numberOfBuffers++;
if (numberOfBuffers >= 5) {

numberOfBuffers = 0;

/// Offload computation to background, do not await
_computeFeaturesAsync();

}
}

}

Figure 6.6: The _onData method responsible for handling incoming Location
DTOs.

work if the DiaryPage was opened through a notification, unfortunately.

Flutter supports multi-threading, which means the main thread runs the user inter-
face, and background threads can be spawned in order to perform other computations
in the background. If the heavy computation is done in the main thread, the user
would experience a frozen UI while computation takes place. This is due to the main
thread running the computations needed to make the UI able to respond to input
and update itself. In the study app, there was no responsive UI, but in a real-world
application, the UI should not freeze due to the feature calculation. Dart threads are
referred to as isolates which communicate using a SendPort and a ReceivePort. These
ports can be used to transfer objects between threads, such that the main thread can
request a background thread to calculate the features, and the background thread
will then send back a MobilityContext object once finished.

Future<MobilityContext> _computeFeaturesAsync() async {
ReceivePort receivePort = ReceivePort();
await Isolate.spawn(_asyncComputation, receivePort.sendPort);
SendPort sendPort = await receivePort.first;

6.3 Application Implementation 67

MobilityContext mobilityContext = await _relay(sendPort);
return mobilityContext;

}

The _relay method works as an interface between the _computeFeaturesAsync
method which runs on the UI thread and the static method _asyncComputation
which runs on the background thread and simply relays messages between the two
threads.

Future _relay(SendPort sendPort) {
ReceivePort receivePort = ReceivePort();
sendPort.send([receivePort.sendPort]);
return receivePort.first;

}

Lastly, the _asyncComputation method is static which is due to the computation
being done in a background thread. If the objects contained within the AppProcessor
instance, running in the main thread, were to change their state while computation
was ongoing in the background thread, then the results of the computation become
non-deterministic. Therefore the objects used in the background computation cannot
change their state outside the background thread.

static void _asyncComputation(SendPort sendPort) async {
ReceivePort receivePort = ReceivePort();
sendPort.send(receivePort.sendPort);
List args = await receivePort.first;
SendPort replyPort = args[0];

MobilityContext context =
await ContextGenerator.generate(usePriorContexts: true);

replyPort.send(context);
}

68

CHAPTER 7
Results and Discussion

This chapter will cover the result of the analyses from the study described in Chapter
6. Lastly, a discussion of these results, as well as different aspects of the Mobility
Features Package and general limitations will be presented.

7.1 Data Analysis of Study
As described in Chapter 6 the participants had to fill out a small questionnaire every
day in the evening and these answers were then matched against the computed re-
sults. The study resulted in a dataset with 205 days of data, corresponding to 2.51M
timestamped location data points, spread over 10 participants. Table 7.1 shows the
overview of the data collected for each participant, including the number of points,
number of days and the storage requirements for the collected data.

Similar to Cuttone et al. [CLL14], the participants have been anonymized as P1
through P9, and the author has been marked as R (researcher).

The answers were of a different format than the computed features and therefore had
to be transformed such that they could be directly compared. For the Home Stay
feature, the answer the users gave was the number of hours away from home, at the

P Days Samples MB Samples/day MB/day
P1 23 181 17.3 7878.8 0.8
P2 25 142 13.6 5684.4 0.5
P3 21 101 9.7 4850.7 0.5
P4 22 98 9.4 4494.9 0.4
P5 14 209 20.0 14977.4 1.4
P6 26 101 9.7 3922.8 0.4
P7 23 111 106.4 48525.0 4.6
P8 15 141 13.5 9417.3 0.9
P9 12 51 4.9 4311.7 0.4
R 24 365 34.9 15233.6 1.5

Table 7.1: The overview of collected Location Samples for each participant in the
study.

70 7 Results and Discussion

time of registering. For calculating the Home Stay value from a given answer a given
at the timestamp t equation 7.1 was applied:

h = t− a

t
(7.1)

For the Routine Index, the answer (a number between 0 to 5) was transformed to
scalar between 0 and 1, by dividing the answer value s by the maximum, 5 i.e:

r = s

5
(7.2)

Regarding data collection, figure 7.1 displays how much data was collected per par-
ticipant. From this figure, it is clear that some participants did not collect nearly
as much data as others, and because of this their computed features are expected to
be more inaccurate. It was also discovered that the number of stops found is not
necessarily correlated with the number of location samples found, as can be seen for
participant P7. This can be due to reasons such as moving around much less, which
results in fewer but stops with a longer duration being found.

The average size of a serialized LocationSample object was computed based on file
size to be around 100 bytes and a serialized Stop was 140 bytes. Since the number
of stops varies to a large degree, we will not compute the average but will instead
use the number of stops of the participant with the most stops as the upper bound
(i.e. participant P4). Participant P4 was tracked over over 22 days (see Figure 7.3),
making for a total of 0.51 MB of stops if interpolated to 28 days. This is very much
doable from a storage perspective, but computationally speaking, it means that after
28 days over 3800 stops will have been accumulated. However, this participant seems
like an extreme outlier.

7.1.1 Missing Location Data and Answers
The sampling was set to once per second, yet data was not sampled uniformly. There
were many gaps in the collected data. Figure 7.2 shows the data of the author col-
lected during the study over 24 days. The author had a relatively new phone (iPhone
XS) and was diligent in making sure the phone was tracking the location as often as
possible, yet still has significant gaps in his data. This means other participants that
were less diligent or had older phones have even more gaps are still missing in certain
periods. These gaps are consistent in the morning where the phone is not moving
around, but after 6 AM it seems there is no pattern for the gaps. The event plot for
the collected data for the diligent participant P8 is shown in Figure G.1 in Appendix
G.

Regarding the subjective user data, many users missed filling out the diary on several
days. Figure 7.3 shows the number of total days where a participant participated

7.1 Data Analysis of Study 71

Figure 7.1: The number of raw location samples (top) and the number of stops
(middle) collected, and the ratio between the two, for each participant.

72 7 Results and Discussion

in the study against the days on which they provided an answer. It was only possi-
ble to calculate the error between computed features and the answers on the day if
the participant answered. This means that for some participants, a lot of data was
thrown away for the data analysis. As an example, it was considered whether or not
to entirely get rid of P9 since he/she has very little data both terms of total days
collected and even fewer in terms of days with answers.

Another problem that was encountered was when participants would fill out the ques-
tionnaire during the night, or the very next morning due to forgetting the previous
evening. This meant the answer for day n would be listed as date n+1, i.e. the wrong
date. Also, some users entirely forgot certain days but remembered it the following
day, and reported it manually to the researcher, and these answers were then added
manually. These issues were rectified by changing all answers given between 00:00
and 10:00 to the previous date at 23:59:59.

7.1.2 Feature Evaluation
The Home Stay feature required the participant to track their location during the
night, as previously mentioned. This meant that if they did not, the Home Stay
feature could not be evaluated for that particular day, however other features might
still be available for computation, such as the Number of Places. This meant that
the number of days for which a given feature can be compared to the answers is not
necessarily the same for all features.

The Home Stay feature is calculated by using the tracked time at home, divided by
the total time elapsed since midnight, and therefore a small gap in the data will make
the feature undershoot. Due to the observed gaps in the data, it is expected that this
feature will lie somewhat lower than the answer given by the user since there will be
gaps in the data.

The day-by-day results for the author are displayed in figure 7.4 and from this plot, the
computed features have a high correspondence with the provided answers. However,
the feature computation for the author is biased since he knew how the parameters of
the algorithms. It is therefore relevant to show another participant, namely partici-
pant P8, who was very diligent in answering and tracking their location data. For this
participant, very promising results were also produced which can be seen in Figure
7.6.

7.1.3 Measuring Errors
A thing to keep in mind when comparing user answers to computed features is that
the participants’ answers are not ground truth, and there are multiple reasons why
a participant’s answer may be inaccurate. People’s subjective recollection is not

7.1 Data Analysis of Study 73

necessarily as accurate as they think it might me. Also, it was not communicated
explicitly to the participants what exactly counts as a place, and how their ’routine’
is calculated. This means that participants may have filled out the questionnaire
differently. Lastly, the routine scale answer was very course-grained, and therefore
the participants were probably rarely able to provide an exact answer, according to
their recollection. As such, there are a few ways data errors may occur:

• The computed feature can be wrong due to gaps in the data (data collection
error)

• The subjective answer from the user is wrong, e.g. if they misunderstood the
concept of the question (answer error)

• Both of a data collection error and an answer error are made at the same time

The RMSE was computed for all three features across participants is shown in Table
7.2. We observe the following:

• The Number of Places features deviates with almost 1 place daily, compared to
the subjective answers.

• The Home Stay percentage deviates with 14% daily, compared to the subjective
answers.

• The Routine Index deviates with 22.5% daily, compared to the subjective an-
swers. Note that the Routine Index answer was given on scale with 20 %
increments, as such an RMSE of 22.5% is equivalent to one step on the scale.

To say something about whether or not the features undershoot or overshoot, the
mean error was calculated for each participant as ME =

∑
f−
∑

a

N where f is a
vector of the computed feature values, and a is a vector the answer value. N is
the total number of days for which the specific feature could be evaluated for that
participant. If the mean error is positive it means the feature overshoots compared
to the answered value, and vice versa if the error is negative. Since the mean error
has either a positive or negative sign the values would be canceling each other out
and therefore the mean of means cannot be computed. Instead, the individual mean
error for each participant is plotted in Figure 7.7. From this figure we observe the
following:

Number of Places Home Stay Routine Index
Mean RMSE 0.99 14.27 (%) 22.5 (%)

Table 7.2: The mean RMSE computed for all participants.

74 7 Results and Discussion

• The Number of Places feature undershoots by around 0.6 places or lower for
most participants, with P7 being an outlier with -1.5 places. It is likely that
the undershooting stems from data collection errors, which can lead to places
not being detected.

• The Home Stay feature undershoots for 8/10 participants, most of these having
an error under 10%. For those two participants where the feature overshoots, the
error is also within 10%. It is highly likely that it undershoots for the majority
of the users due to data collection errors leading to an underestimation of the
time spent at home.

• The Routine Index feature has an equal number of participants for which it
overshoots and undershoots. The current implementation of the feature will
ignore time-slots for which data is missing, which leads to the Routine Index
overshooting if a lot of data is missing. This feature is likely affected both by
data collection errors as well as answer errors, hence the varying results.

7.1 Data Analysis of Study 75

Figure 7.2: An event plot for the author’s sampled location data, each day of the
study. As can be seen there are quite a few gaps in the data which will
make the computes features less accurate.

76 7 Results and Discussion

Figure 7.3: The total number of days of participation vs the days for which the
diary was filled out by the participant. As can be seen, some users
often forgot to give an answer.

Figure 7.4: The days for which a given feature could be evaluated, out of the total
days for which an answer was given and features were computed. As
can be seen from the top plot, participant P4 had very few days where
the home stay could be computed in comparison to the total number of
days tracked which are above 20.

7.1 Data Analysis of Study 77

Figure 7.5: The answered and calculated data for each day, for the author.

78 7 Results and Discussion

Figure 7.6: The answered and calculated data for each day for participant P8.

7.1 Data Analysis of Study 79

Figure 7.7: The mean error for each participant for each of the three features. A
negative mean error means the computed feature undershoots, and a
positive error means it overshoots.

80 7 Results and Discussion

7.2 Future Work
We have demonstrated that the package can do what it was set out to do on an
overall level, however, there are still improvements to be made, some more trivial
than others. To improve the reach of the package it is the plan to integrate the
package into existing projects in the near future. Both of these topics are discussed
in this section.

7.2.1 Missing Data
As discussed prior in this chapter substantial non-uniform gaps can be observed in
the collected location data, even for the author. This is a common occurrence for
’in the wild’ studies as discussed by Palmius et al.[Pal+17], since many variables can
influence the background location tracking in smartphones, such as the availability of
GPS signal, battery, as well as available memory on the phone.

Feature values can be influenced to a high degree by missing data, especially the
Routine Index. The feature implementation ignores periods of missing data when
comparing the routine matrix and today’s hour matrix, however, gaps in the data will
tend to bias the feature and make it overshoot. The solution for this missing data
problem is either to use a dedicated GPS receiver or to use an imputation strategy
for missing data. Imputation is most likely the best solution and can be carried out
by filling out gaps using the saved stops and moves as historical data. This may not
solve the issue completely but is a much better alternative in theory.

7.2.2 Data Collection and Parameter Tuning
The field study resulted in a dataset of 2.5M data points which means there would
have been an opportunity for tuning the parameters if time allowed. Parameter tuning
would increase the accuracy of the features produced by the algorithms and thereby
increase its usefulness. However, subjective answers are missing from a lot of the days
in the study meaning those days have been thrown away in the data analysis. Rather
than relying on participant answers, a researcher could in theory manually label each
participant’s data sets with appropriate feature values. Certain features such as the
number of places visited will be easier to manually detect, compared to other features
such as entropy. If this was done, then finding optimal parameters for the algorithms
would be a machine learning task as it was done by Palmius et al. [Pal+17].

The issue noted in the data analysis regarding a participant gathering over 3000
stops over 22 days is likely due to many of the Stops being close to each other, but
far enough away to not get clustered together. This can result in a bottleneck in the
DBSCAN algorithm if 3800 points are processed. It can likely be solved by filtering

7.2 Future Work 81

stops and down-sampling them such that stops are essentially merged.

Regarding the study, to improve the validity of the answers given by participants in a
future study, a short introduction should be given to each participant before starting
the study. The introduction should define what counts as a place, what counts as
their home, and how a routine is defined. This was not done for the field study in
this thesis which is likely a cause for a lowered quality of the subjective answers. If
the participants are instructed beforehand, one can hope that answers become more
consistent and the results of the data analysis will be more informative.

7.2.3 Routine Index
First of all, the Routine Index is different from the definitions by Saeb et al. [Sae+15b],
Canzian et al. [CM15] and Palmius et al. [Pal+17]. All of these contributions verified
that their definition of the Routine Index correlated with depressive behavior, which
has not been done for the implementation used in this thesis. Therefore it would be
necessary to test this definition of the Routine Index in a clinical study, to verify its
validity.

Also, an issue that was not considered for this thesis is the fact that the routine on
weekdays differs a lot from the routine during the weekend. This is especially true
for people who spent 8 or more hours at work during the weekdays and spent those
8 hours somewhere else during Saturday and Sunday. For such a person the Routine
Index cannot exceed 2

3 due to a third of the hours in a day being spent at a different
place than their usual place. This issue was addressed by Palmius et al. by making
a subset of features for weekdays and weekends. In future work, it would be relevant
to implement these feature subsets, in the hope of a more accurate Routine Index.

As mentioned in Chapter 3 it would also be highly relevant to incorporate moves into
the Routine Index, such that commutes will be taken into account when computing
the feature. The most straight forward implementation would be to make an Hour
Matrix for moves only, showing which moves were made at which time. The routine
index could then be computed from both the stop hour matrix and the move hour
matrix.

7.2.4 Forced Daily Computation
Currently, the implementation throws away Location Samples from previous days
when computing the MobilityContext for today. This approach assumes that any
data left from a previous date has been transformed into Stops and Moves, and there-
fore no longer is needed. However this approach does not consider the case where a

82 7 Results and Discussion

large part of the stored Location Samples have not been used, due to no computation
having taken place. In some cases, whole days of Location Samples may end up being
thrown away without Stops and Moves being computed from this data.

The current way to avoid this is to compute features every day, making sure at least
one computation takes place late in the evening such that minimal data is lost. An-
other way around it is to override the date for which it is known that computation
did not take place. This latest date of computation can be kept track of by the pro-
grammer, but goes back to the problem of managing complexity.

Ideally, this should be done by the package and can be solved by first grouping
location samples by date when loaded. Next, stops and moves are computed for each
of the dates. Lastly, the stops and moves are saved to the disk and all the location
samples from prior days can be thrown away.

7.2.5 Asynchronous Computation
The asynchronous computation is cumbersome to set up and takes over 30 lines of
code to perform. Computing features asynchronously are not necessary for principle
but will prevent the UI from freezing as discussed in Chapter 6. Asynchronous com-
putation could be moved inside the package in the next iteration.

Another improvement to make is not relying on lazy evaluation, as discussed in Chap-
ter 5, since some features will end up being computed in the main thread, possibly
freezing the UI. The trade-off will be that it takes longer to compute the features in
the asynchronous call, but there will no need to compute the features in the main
thread.

7.2.6 Example Application
The Dart package manager, Pub, requires packages to have an example application
to demonstrate its usage. The old version of the study app displayed in 6.4 is a good
candidate for an example app since it presents the calculated features to the user
and can be implemented dynamically were features are constantly recomputed and
updated.

7.2.7 Integration and Maintenance
Integration into the CARP Mobile Sensing Framework is planned. CAMS was de-
veloped by Bardram [Bar20] at the Copenhagen Center for Health Technology (CA-
CHET). The package will continue to exist beyond this thesis and be maintained by
the author, who will be employed at CACHET as a research assistant. An integration
into CAMS was not made as part of this thesis due to time constraints and the scope

7.2 Future Work 83

of the thesis.

7.2.8 The MUBS Recommender System
The MUBS recommender system by Rohani et al. [Roh+20] is a smart-phone ap-
plication used for the treatment of bipolar patients through the recommendation of
pleasant activities. The system does so by tracking patients’ prior engaged activities,
which the patients’ rate through the app manually. By using the mobility features
we aim to add mental state and behavior prediction to improve the recommendation
algorithm, with these features being automatically generated. Furthermore, the fea-
tures can also be used to activate users directly, for example by giving the user a
task to visit a given number of different places during the day or keep their homestay
percentage below a certain threshold.

84

CHAPTER 8
Conclusion

For the conclusion we shall address the original three research questions which made
up the hypothesis:

Which mobility features are relevant to include in a software package?
The features Number of Places, Home Stay, Entropy/Normalized Entropy, Location
Variance, and the Routine Index were chosen based on the work by Saeb. et al
[Sae+15b] and Canzian et. al [CM15]. An additional set of features, namely Stops,
Places and Moves were included as well, inspired on the work by Cuttone et al.
[CLL14] and Canzian et al.

How can these features be computed in real-time, on a smartphone device?
The features needed to be re-defined such that they could be computed from an
incomplete dataset. All features except for the Routine Index can be computed
without historical data. A novel definition for the Routine Index feature was made
that required Stops from previous days in order to be computed. In a smartphone
implementation, these Stops are be saved on the device when computed, such that
they can be loaded again whenever the Routine Index is calculated in the future.

How does the design of such a software package look like?
It was decided upon a design that provides a programming interface with a very
high abstraction level that hides the implementation of feature computation and
data storage away from the user. The programming interface makes it possible for a
programmer to compute the features with just 3 lines of code. The package does not
depend on any specific location plugin due to its design, which allows the programmer
to flexibly choose their own plugin for tracking location data. Being independent
of any specific location plugin enables easier maintenance and allows the package
to be used among other packages dependent on location tracking, without causing
dependency issues.

Validation of the Package
Through a field study with 10 participants, the capabilities of the package were demon-
strated. For this study, a Flutter application collected the participants’ location for
3 weeks and used the package to compute the participants’ features multiple times

86 8 Conclusion

daily. Participants also filled out a daily questionnaire pertaining to the features,
which were compared to the computed features. In the 3-week study, the following
insights concerning the Mobility Features Package were drawn:

• The Mobility Features Packages successfully allowed mobility features to be
computed several times a day. However, non-uniform gaps were observed in the
collected location data, reducing the accuracy of the computed features.

• When comparing the daily features with subjective user data we found that
the Mobility Features Package computes the Number of Places visited with an
RMSE of 0.5 places, the Home Stay percentage with an RMSE of 14.3% and
the Routine Index with an RMSE of 22.5%.

• The algorithms tend to undershoot in computing the Number of Places and
Home Stay, which is likely due to gaps in the collected data. There is no con-
sistent over- or undershooting shown when it comes to computing this feature.
This likely stems from the between-subject variance in the routine answers as
well as the gaps in the location data.

Different approaches to mitigate the errors in computing features were proposed as
future work. Due to gaps in the data, the algorithms are currently being limited in
their accuracy. It is therefore proposed to use an imputation method to cover missing
data in the future.

APPENDIX A
Questionnaires

A.1 PHQ-9 (Patient Health Questionnaire)
The PHQ-9 questionnaire, patented by Pfizer, contains 9 questions pertaining to the
mental state of the patient 1. Each question asks ‘Over the last two weeks, how often
have you been bothered by any of the following problems?’ with the questions being
the following:

Q1: Little interest or pleasure in doing things?

Q2: Feeling down, depressed, or hopeless?

Q3: Trouble falling or staying asleep, or sleeping too much?

Q4: Feeling tired or having little energy?

Q5: Poor appetite or overeating?

Q6: Feeling bad about yourself, or that you are a failure, or have let yourself or your
family down?

Q7: Trouble concentrating on things, such as reading the newspaper or watching
television?

Q8: Moving or speaking so slowly that other people could have noticed. Or the
opposite – being so fidgety or restless that you have been moving around a lot more
than usual?

Q9: Thoughts that you would be better off dead, or of hurting yourself in some way?

Each question can be answered with the following 4 possibilities, each giving a number
of points indicated in brackets:

• Not at all (0 points)

• Several days (1 point)
1https://patient.info/doctor/patient-health-questionnaire-phq-9

https://patient.info/doctor/patient-health-questionnaire-phq-9

88 A Questionnaires

• More than half the days (2 points)

• Nearly every day (3 points)

At the end of the survey, the points are summed up and the patient is categorized
into one of 5 categories based on the number of points acquired:

• Less than 5 (no depression)

• 5-9 (mild depression)

• 10-14 (moderate depression)

• 15-10 (moderate/severe depression)

• Greater than 20 (severe depression)

APPENDIX B
Package Documentation

B.1 Structure
The package contains two main directories and three metadata files as depicted in
Figure B.1. The first directory is the source code directory, lib, containing the domain
model, and algorithms for computing MobilityContexts. The second directory is
the test directory containing unit tests which aid in the process of validating the
algorithms. The metadata files are the CHANGELOG.md which contains a list of
changes made to the package such that an application programmer can keep track of
changes to the API.
The pubspec.yaml contains the package specification including the package name, a
description, version, homepage, and a list of dependencies. The dependencies are
other packages on which the package depends, as in this case, the Mobility Features
Package depends on the simple_cluster, stats and path_provider packages each
with a specific version number. The package itself also has such a version number
that allows an application developer to import a specific version of the package, for

mobility_features
��� lib/
� ��� mobility_context.dart
� ��� mobility_domain.dart
� ��� mobility_features.dart
� ��� mobility_functions.dart
� ��� mobility_intermediate.dart
� ��� mobility_serializer.dart
��� test/
� ��� data/
� ��� mobility_features_test.dart
� ��� test_utils.dart
��� CHANGELOG.md
��� pubspec.yaml
��� README.md

Figure B.1: The file structure of the Mobility Features Flutter Package.

90 B Package Documentation

example, if they built their application around a previous release, they may wish
to continue depending on that specific release rather than upgrading to the newest
version.
Lastly, the README.md file contains instructions for using the package including
code snippets and use case examples.

B.2 Publishing
Distributing a Flutter package is done via the Dart Package Manager, Pub. Pub is
essentially a git repository of a package including all versions of that package. When
publishing a package the contents of the README file are converted to HTML and
are what the user is initially presented with. The README should, therefore, give
a brief overview and description of the package, in addition to instructions. Figure
B.3 shows the latest version of the package hosted at https://pub.dev/packages/
mobility_features.
Publishing automatically generate API documentation by using comments in the code.
Normally, comments are made with 2 forward slashes (//), but comments made with
three forward slashes (///) mark the code-block following it with API documentation,
i.e. the contents of the comment.

name: mobility_features
description: Real-time mobility feature calculation
version: 1.1.5
homepage: https://github.com/cph-cachet/flutter-plugins/

environment:
sdk: ">=2.7.0 <3.0.0"

dependencies:
flutter:

sdk: flutter
simple_cluster: ^0.2.0
stats: ^0.2.0+3
path_provider: ^1.6.10

dev_dependencies:
flutter_test:

sdk: flutter

Figure B.2: The pubspec.yaml file for the Mobility Features Package.

https://pub.dev/packages/mobility_features
https://pub.dev/packages/mobility_features

B.2 Publishing 91

Figure B.3: The page hosting the Mobility Features Package on www.pub.dev.

/// A [LocationSample] holds a 2D [GeoPosition] spatial data point
/// as well as a [DateTime] value s.t. it may be temporally ordered
class LocationSample implements _Serializable, _Geospatial {...}

Figure B.4: The API comments for the source code of the Location Sample class.

92 B Package Documentation

Figure B.5: The auto generated documentation for the package, hosted on pub.dev,
including the code snippet in Figure B.4 for the Location Sample class.

APPENDIX C
Python Demo

The following pages contain the Python implementation of the offline feature algo-
rithms which is run on a synthetic dataset. This was used in the development process
since prototyping in Python is much faster than in Dart.

FEATURES-DEMO

June 22, 2020

1 Stops, places and moves location analysis

Definitions: - Location data is collected as a sequence of location samples with varying sample
frequency and accuracy. - Places are locations of relevance to the user, such as home or workplace
and are described by their coordinates and an ID. - Stops are specific visits to one of those places,
described by their coordinates along with arrival and departure time. A stop is always associated
with exactly one place while a place can be associated with many stops. Stops are always non-
overlapping in time. - Moves are sequences of location points between stops and are described by
departure and arrival time, origin and destination place and the distance of the move.

In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from geopy.distance import geodesic
from sklearn.cluster import DBSCAN
import gmaps

import sys
sys.path.append("../")
from location import *

Keep data consistent, load from disk.
LOAD_DATA_FROM_DISK = False

In [2]: def get_date(row):
return row.date()

1.1 Generate example data

In [3]: if LOAD_DATA_FROM_DISK:
df = pd.read_json('multi_date_data.json').T
df.datetime = pd.to_datetime(df.datetime, unit='ms')
df.date = df.datetime.dt.date.astype('datetime64[ns]')

else:
create data simulating 3 places (a,b,c)
a = (55.686381, 12.557155) # Blaagaards Plads
b = (55.666919, 12.536792) # Spaces
c = (55.688305, 12.561862) # Hulen

1

94 C Python Demo

X = np.vstack([
day 1: home, work, home, workout, home
np.array([a]*(60*8+30)),
np.array([np.linspace(a[0], b[0], 30), np.linspace(a[1], b[1], 30)]).T,
np.array([b]*(60*7+30)),
np.array([np.linspace(b[0], a[0], 30), np.linspace(b[1], a[1], 30)]).T,
np.array([a]*55),
np.array([np.linspace(a[0], c[0], 5), np.linspace(a[1], c[1], 5)]).T,
np.array([c]*55),
np.array([np.linspace(c[0], a[0], 5), np.linspace(c[1], a[1], 5)]).T,
np.array([a]*60*5),
day 2: home, work, home
np.array([a]*(60*8+30)),
np.array([np.linspace(a[0], b[0], 30), np.linspace(a[1], b[1], 30)]).T,
np.array([b]*(60*7+30)),
np.array([np.linspace(b[0], a[0], 30), np.linspace(b[1], a[1], 30)]).T,
np.array([a]*60*7),
day 3: home, workout, home
np.array([a]*(60*10+55)),
np.array([np.linspace(a[0], c[0], 5), np.linspace(a[1], c[1], 5)]).T,
np.array([c]*55),
np.array([np.linspace(c[0], a[0], 5), np.linspace(c[1], a[1], 5)]).T,
np.array([a]*60*12),
])

X += np.random.normal(loc=0, scale=0.00005, size=X.shape)

df = pd.DataFrame(X, columns=['latitude', 'longitude'])
df.insert(0, 'user_id', 0)
df.insert(1, 'timestamp', np.arange(df.shape[0]) * 60000 + 1573430400000.0)
df.insert(2, 'datetime', pd.to_datetime(df.timestamp, unit='ms'))
df.insert(3, 'date', df.datetime.dt.date.astype('datetime64[ns]'))

Write to file
df.T.to_json('multi_date_data.json')

df.head()

df.date = df.date.apply(get_date)

In [57]: dates = np.unique(df.date.values)
dates

Out[57]: array([datetime.date(2019, 11, 11), datetime.date(2019, 11, 12),
datetime.date(2019, 11, 13)], dtype=object)

2

C Python Demo 95

1.2 Quick visualization of the 3 places visited

In [58]: plt.figure(figsize=(8,8))
plt.plot(df.latitude.values, df.longitude.values, marker='.', alpha=1)
plt.grid()
plt.show()

1.3 Preprocessing (stops, places and moves)

• A stop is a collection of stationary points
• A place is a cluster of stops found using DBSCAN
• A move is a transition from one stop to another.

In [6]: stops, places, moves = get_stops_places_and_moves(df)
stops['date'] = stops.arrival.apply(get_date)
moves['date'] = moves.arrival.apply(get_date)

3

96 C Python Demo

In [7]: stops

Out[7]: user_id latitude longitude samples arrival \
0 0 55.686381 12.557161 511 2019-11-11 00:00:00
1 0 55.666914 12.536788 452 2019-11-11 08:59:00
2 0 55.686383 12.557170 57 2019-11-11 16:59:00
3 0 55.688303 12.561877 57 2019-11-11 17:59:00
4 0 55.686376 12.557154 812 2019-11-11 18:59:00
5 0 55.666921 12.536791 452 2019-11-12 08:59:00
6 0 55.686382 12.557154 1077 2019-11-12 16:59:00
7 0 55.688310 12.561865 57 2019-11-13 10:59:00
8 0 55.686377 12.557154 721 2019-11-13 11:59:00

departure duration place date
0 2019-11-11 08:30:00 510.0 0 2019-11-11
1 2019-11-11 16:30:00 451.0 1 2019-11-11
2 2019-11-11 17:55:00 56.0 0 2019-11-11
3 2019-11-11 18:55:00 56.0 2 2019-11-11
4 2019-11-12 08:30:00 811.0 0 2019-11-11
5 2019-11-12 16:30:00 451.0 1 2019-11-12
6 2019-11-13 10:55:00 1076.0 0 2019-11-12
7 2019-11-13 11:55:00 56.0 2 2019-11-13
8 2019-11-13 23:59:00 720.0 0 2019-11-13

In [8]: places

Out[8]: user_id place latitude longitude duration stops
0 0 0 55.686381 12.557154 3173.0 5
1 0 1 55.666918 12.536790 902.0 2
2 0 2 55.688307 12.561871 112.0 2

In [9]: moves

Out[9]: user_id from_latitude from_longitude to_latitude to_longitude samples \
0 0 55.686350 12.557288 55.666931 12.536812 30
1 0 55.666994 12.536835 55.686413 12.557147 30
2 0 55.686326 12.557210 55.666843 12.536827 30
3 0 55.666941 12.536796 55.686385 12.557099 30

departure arrival from_place to_place distance \
0 2019-11-11 08:30:00 2019-11-11 08:59:00 0.0 1.0 2520.430627
1 2019-11-11 16:30:00 2019-11-11 16:59:00 1.0 0.0 2516.562350
2 2019-11-12 08:30:00 2019-11-12 08:59:00 0.0 1.0 2523.909200
3 2019-11-12 16:30:00 2019-11-12 16:59:00 1.0 0.0 2518.612156

duration mean_speed date
0 29.0 1.448523 2019-11-11
1 29.0 1.446300 2019-11-11
2 29.0 1.450523 2019-11-12
3 29.0 1.447478 2019-11-12

4

C Python Demo 97

1.3.1 Visualizing the clusters and moves

In [59]: plt.figure(figsize=(8,8))
plt.plot(df.longitude.values, df.latitude.values, marker='.', alpha=.2)
plt.scatter(stops.longitude.values, stops.latitude.values, marker='d', color='r', zorder=10, alpha=.5)
plt.scatter(places.longitude.values, places.latitude.values, s=1000, facecolors='none', edgecolors='r')
for index, move in moves.iterrows():

plt.plot([move.from_longitude, move.to_longitude], [move.from_latitude, move.to_latitude], color='r')
plt.grid()
plt.show()

2 Features

2.1 Number of clusters

This feature represents the total number of clusters found by the clustering algorithm.

5

98 C Python Demo

In [60]: def number_of_clusters(places):
return len(places)

In [61]: number_of_clusters(places)

Out[61]: 3

2.2 Location Variance:

This feature measures the variability of a participant’s location data from stationary states. LV was
computed as the natural logarithm of the sum of the statistical variances of the latitude and the
longitude components of the location data.

In [62]: def location_variance(df):
If fewer than 2 observations, we can't compute the variance
if len(df) < 2:

return 0.0
return np.log(df.latitude.var() + df.longitude.var() + 1)

In [63]: location_variance(df)

Out[63]: 0.00013597465949774686

2.3 Location Entropy (LE):

A measure of points of interest. High entropy indicates that the participant spent time more uniformly
across different location clusters, while lower entropy indicates the participant spent most of the time at
some specific clusters. Concretely it is calculated as:

Entropy = −
N

∑
i=1

pi · log pi

where each i represents a location cluster, N denotes the total number of location clusters, and pi is
the percentage of time the participant spent at the location cluster i. High cluster entropy indicates that
the participant spent time more uniformly across different location clusters, while lower cluster entropy
indicates the participant spent most of the time at some specific clusters.

Here, we use the duration spent at each place, found in the duration column in the places
dataframe.

In [64]: def _entropy(durations):
p = durations / np.sum(durations)
return -np.sum(p * np.log(p))

In [65]: _entropy(places.duration)

Out[65]: 0.6377255748619863

In [66]: # NumPy for reference:

from scipy.stats import entropy
entropy(places.duration)

Out[66]: 0.6377255748619863

6

C Python Demo 99

2.4 Normalized LE:

Normalized entropy is calculated by dividing the cluster entropy by its maximum value, which is the loga-
rithm of the total number of clusters. Normalized entropy is invariant to the number of clusters and thus
solely depends on their visiting distribution. The value of normalized entropy ranges from 0 to 1, where 0
indicates the participant has spent their time at only one location, and 1 indicates that the participant has
spent an equal amount of time to visit each location cluster.

Here we just divide by the log to the number of places.

In [67]: def normalized_entropy(durations):
return entropy(durations) / np.log(len(durations))

In [68]: normalized_entropy(places.duration)

Out[68]: 0.5804828340625297

2.5 Transition Time:

Transition Time measures the percentage of time the participant has been in the transition state.
A few ways of doing this, but one is using the moves dataframe and simply summing the

duration column, and dividing by 24 hours.

In [69]: def transition_time(moves):
move_time = moves.duration.sum()
return move_time / (24 * 60)

In [70]: transition_time(moves)

Out[70]: 0.08055555555555556

3 Total Distance:

This feature measures the total distance the participant has traveled in the transition state.
Here we simply sum the distance column in the moves dataframe.

In [71]: def total_distance(moves):
return moves.distance.sum()

In [72]: total_distance(moves)

Out[72]: 10079.514332342535

3.1 Routine Index

In [73]: HOURS_IN_A_DAY = 24

def print_hour_matrix(M):
for i, row in enumerate(M):

line = "[{:0>2} - {:0>2}] ".format(i, i+1)
for e in row:

7

100 C Python Demo

line += '%0.2f ' % e
print(line)

def make_hour_matrix(stops, num_places):
h = np.zeros((HOURS_IN_A_DAY, num_places))

for index, row in stops.iterrows():
pid = row.place
start_hour = row.arrival.hour
end_hour = row.departure.hour

If user arrived and departed within the same hour
Then the time stayed is the diff between departure and arrival
if start_hour == end_hour:

h[start_hour, pid] = row.departure.minute - row.arrival.minute

else:
Arrival hour
h[start_hour, pid] = 60 - row.arrival.minute

In between
for hour in range(start_hour+1, end_hour):

h[hour, pid] = 60

Departure hour
h[end_hour, pid] = row.departure.minute

return h / 60 # Normalize by 60 mins

In [74]: # Plot a matrix as a color map
def matrix_plot(m):

plt.figure(figsize=(10,10))
plt.imshow(m, cmap='bone')
plt.title('Hour matrix')
plt.xlabel('Place ID')
plt.ylabel('Timeslot')
plt.yticks(range(HOURS_IN_A_DAY), ["[{:0>2} - {:0>2}] ".format(i, i+1) for i in range(HOURS_IN_A_DAY)])
plt.xticks(range(m.shape[1]))
plt.show()

In [75]: s1 = stops[stops.date == dates[0]]
s1

Out[75]: user_id latitude longitude samples arrival \
0 0 55.686381 12.557161 511 2019-11-11 00:00:00
1 0 55.666914 12.536788 452 2019-11-11 08:59:00
2 0 55.686383 12.557170 57 2019-11-11 16:59:00
3 0 55.688303 12.561877 57 2019-11-11 17:59:00

8

C Python Demo 101

4 0 55.686376 12.557154 812 2019-11-11 18:59:00

departure duration place date
0 2019-11-11 08:30:00 510.0 0 2019-11-11
1 2019-11-11 16:30:00 451.0 1 2019-11-11
2 2019-11-11 17:55:00 56.0 0 2019-11-11
3 2019-11-11 18:55:00 56.0 2 2019-11-11
4 2019-11-12 08:30:00 811.0 0 2019-11-11

In [76]: h1 = make_hour_matrix(s1, len(places))
matrix_plot(h1)

9

102 C Python Demo

10

C Python Demo 103

In [77]: def RI(h_mean, h, end_hour=24):
'''
input:

h_mean (2d matrix): Historical Mean Matrix
h (2d matrix): Hour Matrix for a day

output:
routine_index: -1 (could not be calculated) or [0 to 1].

'''
if h_mean.sum() == 0:

return -1.0 # no routine index could be calculated

assert(h_mean.shape == h.shape)

m,n = h.shape

overlap = 0.0
for i in range(m):

for j in range(n):
overlap += min(h_mean[i,j], h[i,j])

max_overlap = min(h_mean.sum(), h.sum())

return overlap / max_overlap

3.2 Using todays stops and historical stops to calculate routine index

I.e. no updating of routine matrix, always recalculate it.

In [78]: STOPS = {}
for date in dates:

print('Date:', date)
Select data by date
data = df[df.date == date]

Find stops, moves, places
S, P, M = get_stops_places_and_moves_daily(data, merge=False, move_duration=3)

Store them
STOPS[date] = S

Date: 2019-11-11
Date: 2019-11-12
Date: 2019-11-13

In [79]: def plot_today_and_routine(today, routine, routine_after, save=False):
interval_strings = ["[{:0>2} - {:0>2}] ".format(i, i+1) for i in range(HOURS_IN_A_DAY)]

11

104 C Python Demo

f, (ax1, ax2, ax3) = plt.subplots(1, 3)
f.set_size_inches((10,10))

ax1.imshow(routine, cmap='bone')
ax1.set_title('Routine')
ax1.set_xlabel('Place ID')
ax1.set_ylabel('Timeslot')
ax1.set_yticks(range(HOURS_IN_A_DAY))
ax1.set_yticklabels(interval_strings)
ax1.set_xticks(range(routine.shape[1]))

ax2.imshow(today, cmap='bone')
ax2.set_title('Today')
ax2.set_xlabel('Place ID')
ax2.set_ylabel('Timeslot')
ax2.set_yticks(range(HOURS_IN_A_DAY))
ax2.set_yticklabels(interval_strings)
ax2.set_xticks(range(today.shape[1]))

ax3.imshow(routine_after, cmap='bone')
ax3.set_title('Updated Routine')
ax3.set_xlabel('Place ID')
ax3.set_ylabel('Timeslot')
ax3.set_yticks(range(HOURS_IN_A_DAY))
ax3.set_yticklabels(interval_strings)
ax3.set_xticks(range(routine_after.shape[1]))

if save:
plt.savefig('routine.png')

plt.show()

In [80]: DISTF = lambda a, b: geodesic(a, b).meters

def get_places_2(stops, dist=25, distf=DISTF):
if stops.empty:

stops['place'] = []
places = pd.DataFrame(columns=['user_id', 'place', 'latitude', 'longitude', 'duration', 'stops'])

else:
points = stops[['latitude', 'longitude']].values
dbs = DBSCAN(dist, min_samples=1, metric=distf).fit(points)
stops['place'] = dbs.labels_
places = stops.groupby('place').agg({

'latitude': np.median,
'longitude': np.median,
'duration': np.sum,
'samples': len,

}).reset_index()

12

C Python Demo 105

places.rename(columns={'samples': 'stops'}, inplace=True)
places.insert(0, 'user_id', stops.user_id.values[0])

return stops, places

In [96]: for date in dates:
Calculate todays matrix
stops_today = STOPS[date]
stops_so_far = [STOPS[d] for d in dates[dates <= date]]
stops_so_far = pd.concat(stops_so_far)
stops_so_far = stops_so_far.sort_values(['arrival'])
stops_so_far = stops_so_far.reset_index()
stops_so_far, places_so_far = get_places_2(stops_so_far)

number_of_places = len(places_so_far)

hour_matrix_today = make_hour_matrix(stops_today, number_of_places)

dates_hist = dates[dates < date]

routine_matrix = hour_matrix_today

if len(dates_hist) > 0:
print(date)
hour_matrices_hist = [make_hour_matrix(STOPS[date_hist], number_of_places) for date_hist in dates_hist]
new_routine_matrix = np.mean(hour_matrices_hist, axis=0)
ri = RI(new_routine_matrix, hour_matrix_today)
plot_today_and_routine(hour_matrix_today, routine_matrix, new_routine_matrix)
routine_matrix = new_routine_matrix

else:
ri = -1

print('Routine index: %0.2f' % ri)

hms[date] = hour_matrix_today
rms[date] = routine_matrix

print('-'*35)

Routine index: -1.00

2019-11-12

13

106 C Python Demo

Routine index: 0.96

2019-11-13

14

C Python Demo 107

Routine index: 0.69

3.3 Home Stay:

The percentage of time the participant has been at the cluster that represents home. We define the home
cluster as the cluster, which is mostly visited during the period between 12 am and 6 am.

Implementation steps: * Identify home: Use the hours dataframe to determine the most visited
cluster between 00 and 06 am. * Count percentage of time at home: Use the places dataframe to
calculate the time distribution.

15

108 C Python Demo

However - we need to fill out the hours dataframe with data between 00 and 06 first

In [33]: date = dates[0]
Calculate todays matrix
stops_today = STOPS[date]
stops_so_far = [STOPS[d] for d in dates[dates <= date]]
stops_so_far = pd.concat(stops_so_far)
stops_so_far = stops_so_far.sort_values(['arrival'])
stops_so_far = stops_so_far.reset_index()
stops_so_far, places_so_far = get_places_2(stops_so_far)

num_places = len(places_so_far)

In [34]: H = make_hour_matrix(stops_today, num_places)

In [104]: def get_home_place(hour_matrix):
start, end = 0, 6
place_dist = hour_matrix[start:end].sum()

Check that there was actually data between 00 and 06
assert not np.all(hour_matrix[start:end].sum() == 0)

return hour_matrix[start:end].sum().argmax()

def home_stay(places, hour_matrix):
distr = places.duration / places.duration.sum()
home_id = get_home_place(hour_matrix)
return distr[home_id]

In [106]: get_home_place(H)

Out[106]: 0

In [109]: home_stay(places_so_far, H)

Out[109]: 0.6307356154406409

16

C Python Demo 109

110

APPENDIX D
Source Code

D.0.1 Storing and Loading Data
The storing and loading of data, which includes Location Samples, Stops, and Moves
happen through the MobilitySerializer class. This class allows classes that implement
the Serializable interface to be serialized and de-serialized. Just like the GeoSpatial
interface, the Serializable interface is also implemented as a private abstract class
only used internally in the package library. The interface contains a method for
serializing a class to JSON, named toJson() which takes no parameters and produces
a HashMap of Strings to the dynamic, the dynamic type meaning any type. This is
the Dart equivalent of a JSON object. Another method the interface forces other
classes to implement is the deserialization method fromJson(json) which takes a
JSON object as a parameter and creates a runtime object of the given type, from
the JSON object. The implementation of this method is left to the individual classes
implementing the interface which is done by extracting data from the JSON object.

abstract class _Serializable {
Map<String, dynamic> _toJson();

_Serializable._fromJson(Map<String, dynamic> json);
}

The MobilitySerializer class is a generic which allows the type E to be specified later,
with E referring to either a Location Sample, Stop or Move which all implement the
Serializable interface. The MobilitySerializer is constructed using a reference to a File
object. The File object is used for storing the data of the given type i.e. Location
Samples are stored one file, Stops in another, and Moves in a third.

class MobilitySerializer<E> {
File file;

MobilitySerializer._(this.file) {
bool exists = file.existsSync();
if (!exists) {

flush();
}

}

112 D Source Code

Future<void> flush() async =>
await file.writeAsString('', mode: FileMode.write);

...
}

When initialized, it is checked whether or not the specified file exists, and if not the
flush method is called, which simply writes an empty string to the file, overriding
any content, which has the effect of creating the file, should it not already exist.
A concrete example of instantiated the MobilitySerializer for Stops is shown below,
where stops.json refers to the file in which Stops should be stored.

MobilitySerializer<Stop> stopSerializer =
MobilitySerializer<Stop>._(await _file('stops.json'));

For storing data the save method is used which takes in a list of objects which all
implement the Serializable interface. Each element in the list is serialized via its
toJson method and concatenated into one big string separated by a delimiter token,
and this string is then written to the specific file of the MobilitySerializer object.

Future<void> save(List<_Serializable> elements) async {
String jsonString = "";
for (_Serializable e in elements) {

jsonString += json.encode(e._toJson()) + delimiter;
}
await file.writeAsString(jsonString,

mode: FileMode.writeOnlyAppend);
}

Loading works in the reverse order, where the contents of the specified file are loaded
into a string, the string is then split into elements using the delimiter token and each
of these elements is de-serialized using the fromJson method. For deciding which
type to de-serialize the elements into, a switch statement is used that checks the type
of E which is specified when the MobilitySerializer object is instantiated.

Future<List<_Serializable>> load() async {
String content = await file.readAsString();

List<String> lines = content.split(delimiter);

Iterable<Map<String, dynamic>> jsonObjs = lines
.sublist(0, lines.length - 1)
.map((e) => json.decode(e))
.map((e) => Map<String, dynamic>.from(e));

switch (E) {

D Source Code 113

case Move:
return jsonObjs.map((x) =>

Move._fromJson(x)).toList();

case Stop:
return jsonObjs.map((x) =>

Stop._fromJson(x)).toList();

default:
return jsonObjs.map((x) =>

LocationSample._fromJson(x)).toList();
}

}

Ideally, the switch statement could have been replaced by the following one-liner:

return jsonObjs.map((x) => E.fromJson(x)).toList();

However, this relies on the language feature called reflection 1 which allows the com-
piler to infer the type of E at compile-time. However, Dart does not support reflection
which makes this impossible.

D.0.1.1 Accessing the File System
For storing collected location data the MobilitySerializer for Location Samples can
be retrieved through this class, with a getter method.);

static Future<MobilitySerializer<LocationSample>>
get locationSampleSerializer async =>

MobilitySerializer<LocationSample>._(await _file(LOCATION_SAMPLES)

Internally this class has a method for creating a file system reference, which relies on
the platform the application is running on. For mobile apps, the file system must be ac-
cessed through the path_provider package with the getApplicationDocumentsDirectory()
method. If the application is run on the desktop, such as when unit testing the file
system can be accessed by specifying a file name directly. This is a textbook example
of hiding complexity from the application programmer.

1https://www.javaworld.com/article/2075801/reflection-vs--code-generation.html

https://www.javaworld.com/article/2075801/reflection-vs--code-generation.html

114 D Source Code

static Future<File> _file(String type) async {
bool isMobile = Platform.isAndroid || Platform.isIOS;

String path;
if (isMobile) {

path = (await getApplicationDocumentsDirectory()).path;
} else {

path = 'test/data';
}
return new File('$path/$type.json');

}

Figure D.1: Lazy evaluation of a feature.

APPENDIX E
Unit Testing

Unit testing 1, in which small parts of the source code are tested played a signifi-
cant role in the latter part of the development process. It was prioritized to make
a working demo application in order to conduct a study and while unit tests can
speed up certain parts of the debugging process, it was still faster to ’hack something
together’. The only testing done prior to the study was regarding serialization and
making sure the feature computation producing meaningful results, i.e. they were
manually verified. The traditional way of using unit testing is through Test-Driven
Development developed by Kent Beck [Bec02] in which the tests are written first, and
the corresponding source code which should pass the test is written afterward. The
package went through many smaller iterations, in which the data flow was moved
around, and unit testing made discovering bugs much easier by enabling one to con-
stantly verify that the source code produced the desired results every time changes
were made. As the package went through multiple iterations, each iteration either
added or removed functionality or changed the existing functionality slightly which
meant new unit tests were often written to cover the functionality. In the end, some
the functionality was pruned and therefore some of the tests were also superfluous or
had a large amount of overlap between them and were therefore also consolidated.

E.0.1 Limitations of Unit Testing
There were a few shortcomings of unit testing encountered, which largely came down
to the inability to compare objects before and after serialization. This stems from
objects having a hash code, i.e. a unique fingerprint which is not stored when seri-
alizing. The fingerprint is used to compare objects while in memory, and since the
fingerprint is lost the problem arises. For this to be resolved, a better testing method
needs to be implemented in terms of comparing objects. This can be done by imple-
menting a function that breaks down each object, be it a Stop, or MobilityContext,
into the most atomic values, i.e. latitude, longitude, time-stamp, etc, which can be
compared without a hash code. For testing the algorithms, small synthetic datasets
were created in order to test very rudimentary cases. It was harder to construct very
large synthetic datasets in order to test more realistic, noisy datasets and discover
edge cases. In the future, more elaborate unit tests should be written, especially for
the clustering algorithms, since the ground truth, i.e. cluster centroids and points
belonging to clusters can be calculated by hand. Another possibility that was partly

1https://martinfowler.com/bliki/UnitTest.html

https://martinfowler.com/bliki/UnitTest.html

116 E Unit Testing

explored was using a real-world dataset that the author gathered tracking himself
however to verify the algorithms on this dataset it would need to manually label
which was not done. The large real-world dataset was however used to verify that the
algorithms produced meaningful results and that the computation did not throw any
errors. Lastly, the current state of the API gives the public access to certain methods
which are not supposed to have public access. The reason for this is that they need
to be part of the unit tests, concretely it is the MobilitySerializer methods flush and
save. These methods are not intended to be used by the user since the flush method
deletes all contents of the corresponding file. The load method does not pose a threat
to the usability, but is unnecessary clutter, and should only be used internally by the
package.

E.0.2 Example Unit Tests
In this subsection selected unit tests will be exemplified.

Location Sample Serialization
This test is the simplest unit test in the collection in which the storing- and loading
functionality of the MobilitySerializer is displayed. A small, synthetic is created
consisting of three Location Samples, which is first stored via the save() method, and
next the load() method is called. To check whether or not the store and load were
successful, the lengths of the original dataset and the loaded dataset are compared.

test('Serialize and load three location samples', () async {
MobilitySerializer<LocationSample> serializer =

await ContextGenerator.locationSampleSerializer;

LocationSample x =
LocationSample(GeoPosition(123.456, 123.456), DateTime(2020, 01, 01));

List<LocationSample> dataset = [x, x, x];

await serializer.flush();
await serializer.save(dataset);
List loaded = await serializer.load();
expect(loaded.length, dataset.length);

});

Figure E.1: A unit testing demonstrating storing and loading a small, synthetic
dataset.

E Unit Testing 117

Test: Single Stop
This test is a step up in complexity in terms of what is tested. A dataset is constructed
that simulates a user staying at a single location from 00:00 to 17:00. This should
result in a single stop and place being found, no moves, and a homestay value of 1.0
(i.e. 100 percent). The data is first serialized and a Mobility Context is computed
afterward from which the features are extracted.

Test: Multiple Days with Routine Index
This test works similarly to the previous one but has the dataset spread over two
different locations. The same dataset is repeated for 5 days, where the number of
Stops, Moves, and Places is evaluated each day, in addition to the Home Stay and
Routine Index feature. Concretely, the places visited are the same each day, at the
same hours of the day meaning the Routine Index is 1.0 except for the first day since
the Routine Index requires at least one historical day for comparison. The user stays
at one place from 00:00 to 06:00 making it the home cluster, and another place from
08:00 to 09:00. This means the Home Stay should be equal to 6

9 , or 66.67 percent.

118 E Unit Testing

test('Features: Single Stop', () async {
Duration timeTracked = Duration(hours: 17);

List<LocationSample> dataset = [
// home from 00 to 17
LocationSample(loc0, jan01),
LocationSample(loc0, jan01.add(timeTracked)),

];

MobilitySerializer<LocationSample> serializer =
await ContextGenerator.locationSampleSerializer;

serializer.flush();
await serializer.save(dataset);

MobilityContext context =
await ContextGenerator.generate(today: jan01);

expect(context.homeStay, 1.0);
expect(context.stops.length, 1);
expect(context.moves.length, 0);
expect(context.places.length, 1);

});

Figure E.2: Unit test for a single Stop.

E Unit Testing 119

test('Features: Multiple days, multiple locations', () async {
MobilitySerializer<LocationSample> serializer =

await ContextGenerator.locationSampleSerializer;

/// Clean file every time test is run
serializer.flush();

for (int i = 0; i < 5; i++) {
DateTime date = jan01.add(Duration(days: i));

/// Todays data
List<LocationSample> locationSamples = [

// 5 hours spent at home
LocationSample(loc0, date.add(Duration(hours: 0, minutes: 0))),
LocationSample(loc0, date.add(Duration(hours: 6, minutes: 0))),

LocationSample(loc1, date.add(Duration(hours: 8, minutes: 0))),
LocationSample(loc1, date.add(Duration(hours: 9, minutes: 0))),

];

await serializer.save(locationSamples);

/// Calculate and save context
MobilityContext context = await ContextGenerator.generate(

usePriorContexts: true, today: date);

double routineIndex = context.routineIndex;
double homeStay = context.homeStay;

expect(context.stops.length, 2);
expect(context.places.length, 2);
expect(context.moves.length, 1);

expect(homeStay, 6 / 9);

// The first day the routine index should be -1,
// otherwise 1 since the days are exactly the same
if (i == 0) {

expect(routineIndex, -1);
} else {

expect(routineIndex, 1);
}

}
});

Figure E.3: Unit test for a single Stop.

120

APPENDIX F
Installation Manual

The following pages contains the instruction manual the participants were sent out,
in order for them to install the application. The application was distributed via
TestFlight where each participant received an invitation via their Apple ID.

Mobility Study - How to Install
Thomas Nilsson, Technical University of Denmark
tnni@dtu.dk

Step 1
Download Apple’s TestFlight app from the App store.

Step 2
Open the TestFlight app, and install the available app. This will install an
app called Runner, on your device.

Step 3
Open the Runner app and give it the permissions it asks for.

In addition, you need to minimize the app by pressing the home button and
go into your settings app.

Here, navigate to Privacy > Location Services > Runner and choose
‘Always’ in order to allow the app to monitor your location in the
background.

122 F Installation Manual

Step 4
Keep the application running the background, you should see the compass
indicator in the top bar of your phone, which indicates that location is being
tracked.

Step 5
Once a day you will be asked to fill out four questions, we call this a diary.
You can fill out the diary as many times as you want per day (for example if
you fill it out wrongly). However, only the latest diary on a given day will be
used.

F Installation Manual 123

124

APPENDIX G
Data Analysis - Extra Plots

G.1 Missing Data
Figure G.1 shows the collected location data for participant P8 who had an older
phone (iPhone 6s) which has limited memory and compute resources, which likely
impacted how much data was tracked. The participant was very diligent in making
sure the phone tracked at all times, yet substantial gaps still exist.

126 G Data Analysis - Extra Plots

Figure G.1: An event plot for participant P8 who was diligent in making sure the
phone was tracking, but had an older phone (iPhone 6s).

Bibliography
[AS02] D. Ashbrook and T. Starner. “Learning significant locations and pre-

dicting user movement with GPS”. In: Proceedings. Sixth International
Symposium on Wearable Computers, 2002, pages 101–108.

[Bar20] Jakob E. Bardram. The CARP Mobile Sensing Framework – A Cross-
platform, Reactive, Programming Framework and Runtime Environment
for Digital Phenotyping. 2020. arXiv: 2006.11904 [cs.HC].

[Bec02] Kent Beck. Test Driven Development. By Example (Addison-Wesley Sig-
nature). Addison-Wesley Longman, Amsterdam, 2002. isbn: 0321146530.

[Bru13] Glen Robert van Brummelen. eavenly Mathematics: The Forgotten Art
of Spherical Trigonometry. Princeton University Press, 2013. isbn: ISBN
9780691148922.

[CLL14] Andrea Cuttone, Sune Lehmann, and Jakob Eg Larsen. “Inferring Hu-
man Mobility from Sparse Low Accuracy Mobile Sensing Data”. In: Pro-
ceedings of the 2014 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing: Adjunct Publication. UbiComp ’14 Ad-
junct. Seattle, Washington: Association for Computing Machinery, 2014,
pages 995–1004. isbn: 9781450330473. doi: 10.1145/2638728.2641283.
url: https://doi.org/10.1145/2638728.2641283.

[CM15] Luca Canzian and Mirco Musolesi. “Trajectories of Depression: Unobtru-
sive Monitoring of Depressive States by Means of Smartphone Mobility
Traces Analysis”. In: Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp ’15. Os-
aka, Japan: Association for Computing Machinery, 2015, pages 1293–
1304. isbn: 9781450335744. doi: 10.1145/2750858.2805845. url: https:
//doi.org/10.1145/2750858.2805845.

[CP13] Isabelle [Soucy Chartier] and Martin D. Provencher. “Behavioural activa-
tion for depression: Efficacy, effectiveness and dissemination”. In: Journal
of Affective Disorders 145.3 (2013), pages 292–299. issn: 0165-0327. doi:
https://doi.org/10.1016/j.jad.2012.07.023. url: http://www.
sciencedirect.com/science/article/pii/S0165032712005423.

[Dep20] Office of the Department of Defense. “GLOBAL POSITIONING SYS-
TEM STANDARD POSITIONING SERVICE PERFORMANCE STAN-
DARD”. In: 5th Edition (2020). url: https://www.gps.gov/technical/
ps/.

https://arxiv.org/abs/2006.11904
https://doi.org/10.1145/2638728.2641283
https://doi.org/10.1145/2638728.2641283
https://doi.org/10.1145/2750858.2805845
https://doi.org/10.1145/2750858.2805845
https://doi.org/10.1145/2750858.2805845
https://doi.org/https://doi.org/10.1016/j.jad.2012.07.023
http://www.sciencedirect.com/science/article/pii/S0165032712005423
http://www.sciencedirect.com/science/article/pii/S0165032712005423
https://www.gps.gov/technical/ps/
https://www.gps.gov/technical/ps/

128 Bibliography

[Dim+06] Sona Dimidjian et al. “Randomized trial of behavioral activation, cog-
nitive therapy, and antidepressant medication in the acute treatment of
adults with major depression.” In: Journal of Consulting and Clinical Psy-
chology 74.4 (2006), pages 658–670. doi: 10.1037/0022-006X.74.4.658.
url: https://doi.org/10.1037/0022-006X.74.4.658.

[Dor+18] Afsaneh Doryab et al. “Extraction of Behavioral Features from Smart-
phone and Wearable Data”. In: CoRR abs/1812.10394 (2018). arXiv:
1812.10394. url: http://arxiv.org/abs/1812.10394.

[Ebe+17] David Daniel Ebert et al. “Prevention of Mental Health Disorders Us-
ing Internet- and Mobile-Based Interventions: A Narrative Review and
Recommendations for Future Research”. In: Frontiers in Psychiatry 8
(2017), page 116. issn: 1664-0640. doi: 10.3389/fpsyt.2017.00116.
url: https://www.frontiersin.org/article/10.3389/fpsyt.2017.
00116.

[Est+96] Martin Ester et al. “A Density-Based Algorithm for Discovering Clus-
ters a Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”. In: Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining. KDD’96. Portland,
Oregon: AAAI Press, 1996, pages 226–231.

[FKD15] Denzil Ferreira, Vassilis Kostakos, and Anind K. Dey. “AWARE: Mo-
bile Context Instrumentation Framework”. In: Frontiers in ICT 2 (2015),
page 6. issn: 2297-198X. doi: 10.3389/fict.2015.00006. url: https:
//www.frontiersin.org/article/10.3389/fict.2015.00006.

[Fow+02] Martin Fowler et al. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

[Gra+15] Franz Gravenhorst et al. “Mobile phones as medical devices in mental
disorder treatment: an overview”. In: Personal and Ubiquitous Computing
19.2 (February 2015), pages 335–353. issn: 1617-4917. doi: 10.1007/
s00779-014-0829-5. url: https://doi.org/10.1007/s00779-014-
0829-5.

[Ins18] Thomas R. Insel. “Digital phenotyping: a global tool for psychiatry”. eng.
In: World psychiatry : official journal of the World Psychiatric Associ-
ation (WPA) 17.3 (October 2018). PMC6127813[pmcid], pages 276–277.
issn: 1723-8617. doi: 10.1002/wps.20550. url: https://doi.org/10.
1002/wps.20550.

[Mac03] David J. C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge: Cambridge University Press, 2003. isbn: ISBN 0-
521-64298-1.

https://doi.org/10.1037/0022-006X.74.4.658
https://doi.org/10.1037/0022-006X.74.4.658
https://arxiv.org/abs/1812.10394
http://arxiv.org/abs/1812.10394
https://doi.org/10.3389/fpsyt.2017.00116
https://www.frontiersin.org/article/10.3389/fpsyt.2017.00116
https://www.frontiersin.org/article/10.3389/fpsyt.2017.00116
https://doi.org/10.3389/fict.2015.00006
https://www.frontiersin.org/article/10.3389/fict.2015.00006
https://www.frontiersin.org/article/10.3389/fict.2015.00006
https://doi.org/10.1007/s00779-014-0829-5
https://doi.org/10.1007/s00779-014-0829-5
https://doi.org/10.1007/s00779-014-0829-5
https://doi.org/10.1007/s00779-014-0829-5
https://doi.org/10.1002/wps.20550
https://doi.org/10.1002/wps.20550
https://doi.org/10.1002/wps.20550

Bibliography 129

[Moh+13] David C. Mohr et al. “Behavioral Intervention Technologies: Evidence re-
view and recommendations for future research in mental health”. In: Gen-
eral Hospital Psychiatry 35.4 (2013), pages 332–338. issn: 0163-8343. doi:
https://doi.org/10.1016/j.genhosppsych.2013.03.008. url: http:
//www.sciencedirect.com/science/article/pii/S0163834313000698.

[Pal+17] N. Palmius et al. “Detecting Bipolar Depression From Geographic Lo-
cation Data”. In: IEEE Transactions on Biomedical Engineering 64.8
(2017), pages 1761–1771.

[Roh+18] Darius A Rohani et al. “Correlations Between Objective Behavioral Fea-
tures Collected From Mobile and Wearable Devices and Depressive Mood
Symptoms in Patients With Affective Disorders: Systematic Review”. In:
JMIR Mhealth Uhealth 6.8 (August 2018), e165. issn: 2291-5222. doi:
10 . 2196 / mhealth . 9691. url: http : / / www . ncbi . nlm . nih . gov /
pubmed/30104184.

[Roh+20] Darius A. Rohani et al. “MUBS: A Personalized Recommender System
for Behavioral Activation in Mental Health”. In: Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems. CHI ’20. Hon-
olulu, HI, USA: Association for Computing Machinery, 2020, pages 1–13.
isbn: 9781450367080. doi: 10 . 1145 / 3313831 . 3376879. url: https :
//doi.org/10.1145/3313831.3376879.

[Sae+15a] Sohrab Saeb et al. “Mobile Phone Sensor Correlates of Depressive Symp-
tom Severity in Daily-Life Behavior: An Exploratory Study”. In: Journal
of Medical Internet Research 17 (July 2015). doi: 10.2196/jmir.4273.

[Sae+15b] Sohrab Saeb et al. “The Relationship between Clinical, Momentary, and
Sensor-based Assessment of Depression”. In: International Conference on
Pervasive Computing Technologies for Healthcare : [proceedings]. Inter-
national Conference on Pervasive Computing Technologies for Healthcare
2015 (August 2015). PMC4667797[pmcid], 10.4108/icst.pervasivehealth.2015.259034.
issn: 2153-1633. doi: 10.4108/icst.pervasivehealth.2015.259034.
url: https://www.ncbi.nlm.nih.gov/pubmed/26640739.

[Spa+08] Stefano Spaccapietra et al. “A conceptual view on trajectories”. In: Data
Knowledge Engineering 65.1 (2008). Including Special Section: Privacy
Aspects of Data Mining Workshop (2006) - Five invited and extended
papers, pages 126–146. issn: 0169-023X. doi: https://doi.org/10.
1016/j.datak.2007.10.008. url: http://www.sciencedirect.com/
science/article/pii/S0169023X07002078.

https://doi.org/https://doi.org/10.1016/j.genhosppsych.2013.03.008
http://www.sciencedirect.com/science/article/pii/S0163834313000698
http://www.sciencedirect.com/science/article/pii/S0163834313000698
https://doi.org/10.2196/mhealth.9691
http://www.ncbi.nlm.nih.gov/pubmed/30104184
http://www.ncbi.nlm.nih.gov/pubmed/30104184
https://doi.org/10.1145/3313831.3376879
https://doi.org/10.1145/3313831.3376879
https://doi.org/10.1145/3313831.3376879
https://doi.org/10.2196/jmir.4273
https://doi.org/10.4108/icst.pervasivehealth.2015.259034
https://www.ncbi.nlm.nih.gov/pubmed/26640739
https://doi.org/https://doi.org/10.1016/j.datak.2007.10.008
https://doi.org/https://doi.org/10.1016/j.datak.2007.10.008
http://www.sciencedirect.com/science/article/pii/S0169023X07002078
http://www.sciencedirect.com/science/article/pii/S0169023X07002078

	Summary
	Preface
	Acknowledgements
	Nomenclature
	Contents
	1 Introduction
	1.1 Context and Motivation
	1.2 Background
	1.3 Research Question
	1.4 Goals and Methods
	1.5 Results
	1.6 Thesis Overview

	2 Background and Related Work
	2.1 Mobile Sensing and Digital Phenotyping
	2.2 Inferring User State from Location Data
	2.3 Mobile Sensing Frameworks

	3 Theoretical Background
	3.1 Location Data
	3.2 Algorithms

	4 Software Design
	4.1 System Design
	4.2 Domain Model

	5 Flutter Implementation
	5.1 Flutter, Packages, and Plugins
	5.2 Package Implementation
	5.3 Using the Package

	6 Validation
	6.1 Field Studies
	6.2 Study Application
	6.3 Application Implementation

	7 Results and Discussion
	7.1 Data Analysis of Study
	7.2 Future Work

	8 Conclusion
	A Questionnaires
	A.1 PHQ-9 (Patient Health Questionnaire)

	B Package Documentation
	B.1 Structure
	B.2 Publishing

	C Python Demo
	D Source Code
	E Unit Testing
	F Installation Manual
	G Data Analysis - Extra Plots
	G.1 Missing Data

	Bibliography

