
M.Sc. Thesis
Master of Science in Engineering

The Gardener Framework
An open-source programming framework for col-
lection of wearable activity and health data from
web-based services

János Richárd Pekk (s192617)

Kongens Lyngby 2022

DTU Health Tech
Department of Health Technology
Technical University of Denmark

Ørsteds Plads
Building 345C
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
healthtech-info@dtu.dk
www.healthtech.dtu.dk

Abstract
Smart, wearable devices (wearables) have seen a rapid increase in popularity in re-
cent years. Among many others, health and fitness monitoring devices such as smart-
watches and bio-multifunction wearable glucose sensors are on the rise. These wear-
able technologies can greatly facilitate patient monitoring for the healthcare sector.
Various types of data can be collected about the user, such as physiological data (e.g.,
heart rate, Oxygen Level in Blood (SpO2), skin temperature, blood glucose, a.o) and
behavioral data (e.g., physical activity, sleep, location, a.o), which could be used to
detect medically significant events and improve the quality of life [1], [2].

However, each wearable device collects data in a different way, in a different data
schema and format, and the data is uploaded to the vendor’s warehouse. As such,
it raises several difficulties, i.e., communicating with specific third-party APIs (e.g.,
Fitbit, Garmin, Dexcom), handling the authentication process with the API, retriev-
ing specific data from it, and mapping that data into a specific format.

The goal of the project is to design and implement a software framework that can
collect data from various third-party devices and convert it into a particular format.
The designed framework must be easily extensible, which means that integrating new
devices into the existing ecosystem should be quick and easy (plug-n-play). The
framework should also be able to persist the information needed for data collection
and publish the processed results to a message queue (such as RabbitMQ1).

The project will be developed in collaboration with Copenhagen Center for Health
Technology (CACHET)2 and aims to provide a solution for their data integration
needs for their current platform.

1https://www.rabbitmq.com/
2https://www.cachet.dk

https://www.rabbitmq.com/
https://www.cachet.dk

ii

Preface
This M.Sc. thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark in fulfillment of the require-
ments for acquiring a Master of Science in Engineering degree in Computer Science
and Engineering.

Kongens Lyngby, January 2, 2022

János Richárd Pekk (s192617)

iv

Acknowledgements
First and foremost, I would like to express my sincerest gratitude to my supervisors
Alban Maxhuni and Jakob E. Bardram for their priceless guidance not just trough
the thesis, but through my entire time at Copenhagen Center for Health Technology
(CACHET). Next to them, I would also like to thank my entire family and friends
for the endless support throughout my entire studies.

vi

Contents
Abstract i

Preface iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Background . 1
1.2 Prior Work . 2
1.3 Problem statement . 3
1.4 Research goals and methods . 4
1.5 Impact - innovation and application 5
1.6 Thesis outline . 6

2 Related Work 7
2.1 SHIMMER . 7
2.2 RADAR-base . 8
2.3 AWARE . 9
2.4 Commercial solutions . 10
2.5 Summary . 11

3 Analysis 15
3.1 Requirements . 15
3.2 Wearable devices . 17
3.3 Web APIs . 21
3.4 Software architecture . 23
3.5 CANS Implementation . 24
3.6 Deployment . 28
3.7 Analysis overview . 29

4 Design 31
4.1 Framework architecture . 31
4.2 Events . 32

viii Contents

4.3 Authorization module . 34
4.4 Data collection module . 45
4.5 CANS Implementation architecture . 52
4.6 Deployment process . 54
4.7 Design overview . 57

5 Implementation 59
5.1 Project structure . 59
5.2 Framework . 60
5.3 CACHET’s Implementation . 76
5.4 Deployment and Operation . 82
5.5 Implementation overview . 84

6 Evaluation 85
6.1 Unit/Integration Tests . 85
6.2 Technical study . 87
6.3 Fitbit study with CANS . 88
6.4 Evaluation overview . 89

7 Discussion 91
7.1 Goals and results . 91
7.2 Implications . 94
7.3 Limitations . 94
7.4 Future Work . 96

8 Conclusion 99

A Figures and Listings 101

B Authorization 107
B.1 OAuth1 . 107
B.2 OAuth2 . 108
B.3 Comparison . 109
B.4 OAuth libraries . 110

C API documentation 111

D Version Control System 117

E Deployment Guide 119
E.1 Deployment . 119
E.2 Wearable devices setup . 120

Acronyms 127

Contents ix

Bibliography 129

x

CHAPTER1
Introduction

This chapter provides an introduction to the use of wearable devices to harness human
behavior from commercial and open source frameworks. It also explains the problem
statement, the research goals and methods, and finally the impact for innovation and
application.

1.1 Background

”This is really an exciting result.
It shows that passive, continuous
monitoring with devices like
Fitbit, Garmin and the Apple
Watch might turn out to be an
important public health
surveillance tool for COVID-19.”

Eric Topol, MD
Founder and Director, Scripps

Research Translational Institute

Due to the increasing demands and urgent needs in the global healthcare sector,
the healthcare industry has constantly changed and transformed over time. Since the
beginnings of modern medicine in the 18th century, healthcare has become depen-
dent on technology due to regular demands, and at the beginning of the 21st century,
healthcare has become more and more dependent on technology [3]. Rapid growth in
medical knowledge, need for informed decision-making, unavailability of informatics
tools, rising cost of healthcare, shortage of medical professionals, financial unsustain-
ability of healthcare systems, patient empowerment and democratisation of care were
some of the driving forces that highlighted the immediate need for a paradigm shift
in healthcare and led to looking at digital technologies and disruptive innovations in
healthcare [4].

Until recently, the study of human behaviour has been hampered by the ability
to accurately quantify its components. However, technological advances in wearable
devices and smartphones are increasingly facilitating the collection of large amounts
of multimodal data in an unobtrusive and seamless manner. In particular, the use

2 1 Introduction

of data passively generated by these devices enables the scalable measurement of hu-
man behaviour in the wild. This data can be used for digital phenotyping. Digital
phenotyping can be defined as ”movement-by-movement quantification of the human
phenotype in situ at the individual level using data from personal digital devices”
[5]. This new field has already aroused research interest in a clinical medicine. At
mental health, for example, the objective, multimodal, continuous quantification of
behaviour using proprietary devices can lead to clinically useful markers, which can
then be used to improve diagnosis, adjust treatment or develop new intervention mod-
els [6, 7]. Similarly, real-time feedback in conjunction with with artificial intelligence
(AI) models enables new possibilities for health and wellbeing applications. For ex-
ample, it could be possible to to develop personalised intervention feedback that is
automatically generated based on based on physiological, environmental and social
cues from mobile and wearable devices [8].

The decreasing cost and increasing capabilities of sensors embedded in mobile
and wearable devices, and the increasing number of data sources from social me-
dia, environmental factors, and other sources, have new concepts and techniques for
quantifying well-being, mobility and social interaction [9]. Copenhagen Center for
Health Technology (CACHET) is already developing a platform to collect data from
smartphones and plans to expand its current system to include wearable technologies
such as Fitbit1 and Garmin2 smartwatches. To do this, they need software that is
able to collect data from third-party vendors, convert it to their own ”data points”
format, and store the converted data in their database. The goal of this thesis work
is to design and implement a solution that meets the needs and fits into the existing
ecosystem.

1.2 Prior Work
After cloud computing and its innovations such as instant data access and high avail-
ability dominated the market, it opened up new opportunities for researchers to
explore and combine with the latest technologies such as wearable and mobile de-
vices, making real-time remote patient monitoring and data collection widely avail-
able. Much research has been conducted in the field of Mobile Health (mHealth)3

and the innovations it could bring to modern healthcare. One problem in this broad
topic is particularly relevant, namely the integration of heterogeneous data from many
different devices[10].

There are a considerable number of commercial solutions on the market that solve
the problem of integrating different devices into one’s system, such as HumanAPI4 and
Validic5, which reduce the burden of managing the different authorisation mechanisms

1https://www.fitbit.com
2https://www.garmin.com
3https://en.wikipedia.org/wiki/MHealth
4https://www.humanapi.co/wearables-network
5https://www.validic.com/solutions/

https://en.wikipedia.org/wiki/MHealth
https://www.humanapi.co/wearables-network
https://www.validic.com/solutions/

1.3 Problem statement 3

and data processing of different devices, such as FitBit6 and Garmin7, and provide an
API for accessing patients’ health data. Further, there are also open source projects
that aim to solve the same problem, but may have a smaller number of supported
devices and platform features compared to their paid counterparts.

In this line, SHIMMER8 provides a platform for collecting health data from pop-
ular third-party APIs such as FitBit and converting the collected data into an Open
mMealth-compliant format. In addition, AWARE9 is an open source framework for
collecting sensor data on Android10 and iOS11 mobile devices and also has plugins
that work with Fitbit devices.

Similarly, RADAR-base12 is also a data collection platform for mobile and wear-
able devices. It provides active data collection through surveys on mobile devices in
addition to passive data collection solutions for wearable devices. It is a ready-made
platform with a scalable architecture that researchers can deploy on their own servers
and start their own projects. It also has its own Fitbit integration.

1.3 Problem statement
As it can be seen from the previous section, there are a handful of commercial and
open source software available to solve the problem of collecting data from various
types of third-party sources. However, apart from the closed, commercial alterna-
tives, the majority of available solutions are ready-made products with established
ecosystems that severely limit customisability in certain aspects. From CACHET’s
perspective, none of them meets their exact needs, because the solutions are either
too heavy-weight and force the user to use their entire platform or there is no option
to customise the data format the collected data will be transformed to. On the other
hand, CACHET’s unique requirements will not be present in other cases, therefore
the final solution should be generic enough that it could be reused by other individ-
uals to satisfy their problems. To address these shortcomings, the following problem
statement can be formulated:

How can a software be designed that collects data from various Web
APIs, while it offers customisability and extensibility?

This question can be broken up into the following subproblems.

• How can the software be designed that capable of collecting data from various
wearables?

6https://www.fitbit.com/
7https://www.garmin.com/
8https://github.com/openmhealth/shimmer
9https://awareframework.com/

10https://www.android.com/
11https://www.apple.com/ios/ios-15/
12https://radar-base.org/

https://www.fitbit.com/
https://www.garmin.com/
https://github.com/openmhealth/shimmer
https://awareframework.com/
https://radar-base.org/

4 1 Introduction

• How can the design offer customisability/extensibility?

• How can the solution solve CACHET’s unique requirements?

1.4 Research goals and methods
The main objective of the project is to develop a system that meets the requirements
defined in the previous section and to provide software that overcomes the weaknesses
of the existing solutions. The following points explain the questions posed in the Prob-
lem Statement section and provide a way to verify their correctness and fulfilment at
the end of the project.

1.4.1 How can the software be designed that capable of
collecting data from various wearables?

One of the main tasks is to recognize and handle the different access requirements
of the various Web APIs. The protocols used for authorization/authentication to
protect the sensitive data differ from each other in many ways, so the solution must
be able to handle their unique requirements and provide the same functionality for
each case, such as user authorization and protected resource access. In addition, al-
most every data provider offers a different set of data that can be queried through
its Web API, and even if they have the same data type, their presentation formats
differ significantly, which means that each data type must be handled in a differ-
ent way by each organization. In summary, the framework must be able to handle
different authorization protocols and the capture of different data types. Verifying
that this requirement is met, the project should be carried out with different types of
approved/authoized wearables and validate that the implementation can handle the
different devices simultaneously and retrieve the data over time.

1.4.2 How can the design offer customisability/extensibility?
Previously introduced softwares have already solved the issue of collecting data from
wearables, however, the customisation is heavily limited in each case. This state-
ment will be further discussed in the following Related Work Chapter 2. In order
for this project to propose unique value, the solution must be easily extensible and
customisable.

On the one hand, the main purpose of extensibility is to create the possibility
of integrating additional wearable devices into the framework over time. The design
of the framework should aim to ensure that the extension requires the least amount
of work for developers and minimal changes to the existing software. To achieve
this, even if the main CACHET requirements are Fitbit and Garmin, more than two

1.5 Impact - innovation and application 5

devices should be analysed and their unique requirements identified to find out how
a generic solution could provide a way to meet most of them. The comparison of
the wearable devices is described in section 3.2. The verification of this function is
done by integrating Dexcom and Withings devices into the system to determine the
amount of work needed to add new devices to the system.

On the other hand, the solution should not focus exclusively on solving the prob-
lem of data collection from the CACHET point of view. It should remain universally
applicable and at the same time offer possibilities to adapt it to one’s own needs. One
of the most important aspects of this is that the user of the software must be able to
choose the technologies that best suit their needs. For example, the project will store
information in order to function properly, such as authentication information. Persis-
tence technology must not be hard-wired. It should also be up to the user to decide
how to convert each retrieved data type into a different format and what to do with
the converted data. One of the tasks of the solution is to provide convenient and flex-
ible ways to customise these aspects with different implementations. This is reviewed
using the example of CACHET by implementing its requirements and outlining how
these implementations can be interchanged with other types of implementations.

1.4.3 How can the solution solve CACHET’s unique requirements?
CACHET shall be able to register users, retrieve and convert their data into the
required format, and store the converted data in its main system. The system needs
to collect data about the user over time, so the system needs to be able to update
authentication information when possible. The solution must be customised in a way
that meets these requirements and also fits into the organization’s existing ecosystem.
This is verified by deploying the implementation on the company’s servers, connecting
it to the company’s infrastructure, and conducting a study that captures users in the
way they want and stores the data converted to the format they want.

1.5 Impact - innovation and application
Smart wearable devices offer the possibility to remotely and continuously monitor
patients anywhere in the world. With proper analysis of data collected from humans
or machines, various health problems could be detected and treated before the first
symptoms appear. This project aims to solve the need for data integration in such
a scenario. Its purpose is to collect data from devices and convert it into a unified
format so that it can be analyzed later. In addition, the framework is intended to
be generic and easily extensible to include newer healthcare devices in the future.
Developers will be able to leverage the project and develop their own project or use
the implementation provided to CACHET to integrate Fitbit and Garmin devices into
their CANS13 system. Great emphasis is placed on extensibility and adaptability, i.e.,

13https://cans.cachet.dk/

https://cans.cachet.dk/

6 1 Introduction

genericity, as developers should not be constrained by technological choices made by
today’s standard that may not be valid in the future.

1.6 Thesis outline
The following chapters will describe how a software was designed and implemented
that resolves the question stated in the Problem Statement. The solution was given
the name Gardener, so later the project will be references as this.

First of all, the next chapter will give a more detailed look at the existing tech-
nologies introduced in Section 1.2 and identify the common problems this thesis will
try to solve. Furthermore, the Analysis Chapter will formulate the requirements and
explain technological choices made to meet those. After the technologies are chosen,
the Design Chapter will show the architecture and software components with various
UML14 Diagram illustrations. The following Implementation Chapter will build upon
the Design and explain how the different components were implemented. By the end
of the Implementation, a completed solution should be established and the Evalua-
tion Chapter will introduce how the software was tested. Lastly, in the Discussion
Chapter the questions formulated previously will be taken to the foreground again
and a reasoning will be given how those are solved by the project. In the end, the
Conclusion will give a summary about the thesis.

Furthermore, the Appendix will contain useful information about the project, such
as a deployment guide, which details how the software should be deployed to a web
server and how credentials should be acquired from different wearable providers and
moreover An API documentation that describes the currently available endpoints in
CACHET’s implementation.

14https://www.uml.org/

CHAPTER2
Related Work

This chapter discusses some projects that aim to solve similar problems to those
encountered in this project. A brief description is provided for each of the frameworks
and their architectures. Finally, their advantages and disadvantages are outlined, and
a comparison between the existing solutions and the current project is drawn at the
end.

2.1 SHIMMER
Shimmer 1 is an application that allows collecting data from a handful of third-party
Web APIs such as Fitbit, Withings and many more. Its main goal is to convert the
different types of data into a unified Open mHealth format. The project is fully open
source and comes with a deployment script using Docker.

First of all, the architecture of the project is modular and consists of three main
components: Shims, Resource server and Console. Shims are libraries that can com-
municate with third-party APIs. Authorization, data collection, and conversion to
an Open mHealth-compliant format are performed in these packages. A MongoDB2

instance is used to store authentication information needed to contact the APIs.
The resource server is responsible for providing an API to query the ”data points”.
Data points are the data collected by the third-party APIs and converted into Open
mHealth compliant format. The storage of these data points is the responsibility of
the user; the software provides only the query logic. The console is a web-based user
interface that helps interact with the resource server.

Moreover, the way the wearable devices are integrated into the system are worth
studying. On an authorization level, OAuth1 and OAuth2 based APIs are supported.
These are modelled in an abstract way that means the extension of the software with
new APIs is possible. Furthermore, the Fitbit implementation supports an impressive
amount of data types: body weight and mass, heart rate, physical activity, step count
and sleep. However, there is no polling mechanism or a subscription service present
to pull data. To initiate data collection, it must be requested by making a HTTP

1https://github.com/openmhealth/shimmer
2https://www.mongodb.com/

8 2 Related Work

request to a specific endpoint.

All in all, Shimmer is a great tool for managing third-party libraries. It only
requires minimal configuration, and you can start collecting health-related data with
many wearable integrations. However, it is a ready-made software that lacks extensi-
bility in some aspects. MongoDB is hardwired into the software to manage status and
authentication information. To access the collected information, the user must query
the Shimmer API. Furthermore, data conversion is limited to the pre-configured Open
mHealth conversion and does not allow for any customisation.

2.2 RADAR-base
RADAR-Base is an open source platform for data collection and management. It has
a plugin-based, scalable architecture that relies heavily on Apache Kafka3 and the
Confluent platform4. The claim of scalability is backed up by the use of Kafka to
process real-time data streams. Apache Kafka is an open-source distributed event
streaming platform widely used in the industry to implement high-performance data
pipelines. Kafka connectors represent the plug-in nature of the architecture and
facilitate the connection of new data sources or consumers to the existing Kafka
cluster by serving as a bridge to connect and copy data from other systems to Kafka.
Figure 2.1 shows their complete architecture.

As for the data collection capabilities, the platform has data collection methods:
passive and active collection. First, active data collection is based solely on an An-

3https://kafka.apache.org/
4https://www.confluent.io

Figure 2.1: Architecture of RADAR-base5.

2.3 AWARE 9

droid/iOS application called ”Questionnaire App”. Its purpose is to provide surveys
to the user and store the results. Written and spoken questionnaire options are sup-
ported. Second, passive data collection consists of two main parts: background sensor
data collection on smartphones and data collection from a handful of wearable de-
vices. Sensor data collection is currently available in a stable version for Android,
and work has already begun to extend it to the iOS platform. Motion and position
sensor data collection is supported, but in addition, various data about the user’s
interaction with their device can also be collected. As for wearable devices, the soft-
ware supports a total of six devices, of which only four are continuously supported.
Fitbit and Gamin integrations are available, but the selection of supported data
types for Fitbit is rather poor. Only step, heart, and sleep data are available. In
contrast, Garmin’s offering is sufficient.

The official RADAR-base Github page6 lists a variety of projects, among which is
one of particular interest from the point of view of this project, the REST connector7.
Its goal is to create a Kafka Connect source connector for a generic representation
of a third-party REST source that can be used to retrieve data. Once collected, the
data is published to existing Kafka themes. The implementation for data retrieval is
a polling solution where the actual polling rate is configurable.

In summary, RADAR-base is a completed project that provides data collection
capabilities for mobile phones and some portable devices that come with their own
smartphone application. The solution has a well-designed architecture that relies
heavily on Kafka, but the plug-in based feature offers a degree of extensibility thanks
to the use of Kafka Connectors. Therefore, the integration of new wearables is possi-
ble, but the implementation must comply with the requirements set by the connectors.
Furthermore, the Fitbit integration is tightly coupled to the requirements of the plat-
form, although the abstract REST connector library serves as a good example for
implementing a third-party data source. Another shortcoming of the system is that,
like SHIMMER, you have to query the RADAR base’s REST API to get the data, and
there is no way to automatically publish it to external messaging systems. Finally,
the data in the system is also stored in Avro8 formats. While it has its advantages as
it is a rich data serialization schema, if the data is required in a different format, the
data transformation has to be implemented.

2.3 AWARE
AWARE 9 is an Android and iOS framework for the acquisition of smartphone-specific
sensory data. Hardware, software and interaction-based information collection is sup-

6https://github.com/RADAR-base
7https://github.com/RADAR-base/RADAR-REST-Connector
8https://avro.apache.org/docs/current/
9https://awareframework.com/

10 2 Related Work

ported by predefined data collection processes. Most modern smartphone sensors
are already integrated, and since AWARE is open-source, the platform is constantly
evolving by developers to support the latest developments. The framework also in-
cludes several plugins, including a Fitbit integration.

This framework has a variety of functions when it comes to notifying another
entity when new data is available: Broadcasts, Providers and Observers. Broad-
casts allow other applications running on the same phone to be notified. Providers
store data directly on the device in SQLite10 databases or remotely on a MySQL11

server when using AWARE’s Dashboard project. Observers are basically listeners
for changes, such as the availability of new data. Personalised subscriptions can be
created for these changes, allowing for customisation.

The Fitbit integration 12 is only an Android implementation. There is no general-
ity, it is solely focused on Fitbit integration and only that. It is able to track calories,
steps, heart rate and sleep with a granularity of one day. Data collection is done via
a scheduled job. The frequency of data retrieval is configurable.

In summary, AWARE is an excellent open-source solution for health monitoring
on mobile devices, but is not suitable for primarily collecting health data from other
third-party APIs. The Fitbit integration is there, but it was developed mainly for
their needs and is not extensively extensible.

2.4 Commercial solutions
So far, only open-source projects have been discussed, but there are many solutions
on the market that offer a comprehensive list and high quality of interactions with
wearable devices, such as Human API13, Validic14 and WeFitter15, to name a few.
They have in common that they operate as companies manner and offer their services
for a fee. The source code is not available to the users of the services.

A look at the Human API shows that the company offers integration services for
more than 300 activity trackers, wearables and fitness apps, including Fitbit, Garmin
and Withings. User authorisation and data collection is handled entirely by the solu-
tion. The software has its own dashboard that provides an easy way to connect users
and share their health data. The collected data can be accessed via the RESTful API.
Through the API, the service is deployed in their ecosystem, the lifecycle is managed

10https://www.sqlite.org/index.html
11https://www.mysql.com/
12https://github.com/denzilferreira/com.aware.plugin.fitbit
13https://www.humanapi.co/wearables-network
14https://validic.com/solutions/
15https://www.wefitter.com/en-us/

2.5 Summary 11

by them and the data is stored on their servers.

Similarly, Validic also offers integration with the previously mentioned wearable
devices and additionally supports Dexcom. The only difference with the Human API
is the selection of wearable technologies available. They also host their services and
provide an API for data retrieval.

Finally, WeFitter competes with the previous entries by offering the same services
but with an additional aspect, namely the gamification part. For the gamification
part, there is a dedicated API with the aim to increase user engagement and health
data collection. An example: A game could be one of the individual challenges of-
fered by the company. Users have an individual goal to reach before others, or a time
frame, and their achievements are compared. This part alone helps WeFitter stand
out from the crowd and offer unique value.

Ultimately, a single thesis project cannot match the functionality of a commercial
platform backed by an entire company. But what they have in terms of functions,
they lack in terms of customisation options. All of the aforementioned projects are
closed ecosystems, meaning that the user has no way to expand or customise their
services.

2.5 Summary
In this section, the aforementioned projects are compared in terms of their functional
scope, extensibility and customisability. The commercial solutions are left out, as
they offer unrivalled support for wearables, but can neither be extended nor adapted
to the specific requirements of the user.

Starting off with SHIMMER:

• Feature set: They have support for Fitbit, Google Fit16, iHealth17, Misfit18,
Runkeeper19 and Withings.

• Extensibility: The impressive abstraction of the OAuth1 and OAuth2 protocols
makes it easy to implement new wearable technologies, making the software
highly extensible.

• Customisability: However, in terms of adaptability, the project was developed
with the synchronous Spring Boot20 framework, so it is not possible to change

16https://developers.google.com/fit/?hl=en
17https://ihealthlabs.com/
18https://www.misfit.com/
19https://runkeeper.com/cms/
20https://spring.io/projects/spring-boot

12 2 Related Work

technology without rewriting the software. Furthermore, MongoDB is hard-
wired, the database technology is not interchangeable. Furthermore, the data
is strictly converted into an Open mHealth compliant format, which is also not
interchangeable. As a final note, SHIMMER is delivered as a complete solu-
tion with containerisation using Docker and is therefore easy to deploy and use.
However, the data is retrieved by querying the API. All in all, there is a lack of
customisation options.

Secondly, RADAR-base:

• Feature set: Support is given for Fitbit, E421, Faros22, Biovotion23 and Garmin.
Apart from the available wearable technologies, they offer a complete solution
with their own infrastructure and mobile applications for data collection.

• Extensibility: This can be achieved with Kafka Connectors. An abstraction for
OAuth-based APIs has already been developed, therefore the integration of new
APIs is possible.

• Customisability: Their biggest disadvantage is the technological dependencies
and the complicated infrastructure shown in figure 2.1. The components there
are not interchangeable, customisation with arbitrary dependencies is not pos-
sible. The focus is rather on providing a platform for conducting studies and
collecting data from many different sources, not only from portable technolo-
gies. As for the data, just like SHIMMER, it is stored internally and has to be
queried via the API.

Lastly, AWARE:

• Feature set: They don’t have premium support for wearable devices, the in-
teractions are developed by the community. At the moment, only one Fitbit
integration is available. Their purpose is to collect sensory data from smart-
phones rather than collecting data from web APIs for wearables. AWARE also
offers its own platform for conducting studies.

• Extensibility: The platform itself is expandable, just as the Fitbit integration
was done.

• Customisability: They are too integrated into their own technology stack and
offer no way to change the dependencies, let alone the format of the data they
convert third party data into.

As could be seen, although the solutions offer possibilities to extend them with
new additions, they are severely lacking in adaptability. Apart from RADAR-base

21https://www.empatica.com/en-int/research/e4/
22https://www.bittium.com/medical/bittium-faros
23https://biofourmis.com/

2.5 Summary 13

and AWARE, which are too heavyweight and offer a complete platform for data
collection, SHIMMER is the main competitor and the only one whose main purpose
is to meet the data collection needs of wearable technologies. This thesis project aims
to address the previously mentioned shortcomings and provide a solution that solves
the problem of data collection from third-party APIs while remaining technology-
independent, lightweight and providing options for customisation of data processing.
If these claims are ultimately met, the project could be a serious contender in the
field of health data management solutions.

14

CHAPTER3
Analysis

This chapter explains the requirements and then provides analysis of the related fields.

3.1 Requirements
Before the analysis is conducted, functional and non-functional requirements need to
be detailed. The first two subsections introduce the general requirements and the
third one details what CACHET requires.

3.1.1 General functional requirements
• User authorization: The Gardener must be able to provide a way for users

to authorize the application to collect data on their behalf from the third-party
Web APIs.

• Data collection: The Gardener must be able to collect the data from the Web
APIs.

• Data transformation: The collected data needs to be transformed into a
specific format.

These items are the most important functionalities the software must provide.
However, the User authorization and Data collection points need to be narrowed
down. There are numerous authorization/authentication mechanisms applied nowa-
days and not necessarily all of them are utilised in Web APIs, where a delegation
based authorization protocol is required. Therefore, only certain protocols need to be
supported in the project. Additionally, data representation can also be done in many
different ways. An analysis in the field of Web APIs in Section 3.3 and Wearable
technologies in Section 3.2 reveals that there are prevalent technologies and trends
used widely in the industry. Thus, those aspects should be considered.

3.1.2 General non-functional requirements
• Customisability of technological dependencies: The Gardener needs to

be designed in a way that the technologies are interchangeable.

16 3 Analysis

• Customisability of data publication: The handling of the transformed data
needs to be customisable.

• Customisability of data transformation: Custom data transformation logic
should be able to be configured.

• Extension with more devices: Developers should be able to extend the
framework with additional wearable devices.

As it can be seen, a high emphasis has been put on the customisability property.
To achieve this, a proper software architecture needs to be chosen. The choice is
detailed in Section 3.4.

3.1.3 CACHET specific requirements
As discussed briefly in Section 1.1, CACHET requires a solution for data collection
from wearable devices. Their main requirements were mentioned in Section 1.4.3 and
those are mainly fulfilled by the general requirements. However, the following points
detail what customisations are necessary for the application to meet their unique
needs.

• Data transformation into the ”data points” format: Data points is a
special data format CACHET uses to unify and store heterogeneous data. The
collected data needs to be transformed into this format before it is published.

• Data publication to RabbitMQ: The transformed data needs to be pub-
lished to the RabbitMQ instance their main system connects to. That will be
the connection between the two components.

• Fitbit and Garmin integration: Fitbit and Garmin integration excepted to
be ready by the end of the project.

• Adjustment of their main system: Their main system, Copenhagen Center
for Health Technology Research Platform (CARP), needs to be adjusted to
accommodate the new functionality. The integration itself is detailed in Section
4.5.

The customisation of the Gardener is further discussed in Section 3.5 and 3.6 as
they describe how the project can fit into their existing ecosystem.

The following Sections provide an insight to the before-mentioned topics and out-
lines the technologies chosen to design and implement the project.

3.2 Wearable devices 17

3.2 Wearable devices
First, some of the major wearable technology vendors are presented in detail. Analy-
sis of these vendors reveals common patterns they all follow and unique requirements
where they differ. CACHET’s main requirement was to integrate Fitbit and Garmin.
However, in order to understand the common needs and thus design a solution that
can be extended with new technologies in the future, some other vendors are also de-
scribed in detail. To make the discussion more efficient, the vendors are characterized
according to the following categories: Authorization Protocol, Data Collection, and
Notification System. Regarding the authorization protocol, each vendor uses a version
of Open Authorization (OAuth). An in-depth analysis of both versions is provided
in the Appendix Chapter B. In addition, the Web API and its requirements in data
collection will be addressed. Finally, the notification system will address whether the
company has a system that can notify the application when new data is available for
download or whether such a service does not exist.

3.2.1 Fitbit
The first of the bunch is Fitbit. The company makes many different smartwatches.
Each watch connects via Bluetooth to a companion mobile app that uploads data to
the company’s web server. The data can be accessed through the company’s API1

Authorization protocol: Fitbit uses the OAuth2 authorization protocol and im-
plements the following flows2: Authorization Code Grant Flow, Authorization Code
Grant Flow with PKCE, and Implicit Grant Flow. Their implementation of the pro-
tocol follows the specification and does not add any additional requirements. The
only thing they extend is the Access Token response, which includes the ID of the
user in Fitbit’s system.

Data collection: Their Web API provides a respectable amount of different data
types that can be queried. All of them have a unique data format. Also, the API
URL remains the same for all data, however, some of them may have different API
versions that are required in the full URI. In addition, it is possible to customize a
query by specifying query parameters in the query URI, such as specifying a time
period. Finally, the data is presented in JSON format.

Notification system: The company offers a decent subscription service 3. Sub-
scriptions are available per user, and each subscription can be customized with the
desired data types. Creating a new subscription consists of several steps. First, the
subscription service must be verified for each new application by Fitbit calling the

1https://dev.fitbit.com/build/reference/web-api/
2https://dev.fitbit.com/build/reference/web-api/authorization/
3https://dev.fitbit.com/build/reference/web-api/developer-guide/using-subscriptions/

18 3 Analysis

registered application with a unique verification code. Second, after successful veri-
fication, subscriptions can be created for each user by making an HTTP request to
a specific URI. The format of the notification pings can also be seen in the official
documentation. This format is unique to Fitbit and includes the collection that was
updated by the user and the Fibit-based ID of the user to whom the data belongs.

3.2.2 Garmin
Garmin also offers a variety of smartwatches and uploads data the same way Fitbit
does, through a companion app on the phone. The official documentation of their API
is confidential and cannot be linked to in the thesis. Their API is only for business
use and the access to the protected resources have to be approved by the company
beforehand.4 For this thesis, CACHET’s account was used.

Authorization protocol: Interestingly, Garmin uses the OAuth1 protocol. The
implementation of this protocol is fully standardized, so no special requirements are
needed in any of the authorization steps. Finally, Garmin does not provide the user
ID in its system in the token response, so the application does not know it.

Data collection: Data collection is done through their Web API. The base URL
remains the same for each data type, but the API through which the data is available
may be different. The queries can be customized using the available query parameters.
Again, the data is represented in JSON.

Notification system: Garmin’s subscription system is different. Previously,
there are two types of notification systems: Ping and Push. In the push system,
the Web API sends the new data directly to the application through the configured
endpoint. The payload contains the actual data and the user it belongs to. On
the other hand, the ping system works like a normal subscription-based service. In
the developer portal, custom URIs can be configured for each data type, and every
time this specific collection is updated by the user, the Web API sends a notification
to this URI. The ping contains a payload containing the user’s Long Lived OAuth1
Token, which can be used to access the resource and the URI under which the data
is available.

3.2.3 Withings
Withings offers a variety of smart products in addition to smartwatches, such as sleep
trackers and scales. Their products communicate with smartphones, as in the previ-
ous cases, and upload data to their cloud via the phone.

4https://developer.garmin.com/gc-developer-program/program-faq/

3.2 Wearable devices 19

Authorization protocol: Withings relies on OAuth2 for user authorization5 and
they implement the Authorization Code Grant Flow. Their implementation differs
from the original specification in one thing. An extra header6 is required to be present
in the HTTP request to request and refresh Access tokens. Other than this, just like
Fitbit, the Access Token response is also expanded with the user’s ID on their system
and some other values.

Data collection: A high variety of data types are available for each of their
devices7. They are mostly available on the same base URL and the path has to
be modified based on which data is required. However, the HTTP requests made
towards their API have to posses certain mandatory headers. These are indicated
in their official API documentation. Despite that, the queries are also customisable
with query parameters. Their data is represented as JSON.

Notification system: A subscription based service is available8. The subscrip-
tion process involves two steps. Firstly, the application has to get a random number
from their Web API. Secondly, with the random number a new request has to be
made that will result in the creation of a subscription. These steps both involve
cryptographic operations, because the data required in each step is transferred in the
query parameter list in the HTTP request. This requires a signature to be secure,
which is a SHA-256 hash of the parameters. Furthermore, their notification is unique,
but contains the usual field such as the data type that has been updated and the id
of the user the data belongs to.

3.2.4 Dexcom
Dexcom offers a wearable devices to monitor glucose. The data transmission to their
Web API happens trough a mobile application.

Authorization protocol: Dexcom uses a plain implementation of the OAuth2
Authorization Code Grant Flow9. Everything is how the protocol dictates it, even
the Access Token response contains the bare minimum. The identification of the user
in their system is not received.

Data collection: The list of available data types is short. Every data type is
available on the same URL and the path is different based on the type. The query is
customisable with query parameters. Other than this, there is nothing specific about
their API. Their data representation also utilises JSON.

5https://developer.withings.com/developer-guide/data-api/authentication
6https://developer.withings.com/api-reference/#operation/oauth2-getaccesstoken
7https://developer.withings.com/developer-guide/data-api/index-data-api
8https://developer.withings.com/developer-guide/data-api/data-update-notifications
9https://developer.dexcom.com/authentication

20 3 Analysis

Notification system: Dexcom does not own any kind of notification system.

3.2.5 iHealth
iHealth also offers a high variety of wearable smart devices. The connection and data
upload happens through an application.

Authorization protocol: OAuth2 Authorization Code Grant Flow10, as almost
in every other case. According to their documentation, no additional parameters are
required during the authorization steps. In their Access Token Response the identifier
of the user in their system is present, next to another extra fields.

Data collection: Their options of their data collection are also common. How-
ever, they offer highest level of customisation when it comes to queries, so far. The
concrete list of available parameters are listed in the official documentation11. It is
also has to be noted, that mandatory parameters ought to be present in the HTTP
headers when making a request. Interestingly, their data is available JSON and XML
format.

Notification system: Subscription based system is available. The subscription
are configured on their portal, the application itself does not have to make any calls
towards their API. Once the service is enabled, it will push notification to the appli-
cation through the registered endpoint. The notification contains the updated data
type and the id of the user in their system.

3.2.6 Misfit
As the last analysed provider, Misfit also provides a Web API to collect data about
users. The data upload happens through mobile applications. As a side-note, Misfit’s
documentation12 seems to be vague and faulty. Their actual API description was
during writing this chapter and their website hardly works. This was presented just
to see an other example of a subscription service and an overall data provider.

Authorization protocol: As the second representative of providers who utilise
OAuth1, Misfit uses OAuth 1.0 instead of OAuth 1.0A, according to their documen-
tation13. Even though, the name OAuth1 is not mentioned on their page. Their
documentation is also confusing and short. Presumably, OAuth1 is utilised, yet they
use the naming conventions of OAuth2, such as scopes.

10https://developer.ihealthlabs.com/dev_documentation_Authentication.htm
11https://developer.ihealthlabs.com/dev_documentation_RequestfordataofBloodPressure.htm
12https://build.misfit.com/docs/cloudapi/overview
13https://build.misfit.com/docs/cloudapi/get_started#authAPI

3.3 Web APIs 21

Data collection: Data collection happens the same way as previously. Same
base URL and the path decides the resource. JSON format.

Notification system: Subscription service is provided. On their developer por-
tal, webhooks have to be defined, which will be called upon data updates. The
notification, next to other fields, will contain the updated data and the id of the user
in their system.

3.2.7 Devices overview
As it could have been seen in the previous analysis of six different Web APIs, the
following trends can be discovered:

• Every manufacturer uses OAuth version 1 or 2 as their authorization protocol.
The state of these protocols in today’s landscape will be discussed on Section
3.3 to further back up this claim.

• Most of them follow the protocol guidelines, however, there can be cases when
they require unique parameters to be present in different steps, such as in With-
ing’s case. The project has handle the presence of extra parameters.

• At the end of the authorization flow, the Access Token Response contained
additional fields in the majority of the cases. The project must be able to
provide a way to persist the provider specific fields.

• The data collection seemed to be straight forward in every case. The data is
available on a specific path on the Web API of the company and the retrieval
can be customized with query parameters.

• The data notification services differ in every scenario. Their presence is not
guaranteed. Even if they are available, they vastly vary in almost every prop-
erty. Different ways of creating a subscription and completely different ping
notification formats. One common aspect can be noticed, however. In the ping
notifications the data that is updated and the user that the data belongs to are
always present. These two information correctly points out what needs to be
downloaded, thus it makes sense why they are always there. The application
should provide a way to download data that is usable with and without the
presence of a notification service.

3.3 Web APIs
Prior to this paragraph, Section 3.2 frequently used the term Web APIs, where the
wearable device manufacturers made their data available. This leads to the question
of what exactly a Web Application Programming Interface (API) is. APIs provide

22 3 Analysis

a way for developers to open up their data and services to the public. Hence, this
enables services and applications to communicate with each other and make use of
each other functionality through a documented interface14. APIs that are available
on the public internet and can be accessed using the HTTP protocol are the Web
APIs.

To find out more of today’s landscape about the state of the Web APIs, it is
worth taking a look at the website ProgrammableWeb15 due to its archive containing
roughly around 25.000 API descriptions. This set of APIs is also used by a handful
of papers that aims to survey the field[11][12]. According to their article16 from 2017
details, that the most popular API type out of 3,620 APIs is the Web API type with
a staggering 82%. Out of those, the RESTful APIs are by far the most popular choice
when it comes to architectural styles with 81%. As a brief description, REST is an
architectural style for distributed hypermedia systems that was designed to work with
the basics of the Web architecture. The most essential representation of a set of data
in REST is a resource. It uses resource identifiers (such as a URI) to identify resources
during a communication and declares generic interfaces (REST connectors, such as
Web APIs) for manipulating the indicated resources[13]. The detailed description of
the architectural style is detailed in the cited dissertation.

One more interesting aspect of the available APIs, despite their architectural
style, is the authentication/authorization mechanisms they utilise. According to this
research[11] conducted in 2019, OAuth based authorization is applied in 72% out of
45 carefully selected APIs. ProgrammableWeb’s research17 showcases a different re-
sult where OAuth is forced to the background, however, it is noted that the research
involved many legacy API’s with outdated security mechanisms.

Last item to mention in this chapter is the type of the data representation the
APIs use. ProgrammableWeb’s article18 surveyed the field and the APIs starting from
2018 mainly used JSON as their main data representation format. Recently, JSON
was used almost five times more than the second place’s data format, XML. The
research paper[11] also proves this theory, as 89% of their analysed APIs had support
for JSON.

It can clearly be seen that REST accompanied by JSON is the staple of the
API space. OAuth is also important when it comes to authentication/authorization,

14https://www.ibm.com/cloud/learn/api
15https://www.programmableweb.com
16https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-

used/research/2017/11/26
17https://www.programmableweb.com/news/spotting-api-security-trends-programmablewebs-

api-directory/research/2018/01/02
18https://www.programmableweb.com/news/json-clearly-king-api-data-formats-

2020/research/2020/04/03

3.4 Software architecture 23

especially when the requirement is identity delegation. This data is significant, when
it comes to the decision of what kind of third-party APIs should be supported by
the project. In addition, Section 3.2 analysed the wearable APIs and it could have
been seen how OAuth prevailed as the main authorization mechanism and JSON as
the main data representation format. Therefore, the project can narrow down the
support for OAuth based APIs with JSON.

3.4 Software architecture
With the conclusions of the previous sections and the requirements mentioned in the
introduction of the chapter, it is known that the system has to support various kinds
of wearable devices with OAuth based APIs and JSON data formats, while staying
free of technological dependencies as much as possible. With the problem given, the
available architecture patterns should be taken a look at in order to choose the most
suitable one. The architecture patterns are general blueprints, which give solutions
for commonly occurring problems. There are a handful of established patterns19 avail-
able. Detailing each of them is out of the scopes of this project.

As mentioned in the beginning, the software has to solve the integration of wear-
able device APIs. When it comes to the functional requirements in Section 1.4.3,
most of them can be considered event-based. During the authorization, the user
will be redirected to the third-party website to give consent. At some point later
in time, the application will be called with the result and it has to react to this
event. When the authorized users eventually upload some data, the application will
be called with a payload specifying the details of the upload and it has to react to
this event accordingly. In addition, the process of enrolling a user and collecting data
are separate concerns, which means they could be decoupled. Therefore, a Publish-
Subscribe/Event-bus pattern could be a good choice, as it is one of the most used
patterns[14] and could satisfy the requirements. With the event-based approach, there
would be a central agent acting as a mediator, providing a communication channel for
different components of the system. Using the central agents, components could sub-
scribe for different events defined by the software. Once those events happened, the
subscribers would be invoked to handle it. In summary, the Event-bus pattern pro-
vides loose coupling between the components due to the communication happening
trough the central agent and also ensures extendability, because arbitrary subscrip-
tions could be made by for different events. These benefits are gained at the cost of
more complicated implementation, since the events and subscription handling with
the central agent also have to handled.

19https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-
a0b47a1e9013

24 3 Analysis

Apart from the advantages that the Event-bus pattern brings, it does not in it-
self solve technological independence. It is important that the technologies are not
hard-wired into the software and the user could choose them and inject their own
choices. Therefore, the software should define generic functionalities which later could
be customized with the user’s own components. This requirement exactly matches
the definition of Software frameworks on Wikipedia20. By following an abstract
software framework design and relying on the use of interfaces instead of actual im-
plementation, the project stays free of dependencies and it can be made sure that
those interfaces could be substituted with components that perfectly meets the re-
quirements of the current user. Furthermore, the Hexagonal architecture pattern21

could also be utilized when developing the framework. As Netflix’s blog describes
it22, the pattern dictates that the business logic must not depend on the technology
used. Therefore, the technologies could be changed without impacting the code-base.
This is exactly what is needed to achieve complete technological independence of the
framework.

However, the framework itself is not a ready-made solution, its required inter-
faces need to be implemented. By adopting the Event-bus pattern and following the
software framework, there are numerous possibilities for implementation. On the one
hand, the framework could be implemented as part of an existing monolithic software.
Furthermore, it could also be implemented as an independent microservice. On the
other hand, the Event-bus allows the authorization and data collection to be split
into two separate modules. From then on, it is up to the user of the framework to
decide whether to implement them together, split them into different services or run
one as part of a monolith and the other as a standalone service.

3.5 CANS Implementation
The implementation of the framework aims to fulfil all the dependencies that the
framework needs to be operational. As per CACHET’s requirements, a solution
should be in place where data collection from the portable APIs is possible and the
collected data can be transmitted to their existing system. There are a handful of
ways in which this could be implemented. First, the framework could be integrated
into the existing monolithic application, provided that it remains truly free of any
hard-wired technological dependency. In this case, persistence is through the exist-
ing database and data is pulled directly into the system, so no transmission of the
collected data is required. Consequently, the existing database schema will need to
be modified to meet the requirements of the framework, and the code base will also
need to be adapted to integrate it. In addition, the framework and programming

20https://en.wikipedia.org/wiki/Software_framework
21https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
22https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

3.5 CANS Implementation 25

language are chosen, namely Spring Boot23 and Kotlin24. This solution is viable, but
requires a lot of changes to the main system and leaves little room for customisation
and experimentation.

As a second solution, the framework could also be implemented to function as
a completely independent microservice. In this approach, with the exception of the
RabbitMQ message broker, the application is not restricted by the technologies used
in the main system. Thus, the web framework, programming language, database tech-
nologies, etc., can be freely chosen. The only real restriction is that the project must
be able to transmit the collected wearable data to the RabbitMQ broker. The main
system remains untouched and nothing changes from its point of view, as it is already
able to process and store data from the broker. In the microservices-based approach,
the following three aspects of the system should be selected: Programming language,
web framework and persistence technology. As mentioned earlier, RabbitMQ as a
message broker is a prerequisite.

3.5.1 RabbitMQ
Before explaining the technical choices/possibilities, RabbitMQ should be briefly in-
troduced. RabbitMQ is one of the most widely adopted open source message broker,
implementing the Advanced Message Queuing Protocol (AMQP) protocol25, but in
addition other protocols are also supported. Its message distribution, according to
the AMQP protocol, is based on exchanges andqueues. Messages are published to
exchanges, which distribute copies of the messages to the queues using certain rules,
which are called bindings. From the queues the messages will either be delivered to
subscribers or fetched by them26. Using this communication protocol, the project
will be able to communicate with the main system through the broker if there is a
queue that is being observed by it. Nevertheless, the broker itself proves to be reliable,
however, its scalability is questionable[15]. If it will ever be replaced due to its weak
point, only the RabbitMQ specific implementation has to be changed, the other parts
of the project will not be affected thanks to the hexagonal architecture, detailed in
Section 3.4.

3.5.2 Programming language
Firstly, the programming language/development environment has a decent amount
of options available. According to Developers Nation’s27 latest report28, which details
the current trends in the developer community from 2021. The chart from the report

23https://spring.io/projects/spring-boot
24https://kotlinlang.org/
25https://www.amqp.org/
26https://www.rabbitmq.com/tutorials/amqp-concepts.html
27https://www.developernation.net/
28https://slashdata-website-cms.s3.amazonaws.com/sample_reports/_TPqMJKJpsfPe7ph.pdf

26 3 Analysis

is attached on Figure A.10. While JavaScript based languages are the undisputed
kings, other technologies, such as Python, are catching up rapidly. The third place
is taken by Java, one of the most significant general purpose languages. Event tough
Java has been around for almost 20 years, its community is still steadily growing,
according to the report. CACHET’s main system is developed in Kotlin, which is a
close relative of Java and also sits among the top ten on the list. Kotlin is a fairly
new programming language, first launched in 2016 and developed by JetBrains29.
According to their report30 of the current technology landscape of 2021, Kotlin is
among the top five fastest growing languages. It can be considered as the modern
version of Java by introducing a whole new syntax that does not require writing huge
amount of boilerplate code Java is infamous for and by bringing modern program-
ming paradigms[16]. In addition, Kotlin can be combined with Java code. Due to the
increasing popularity as well as the above-mentioned advantages of Kotlin and based
on the experience gained so far, we have decided to write the Gardener framework
using the Kotlin in the context of this thesis work.

3.5.3 Web Framework
Secondly, a web framework is necessary to being able to handle HTTP requests. In
CACHET’s example, Spring Boot serves this purpose. Spring would be a perfectly
valid choice for implementation, its extensive ecosystem of plugins mostly cover most
of the common concerns that can come up during development. However, Spring
Boot is a synchronous framework. Probably the most significant drawback of the
synchronous application in today’s world is the fact that they block until a certain
operation is completed. It is especially prevalent in I(input)/O(output) heavy appli-
cations, such as web applications, where the number of blocking operations, such as
network calls and database operations, is significant. Blocking threads while waiting
for long running I/O operations wastes resources and can take its toll on the scalabil-
ity of the applications. If all threads are occupied by blocking operations, additional
requests cannot be served, resulting in latency and poor usability. To counter this
problem, asynchronous computing aims at eliminating the blocking part. When a
blocking I/O operation occurs, instead of blocking the current thread, it can move
to perform other tasks and the initial task will resume once the blocking operation
is completed. This is done through the use of callback functions. These functions
are configured to be invoked when the blocking operation is completed. On the other
hand, writing asynchronous code is more complicated than its synchronous counter-
part. Deeply nested callback functions can easily lead to callback hell31, which makes
the code hard to comprehend and maintain, thus leads to unintended bugs. How-
ever, the positives outweigh the negatives and the asynchronous programming model
can lead to great scalability benefits[17]. In the Java Virtual Machine (JVM) ecosys-

29https://www.jetbrains.com
30https://www.jetbrains.com/lp/devecosystem-2021/
31http://callbackhell.com/

3.5 CANS Implementation 27

tem there are plenty of asynchronous web frameworks, such as Spring Webflux32

and Vert.x33. Out of the two mentioned projects, both of them have an extensive
amount of plugins and great documentation and both of them are capable to satisfy
the requirements of CACHET. Both have their own disadvantages and advantages,
and neither can be superior to the other. Thus, Vert.x was chosen to implement the
project purely out of the desire of learning new technologies.

3.5.4 Database Technology
Lastly, a database technology has to be chosen, as the application requires the
storage of data to manage the authentication formation for each user. There are a
wide variety of available database technologies one can choose from, however, the first
decision is the question of relational or non-relational databases. Relational databases
have been around from the 1970s and still remained one of the primary choices for data
storage due to their powerful and well-established Relational Database Management
System (RDBMS) and Structured Query Language (SQL). RDBMS systems store
the data in tables consisting of columns in a normalized form34 in predefined, strict
schema and defines clear relationships among them. RDBMS systems usually honor
the ACID principles35. Nevertheless, today’s requirements demand, as more and
more people have access to the internet and generate data, scalable solutions that are
capable of storing and retrieving huge amount of data in an efficient way. Relational
databases usually struggle with scalability[18], even though there are ways to make
them scalable. On the other hand, Not Only Structured Query Language (NoSQL)
aims to provide an alternative, which solves the problem of handling big data on a
Web scale. NoSQL does not have a formal definition. It represents a a fundamentally
different data storage technology compared to the RDBMS systems. Generally, it
stores the data in documents in a flexible schema and honors the BASE principles.
By venturing away from the strict restrictions and locking strategies of ACID36, with
BASE, NoSQL databases are able to achieve scalability by design[19]. The way they
store the data and their principles are one of the most significant differences among
them. While ACID tries to lock the resources, therefore causing a bottleneck, BASE
by relying on the concept of eventual consistency allows a more scalable approach.
One more advantage of the NoSQL databases is that no predefined schema is required.
This is highly beneficial during the development phase, when the domain model is
constantly evolving. Of course, it cannot be stated that one technology is better
than the other, it all comes down to the use-case. SQL remains better and handling
complex data relationships and complex queries. NoSQL on the other hand, excels at
handling a huge amount of data in an efficient way. In this project, complex domain
models and need for complicated query logic are not excepted, since the only things

32https://docs.spring.io/spring-framework/docs/current/reference/html/web-reactive.html
33https://vertx.io/
34https://en.wikipedia.org/wiki/Database_normalization
35https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-transactions
36https://en.wikipedia.org/wiki/ACID

28 3 Analysis

need to be persisted are the authentication data for users and some state information.
For the current user-case, NoSQL with its flexible schema handling offers a great
solution to the problem. In the batch of technologies that implement NoSQL based
data storage systems, there are also a handful of different data storage models, such as
key-value stores, document stores, graph databases, etc. MongoDB is one of the most
famous[18] and well-performing[20] option in the space of Document Stores space.
while it is open-source. Therefore, it is chosen as the database technology for the
implementation.

3.6 Deployment
Once the software architecture and the required technologies have been selected, the
application itself must be made executable and executable instances of the dependen-
cies must be provided.

3.6.1 Build automation tools
First of all, dependency manager and build automation tool should be selected. Build
automation tools are essential for modern software development to automatically man-
age the life cycle of the software that encapsulates compiling the source code, pack-
aging dependencies, running tests and more. The three most used build automation
tools[21] are: Ant37, Maven38 and Gradle39. Ant and Maven are both XML based
configurations and they are limited and inflexible when custom operations need to be
defined. Gradle focuses more on improving the shortcoming of the others by providing
great options for extensibility[22]. Additionally, its configuration file can be written
with Kotlin DSL. One more important aspect that has to be outlined is the need for
multi-module builds. The framework and the CACHET specific implementation are
two different projects with different dependencies, where the implementation depends
on the framework, but not the other way around. Multi project builds make it pos-
sible to separate the two and define different dependencies and build logic for each
project. All of the before mentioned building tools are capable of handling multi-
project builds and each of them is able to handle the requirements of the project.
As Gradle being more extensible and customisable, and according to their report40

outperforms Maven, it will be chosen as the build automation tool for the project.

37https://ant.apache.org/
38https://maven.apache.org/
39https://gradle.org/
40https://gradle.org/maven-vs-gradle/

3.7 Analysis overview 29

3.6.2 Containerization
Nowadays the two most frequently used techniques to host and isolate applications as
well as optimize the use of hardware resources are virtualization and containerization.
The main point of virtualization is that the physical resources of the host computer
are divided up and the parts can be utilised by different virtual environments called
the Virtual Machine (VM). The VMs define a complete Operating System (OS) in-
dependent from the host OS, the application it is supposed to run and necessary
libraries, therefore the instances of VMs are usually heavy-weight and takes up a lot
of space. Furthermore, the host operating system must have a so-called Hypervisor
software that allocates the resources to the VMs and manages them.

On the other hand, containerization offers a light-weight alternative to its counter-
part. The essential building blocks in this context are the containers. The containers
contain the application and its own operating environment. On the contrary, it does
not run a completely different OS, the host OS is utilised. Therefore, the resulting
containers are much more light-weight than the VMs, as only the necessary depen-
dencies are bundled together. With the Container engine installed on the host OS,
it can take care of spinning up containers. Not having to handle multiple kernels
as compared to VMs, containerization offers to reduce the overhead on deployment
times, portability and physical resource usage[23].

When it comes to containerization market, Docker41 and LXC42 are the leaders
of the industry. Docker originates from the concepts of LXC and improves upon its
formula. It is more scalable and creating containers is much more simpler[24]. Docker
can also be run on different Host OSs, compared to LXC which can only be run on
Linux systems. Docker has a big impact on the industry. Most major softwares have
their official Docker images, such as MongoDB and RabbitMQ, which are essential
for the project, and can be easily set up. Due to its popularity, ease of use and its
overall influence on the industry, Docker will be used to containerize the project.

3.7 Analysis overview
This chapter has analysed the available technologies and principles that can be used
to develop software that meets the requirements presented in the first section. In
order to allow a high degree of customisation and not impose any technology on the
user, it was decided that the development would follow the hexagonal architecture
and define an application core that describes the business logic. In this way, the
framework can be implemented and customised with technologies that are required
for the user’s current project. According to the survey conducted in the wearables
vendor space, the framework will focus on supporting Web APIs from the beginning

41https://www.docker.com/
42https://linuxcontainers.org/

30 3 Analysis

using OAuth authorization protocols with JSON Data representation focus. Finally,
the core will be written in the Kotlin programming language, as will the implemen-
tation.

The technologies and operational strategy for CACHET were also selected. Mon-
goDB is used for the persistence of the data. RabbitMQ is also used as a message
broker that connects the project to CARP. The project is developed to function as a
standalone microservice, so changes to CARP are kept minimal. The operation will
be handled via Docker.

With all the necessary technologies and principles chosen, the next Chapter will
explain how the project was designed.

CHAPTER4
Design

This chapter describes the design process of the framework and its implementation for
CACHET in detail and illustrates it with UML diagrams. The chapter contains three
types of structure diagrams to illustrate the structure of the software components,
namely deployment diagrams, component diagrams, class diagrams and a type of
behaviour diagram, the sequence diagram. The class diagrams are presented from
the conceptual perspective so as not to bloat the screen with details that would only
make the diagrams more difficult to understand. For more expandable details of the
source code and functionalities, we provide a fully documented code with JavaDoc1.

4.1 Framework architecture
First of all, according to the principles of the Onion architecture analysed in Section
3.4, the application core must be set up. The core is the heart of the application
as it encapsulates the domain objects and the business logic. Before we look at the
domain and its associations, the main components of the core should be highlighted.
The Component Diagram 4.1 shows the 3 main parts of the system. The required
interfaces are discussed in the corresponding sections of the components.

Figure 4.1: Component diagram of the framework.

1https://github.com/cph-cachet/carp.gardener

32 4 Design

Starting from the top, the first main component is the ”Authorization” component.
There are three main tasks here: User authorisation, token handling and the initia-
tion of the data collection flow. In each scenario, authorisation can be summarised
in two main steps. First, the new user must be redirected to the device’s official web
page, where the user gives consent to the application to collect data on their behalf
according to the OAuth1/2 standard. Second, the third-party Web API contacts the
app by calling its webhook and sends data depending on the success of the authorisa-
tion process, and the app acts accordingly by either storing the data or handling the
errors. When handling tokens, both OAuth1 and 2 use tokens that need to be stored.
However, in the case of OAuth2, token refreshment should also be handled as access
tokens are short-lived. Furthermore, initiating the data capture flow means that the
module collects all the information required for data capture (tokens, client settings,
etc.) and passes it to the Collection Module for execution.

Speaking of the Collection Module, once the user is registered and the application
has the authentication tokens, the data can be captured by the third-party Web API.
This is the main responsibility of the Collection component. It should retrieve the
data from the provider’s API, convert the retrieved data into the specified format
and publish the result.

Handling user authorisation and retrieving data are matters that can be well
separated. By defining these boundaries, a modular structure is achieved. To ensure
a loose coupling between the modules, the component EventBus is additionally
introduced. It serves as an intermediary in the middle that takes over the message
exchange between the two components. The advantages of this modular architecture
become apparent during the implementation of the framework. Each of the modules
can be developed independently without affecting the other and could be split into
its own microservice, they do not need to be coupled together. The only thing they
depend on is the EventBus, despite some common concerns that will be discussed later
in the chapter. The loose coupling and separation of concerns are also advantageous
during development, as changes in the modules do not directly affect the others if the
common dependencies are not changed.

4.2 Events

As described in the previous section, the EventBus component plays an important
role in the application. Its purpose is to serve as a messaging component. It provides
functions to subscribe to various changes in the system and publish the changes as
soon as they happen. These changes are the so-called Events. The different types of
events can be seen in the Class Diagram 4.2.

4.2 Events 33

Figure 4.2: Class diagram of the event hierarchy.

Every event in the system is derived from the common superclass, Integration-
Event. It provides common fields, such as an ID and a creation date. The ID field
is used to give each event a unique identifier that can be used to provide idempotent
event handling 2. Handling the events in an idempotent way ensures that multiple
processing of the same message has the same effect as excepted. The class Data-
SourceEvent is a specialised IntegrationEvent as it also ensures the presence of a
data source ID field. These events are associated with the specified data source (e.g.
Fitbit) and return data that is unique to that specific data source, unlike the Integra-
tionEvent which is a general event type. When subscribing to a DataSourceEvent, the
desired data source is also specified by its ID, so once such an event is triggered, only
subscribers subscribed to that specific event for that specific data source should be
notified. For example, during the Fitbit authorisation process, the Fitbit data source
is only interested in processing the Fitbit-specific AuthorisationCodeAcquired events,
rather than processing every event of this type, such as Dexcom or Withings events.
In addition, there are also two abstract classes, OAuth1Event and OAuth2Event,
which are there to encapsulate OAuth1 and 2 protocol-specific events. The concrete
event types that can be triggered in the system are the descendants of these classes.

The EventBus hierarchy can be seen in the upper part of the image. The interface
IEventBus provides the functionality to subscribe and publish events and should be
used throughout the application to exchange messages. Injecting only the interface

2https://docs.microsoft.com/en-us/dotnet/architecture/microservices/multi-container-
microservice-net-applications/subscribe-events

34 4 Design

into the components ensures that it is interchangeable for different implementations.
The abstract class EventBus implements the interface and provides an in-memory
implementation for the subscription functionality, i.e. the subscriptions are stored in
memory in the Handler classes.

4.3 Authorization module
As briefly discussed in Section 4.1, the Authorization module is one of the three main
modules and responsible for user authorization, token management, data collection
initiation. In order to elaborate more on how the module provides these responsibili-
ties, a more fine grained Component diagram is displayed by Figure 4.3.

Figure 4.3: Component diagram of the Authorization component.

Starting with the most conspicuous component on the diagram, the DataSource
defines the whole process of user authorization in case of OAuth1 as well as of OAuth2.
It requires three interfaces that are not provided in the Authorization component.
The IEventBus which is used for messaging. IOAuth1AuthorizationOperator,
which declares the main steps in the authorization process of OAuth1 that involves
communication over the network, such as getting the tokens. Similarly, the IOAuth2
AuthorizationOperator, which handles the same thing, just for the OAuth2 proto-
col. The two operators are not implemented in the framework, it is the responsibility
of the developer using the framework to provide an implementation of their choice
that fits their needs. Implementing them would have required many different depen-
dencies, such as web clients or cryptographic libraries for OAuth1, which would have
limited the flexibility of the framework.The remaining two interfaces that are required

4.3 Authorization module 35

but also provided by different parts of the component are the IAccessParamsSer-
vice and the IAuthorizationStateService.

The AccessParams component manages the persistence and retrieval of the to-
kens acquired by completing the authorization process. It requires the IAccess-
ParamsRepository, which declares some functions that are needed for persistence.
This is supposed to be implemented by the user, just as the operators, to not to limit
the users to a specific persistence technology.

The AuthorizationState component is used for the management of states in the
authorization process. For the capability of the two authorization protocols for state
management in-between calls is limited and can vary between implementations, the
framework uses this component to save state information. It requires the IAutho-
rizationStateRepository for persisting the state objects and that is not provided
by the framework for the same reason as the IAccessParamsRepository.

Moreover, the AuthorizationRequestParams component, at the bottom of the
picture, is being used the DataSource to provide customisability for different steps in
the authorization process, for the reasons mentioned in section 3.2.7. DataCollec-
tionType lists the supported data types of different Web APIs and stores information
about them for the Data Sources, so they can use the types when it comes to data
specific tasks, such as constructing the URIs where the data can be collected from.
Lastly, DataSourceRegistry is a storage unit which is used to store activated Data
Sources, meaning that the Data Source object (e.g. Fitbit) is instantiated and con-
figured, so they can be retrieved later on by their ID. After the establishment of the
major subcomponents and their purposes in the module, the following Class Diagrams
will detail the actual classes and their relationships. Each diagram aims to focus on
one component and its immediate dependencies to avoid having a complicated struc-
ture.

Starting off with the AccessParams and AuthorizationState components, since
their structures are identical, their class diagrams can be beheld on Figure 4.4 and Fig-
ure 4.5. AccessParams is the main abstract class that will hold the authentication
information for one user per Data Source. Its descendants are the OAuth1Access
Params and the OAuth2AccessParams and they store their protocol specific data.
IAccessParamsService declares functionality to retrieve/save authentication data
for a user and Data Source. AccessParamsServiceHost is the main class that real-
izes the interface and provides implementation. It uses the IAccessParamsRepos-
itory to retrieve and save the data. Following the principles of the Hexagonal Archi-
tecture in Section 3.4, the repository is only used by its service class throughout the
application and the service class itself is used to data related operations. Likewise, the
AuthorizatioState Class diagram follows the same principles. The notable difference is
the domain object itself. The AuthorizationState abstract class holds state informa-
tion for a user and Data Source. Its children are the OAuth1AuthorizationState

36 4 Design

and OAuth1AuthorizationState. This hierarchy was made to accommodate the
requirement that in case of OAuth1, a Request Token and Token Secret has to be
saved during the authorization process. On the contrary, in case of OAuth2, there is
no necessary information to be persisted.

Figure 4.4: Class diagram of the AccessParams component.

Figure 4.5: Class diagram of the AuthorizationState component.

The separation between OAuth1 and OAuth2 is a common theme through the de-
sign of the framework. Even though the share an almost identical name and both of
them utilise tokens to access protected resources, they are vastly different. The next
representative of this separation is the AuthorizationRequestParams hierarchy
presented on Figure 4.6. This abstract class’ main purpose is to provide a way to cus-
tomize the authorization requests made towards the third-part API, because different
vendors require different parameters to be present in the request. Nevertheless, when
one property is required by one of the protocols it might not be mandatory by the
other. For instance, in case of OAuth2, the scopes should be present when requesting
authorization from the user. Scopes, however, have no concept in the world of OAuth1,
thus, that field is only present in the OAuth2AuthoizationRequestParams. On

4.3 Authorization module 37

the contrary, OAuth1RequestParams has dedicated fields for requesting Unautho-
rized Tokens, which step is not present in the second version of the protocol.

Figure 4.6: Class diagram of the AuthorizationRequestParams component.

Continuing the discussion with the second component that does not provide in-
terface for the main DataSource component but being used by it is the DataCollec-
tionType hierarchy, showed on Figure 4.7. This structure represents the supported
data types for one Data Source and provides information about them, such as data
identifiers and collection URIs. As a practical example in Fitbit’s case, one data type
would be Fitbit’s Heart Rate. Each specific Data Source should declare one class with
their data types and the main Data Source will use these classes. The ThirdParty-
Data and DataTypeTransformer classes will be discussed later on in this chapter in
section 4.4.

Figure 4.7: Class diagram of the DataCollectionType component.

The last subcomponent before the DataSource is the DataSourceRegistry com-
ponent, presented on Figure 4.8. As stated before, the whole point of this hierarchy
is to save and retrieve every concrete Data Source in a polymorphic way. IData-
SourceRegistry is the interface that declares the functionality to satisfy this de-
pendency and DataSourceRegistryHost is the class that realizes the interface and
provides implementation with an in-memory storage.

38 4 Design

Figure 4.8: Class diagram of the DataSourceRegistry component.

With every subcomponent discussed from the Authorization module’s Component
Diagram, the highlight is placed on the DataSource component itself. The exhaustive
Class diagram is depicted on Figure 4.9.

Figure 4.9: Class diagram of the DataSource component.

This is the parent of every wearable device’s implementation in the framework.
It contains the business logic for both OAuth1 and OAuth2 authorization protocols.
Starting the description from the top of the diagram, the IDataSource interface de-
clares common functionalities applicable to each Data Source, such as initiating user
authorization process, returning the authorization protocol’s type, returning the ID,
etc, but the most important functionality there is the user enrollment. Regardless of
the authorization protocol, each Data Source must be able to register users. In both

4.3 Authorization module 39

cases, the enrollment mainly consist of two steps. Receiving the registration call and
redirecting the user to the vendors website and handling the callback made my the
vendor. The following two Sequence Diagrams attempt to illustrate the OAuth1 flow
of registration. These diagrams are made with CACHET’s implementation, however,
despite the WebserverVerticle object, it is all core concern. Figure 4.10 displays the
first phase, which is redirecting the user to the vendor’s website.

40 4 Design

Figure 4.10: Sequence diagram of the OAuth1 User Enrollment process.

The flow starts from the point where the user calls the authorization endpoint.
At that point the user’s name (indicated by the uid variable) and the Data Source’s
ID (indicated by the did variable) the user wants to authorize to is known (the end-

4.3 Authorization module 41

point contains these parameters as path variables or query parameters). Once the
required DataSource is retrieved from the registry and the required AuthorizationRe-
questParams, the initiateUserAuthorization call starts the flow. By the end of it, there
is a new AuthorizationState object created and saved (OAuth1AuthorizationCase
in this scenario) for the user and Data Source and the complete authorization URI
(noted by uri) is established for the user, parametrized with the new state’s ID. This
is the URI where the user should be redirected to. In the end, the initiateUser-
Authorization calls returns with a AuthorizationRequest object, which contains
the mentioned URI and the state object. The implementation’s responsibility is to
answer the user’s call with the proper redirection. Phase two of the enrollment pro-
cess begins once the user authorized the application on the vendor’s official website
the third-party server called the registered callback. This is shown in Figure 4.11.

42 4 Design

Figure 4.11: Sequence diagram of the OAuth1 Authorization callback process.

This diagrams shows the case when the user authorization was a success and the
user gave consent to the application to collect data. The next step is to process the
response and exchange the received information to authentication tokens. An impor-
tant point to highlight here is the use of the EventBus. From the perspective of the
framework’s user, their only responsibility is to publish a new authorization protocol
specific event with the required parameters. The inner workings of the framework
does not have to be known, since the EventBus acts as a facade here. Once the event
is published, the targeted DataSource, after it reads up the state information, tries
to exchange the received information to the final authentication parameters. After a
successful retrieval, the new tokens are saved and the authorization flow is concluded.
The OAuth2 flow of user enrollment is basically the same, but simpler, since it does
not require three network calls.

4.3 Authorization module 43

Continuing the the description of the DataSource Class diagram, after the IData-
Source interface is introduced, the DataSource abstract class is next on the line
and it provides implementation for some of the interface’s functionalities, intro-
duces new ones and declares the three common dependencies for both OAuth1 and
OAuth2 Data Sources, the IAuthorizationStateService, IEventBus and the IAccess-
ParamsService. The DataSource class is abstract, because it does not provide every
implementation required by the interface. This is the one common super-class be-
fore the whole hierarchy splits into the OAuth1 and OAuth2 branches, so this is
mainly used to declare template methods[25] to orchestrate function calls. These
template methods aims to encapsulate protocol independent logic. For instance, as
mentioned before in the enrollment process and illustrated on Figure 4.10, the ini-
tiateUserAuthorization call creates a new AuthorizationState object in the OAuth1
as well as in the OAuth2 flow and then calls other operations before it returns.
Nevertheless, moving down one layer on the diagram to its descendants, they are
the OAuth1DataSource and OAuth2DataSource abstract classes. These are
completely independent of each other, as their respective protocols are. The main
business logic of handling the authorization flow steps are implemented here and it
provides implementation for every function declared by their super-classes/interfaces
that do not require any device specific knowledge. Even though they are different,
their dependency declarations are very similar. They both require their client setting
classes, OAuth1ClientSettings and OAuth2ClientSettings. These encapsulate
device specific variables, such as client_id and client_secret in case of OAuth2 and
consumerkey and consumer_secret in case of OAuth1. The operator classes are the
ones performing the network calls. The event subscription is also initialized here for
handling the callbacks from the third-party Web API as explained earlier with the
two sequence diagrams. The most-bottom classes on the diagram are completely pro-
tocol specific. The OAuth1RequestToken encapsulates the OAuth1 Request Token
and Token Secret pair. The OAuth2TokenRefreshParams provides a way, just
like the AuthorizationRequestParams, to customize the OAuth2 token refreshment
calls with additional fields. There are also two other fields in both cases, the Data-
CollectionExecutionEvent classes and the DataCollectionPreparationEvent
declared at the very top of the diagram. These are used for initiating the data col-
lection flow. This aspect of the structure is not detailed here, because it is explained
in detail in section 4.4 and illustrated on sequence diagrams starting from Figure 4.17.

This structure at first sight might seem a bit overcomplicated, but its merit shines
when a concrete wearable device has to be integrated into the framework. The fol-
lowing two example showcases the structure of the existing Fitbit and Garmin im-
plementation. Dexcom and Withings are not detailed here, because they are exactly
the same as Fitbit’s integration. Firstly, Figure 4.12 displays the class diagram of
the Fitbit integration. For Fitbit utilises OAuth2 as authorization protocol, it has
to inherit the OAuth2DataSource. The Scopes enum class is there to model the
available scopes from Fitbit. Moreover, the FitbitDataCollectionType details the

44 4 Design

supported data types. There are only four methods in the class that required to
be implemented. The functions returning the unique identifier of the class, the con-
structScopeStringsForAuthorizationUrl method, which returns the requested scopes
in the format Fitbit requires (separated by white spaces), the assembleDataCollec-
tionUri, which returns the URI where the requested data type can be queried and
lastly the getDataCollectionPreparationEventFromPing, which extracts from a Data-
CollectionPreparationEvent object from the ping notification received from the third-
party Web API. There is one more dependency highlighted on the diagram, which is
the ConfiguredObjectMapper. This class is the chosen the singleton class of the
chosen serialization library, which helps with JSON related operations, such as pars-
ing the notification ping. It’s implementation will be detailed in the Implementation
section (5).

Figure 4.12: Class diagram of the FitbitDataSource.

Secondly, Figure 4.13 showcases the implementation of Garmin. It is exatcly
the same as Fitbit’s, however, it inherits from the OAuth1DataSource since Garmin
utilises OAuth1 and there is no Scopes class, since OAuth1 does not have the concept
of scopes, so this implementation is even more simpler than the previous one. It
overwrites the same methods as Fitbit excepts the constructScopeStringsForAutho-
rizationUrl operation.

Figure 4.13: Class diagram of the GarminDataSource.

4.4 Data collection module 45

The most significant aspect of these two implementations is the fact that they only
required the implementation the bare minimum of operations, which are completely
vendor dependent and cannot be handled generically. By implementing the correct
super-class for an authorization protocol, the bulk of the logic comes out of the box,
the developer do not have to worry about the details, they just has to focus on imple-
menting the vendor specific functions. This highly eases the way of integration more
wearable devices on the way, which was one of the goals of the design of the framework.

This wraps up the design of the Authorization module. In conclusion, this design
provides a way to handle the requirements of enrolling users and managing the tokens.
It also simplifies the integration of new Data Sources as much as possible for future
expansions.

4.4 Data collection module
Once the users are enrolled and the application possesses authentication information,
the requirements are met to start querying user data from the vendor’s Web API.
Every API offers different kinds of data types with different structures and different
ways to query them, however, there is always a unique identifier and endpoint that is
associated with every data type. These are the information the previously introduced
DataCollectionType interface aims to encapsulate.

The unique identifier of the Data Types is an important piece of information.
Vast majority of the modern APIs are equipped with a subscription based service.
Whenever the end-user uploads some data to the vendor’s web server, a notification
is sent to the subscribed application with usually the content of the user’s id and
the identifier of the updated Data Type. With this information the application can
effectively query the Web API to retrieve the updated data in a near real time fashion.
However, there are also APIs (e.g. Dexcom), which does not provide a service like
this. There is no way to get the data whenever it is updated, the collection has to be
queried from time to time to get the updates.

Furthermore, even though the main part of the module is to retrieve the data,
there should also be a way to transform the data into a specific format chosen by the
user of the framework. As mentioned, every Data Type is represented in an entirely
different way. One Heart Rate Data Type of a Web API may completely differ from
one other’s Type. The framework must offer a possibility to register custom data
transformation logic to every registered Data Type in order to get the data into a
desired format. In this section the design of the Data Collection Module will be out-
lined and the decisions taken to meet these requirements.

First of all, Figure 4.14 displays the Component Diagram of the Collection mod-
ule. On the left side, the DataCollectionService is the main component that will

46 4 Design

handle the retrieval and transformation of data. The right side is occupied by the
DataTypeTransformerRegistry module, which will hold the registered Transform-
ers for each DataSource. These will be explained later in the section.

Figure 4.14: Component diagram of the Collection module.

There are five interfaces in total required by the DataCollectionService and there
is just one that is provided by the module. Starting from the top, the IEventBus,
just like in case of the Authorization module, is there for messaging. the IDataPub-
lisher is the one that publishes the data retrieved from the third-party Web Server in
a transformed format. This is the developer’s responsibility to implement it to meet
their requirements. The Operator Builders at the bottom are builder classes that
return configured Data Collection Operators. These Operators are used to execute
the actual HTTP requests towards the Web Servers to retrieve the data. Figure 4.15
shows the Class Diagram of the DataCollectionService component.

4.4 Data collection module 47

Figure 4.15: Class diagram of the DataCollectionService component.

At the very top, there is the IDataCollectionService interface which only func-
tion is to handle DataCollectionExecution events. The whole data collection flow
will be illustrated and explained using Sequence Diagrams after the Class Diagram is
discussed. One layer below the DataCollectionService abstract class handles the
collection and transformation logic. It is abstract, because it has a factory method
which returns a configured DataCollectionOperator according to the correct autho-
rization type used by the Data Source the data should be collected from. Essentially,
the concrete children of the DataCollectionService, namely OAuth1DataCollection
Service and OAuth2DataCollectionService just implement that factory method
and subscribe to their respective DataCollectioExecutionEvent (It also has OAuth1/2
specific version). With the help of the Operators, the DataCollectionService is able
to retrieve the data from the Web servers. A collected data is represented in the
system as a ThirdPartyData. It contains the raw response from the API and some
metadata to identify it, such as DataCollectionType and IDs of the user and Data
Source. Once the data is collected, it has to be transformed. The IDataTypeTrans-
formerRegistry and IDateTypeTransformer interfaces serve this purpose. The
hierarchy of these interfaces is showcased on Figure 4.16.

48 4 Design

Figure 4.16: Class diagram of the DataTypeTransformerRegistry component.

The IDataTypeTransformer represents a class that is used for transformation. Ev-
ery Data Source is supposed to have it’s own transformer interface, the transformers,
shown as the descendants on the Diagram. These interfaces lists one method for each
supported Data Type listed in the corresponding DataCollectionType. They take a
ThirdPartyData as an argument and transform it according to the logic implemented
by the user of the framework. It is the responsibility of the developer to provide the
implementation for these classes that fits their needs. The IDataTypeTransformerReg-
istry serves as a collection of these transformers. It allows registration of one trans-
former per Data Source and these can be retrieved later on with the Data Source’s
identifier. Once the data is correctly transformed, it becomes a TransformedData
and that can be published using the IDataPublisher interface.

To explain this collection flow in more detail, the following Sequence Diagrams
will demonstrate how the collections works in case of an OAuth2 Data Source. As
with the earlier sequence diagrams, these are also done from CACHET’s implemen-
tation perspective. It consists of three phases. The first phase is illustrated in Figure
4.17.

4.4 Data collection module 49

Figure 4.17: Sequence diagram of the OAuth2 data collection endpoint flow 1.

This phase’s main focus is on the publishment of DataCollectionPreparation-
Event objects, which contains the three significant information needed for data collec-
tion. What should be collected, (DataCollectionType), for whom (ID of the user) and
from where (ID of the Data Source). The diagram showcases the scenario when the
Web API notifies the application using the subscription service. Every Data Source
will have a getDataCollectionPreparationEventFromPing helper method, which will
establish event object from the raw, Data Source specific ping notification. Once
they are created, they can be published using the EventBus. However, ping notifi-
cations are not always the case, as mentioned earlier. If one Data Source does not
possesses a subscription system and it has to be queried periodically. This design
is also capable of accomplishing that. These events can be constructed by the user,
since they do not require anything specials besides the three properties (what, from
where, for whom) and can be published. A cron job or any polling implementation
can publish these events and the rest of the flow behaves the same way. After the
preparation events are published, phase 2 begins, which is illustrated on Figure 4.18.

50 4 Design

Figure 4.18: Sequence diagram of the OAuth2 data collection endpoint flow 2.

The second phase is fully the Authorization module’s responsibility. When it re-
ceived the event, it will gather the necessary information for data collection. It will
query the access parameters for the user and Data Source, the client settings of the
Data Source, a DataCollectionType and a completely assembled URI where the Data
Type can be collected using the access parameters. Once the gathering is completed,
the expiration of the AccessParams are checked. This step is missing in OAuth1,
since its tokens are long-lived and there is no notion of refreshing the token without
the need of re-authorizing the user. Once the tokens are successfully refreshed if it
was needed, the new DataCollectionExecutionEvent is constructed with the pa-

4.4 Data collection module 51

rameters mentioned and published to the EventBus and phase three starts off, shown
on Figure 4.19.

Figure 4.19: Sequence diagram of the OAuth2 data collection endpoint flow 3.

Phase three is the part where the collection module performs its purpose. Upon
the retrieval of the execution event, the DataCollectionService calls the execution on
its configured operator with the parameters found in the event and with one more

52 4 Design

parameter, which is a Kotlin higher-order function as a callback function that is sup-
posed to be used once the network communication successfully conducted. If so, the
callback is called with the raw response from the third-party API and a new Third-
PartyData object is initialized. At that point, the transformation is next, after the
proper IDataTypeTransformer is retrieved from the registry for the Data Source. The
whole procedure utilises a type of the Visitor design pattern[25]. The ThirdPartyData
knows what type of data it contains through its DataCollectionType field, so after it
gets the transformer as a parameter, it can choose the appropriate transformation
method using the Double Dispatch approach. As a result, new TransformedData
objects are constructed that is ready to be published through the IDataPublisher in-
terface.

In the end, this concludes the design of the collection module. The most signifi-
cant part of this module is how the transformers are handled. With the use of the
IDataTypeTransformer and the IDataTypeTransformerRegistry interfaces, the logic of
the collection module will never have to be modified when extending the framework
with new Data Sources or different transformers, honoring the Open/Closed principle.
The registered transformers for Data Sources are even changeable at runtime, because
the framework only utilises interfaces.

4.5 CANS Implementation architecture
The framework on itself is not a functional software. As it was seen on the Frame-
work’s Architecture Component Diagram on Figure 4.1, it has many unsatisfied de-
pendencies that need to be provided. The CANS implementation aims provide these
requirements according to their existing infrastructure.

CACHET’s main system, CANS, as discussed in the Analysis Section 3.5, is run-
ning with Spring in a Docker container on a Linux based Web Server, using Post-
greSQL as its main database and RabbitMQ for messaging. With the current design
of the framework, the implementation possibilities are numerous. However, to not
complicate the main system further it was decided to implement the framework in a
different project and run it as a separate microservice. This way the only real lim-
itation regarding the infrastructure for the implementation is the RabbitMQ, since
that is being used by the main system, so the framework’s implementation also has
to connect to that in order to push the required data. Talking about the required
data, CANS also requires a transformed data to be aligned with their ”data points”.
The transformation logic using the DataTypeTransformer interfaces also have to be
implemented.

The web framework and database can be freely chosen independently from the
main system. Thus, the implementation will use Vert.x as an asynchronous web
framework and MongoDB as the database. The following Component Diagram on

4.5 CANS Implementation architecture 53

Figure 4.20 details how the implementation satisfies the Core’s dependencies.

Figure 4.20: Component diagram of the CANS implementation.

Starting the explanation from the top, both the IAuthorizationRepository and
IAccessParamsRepository interfaces will be implemented by classes that connect to a
MongoDB instance. The IDataPublisher interface is realized by a class that connects
to the main RabbitMQ instance on the server. The IEventBus is provided by the
framework’s SingleThreadedEventBus class, which simulates the messaging on
the same thread the event was fired. This is class later on could be changed to a class
using RabbitMQ instead if true parallelism needs to be supported. The Authoriza-
tion and Data Collection operators are all implemented by the OAuth1Operator
and OAuth2Operator. The builders return instances of these classes. These classes
make use of the Scribe Java library3, which is one of the most used OAuth utility
libraries in the Java ecosystem. The IDataTypeTransformer implementation are not
noted on the Diagram, however, there must be implementation classes for Garmin’s,
Fitbit’s, Withings’ and Dexcom’s IDataTypeTransformer interfaces and these have
to registered in the IDataTypeTransformerRegistry.

With the dependencies satisfied, the framework can correctly be instantiated and
called. However, there also must be a Controller Layer where the HTTP requests can
be mapped to the correct handlers and the framework service functions can be called.
With the current design, three endpoints can handle everything.
The first endpoint must be the one where the user enrollment will be started. This

3https://github.com/scribejava/scribejava

54 4 Design

is the endpoint that initiates the authorization flow illustrated on Sequence Diagram
4.10. The endpoint’s URI will be the following: ”/wearables/api/authorize/: data-
SourceId/:userId”. The ID of the DataSource and the ID of the user about to be
rolled in can be extracted from path, thus every required parameter is met.
The second endpoint is the callback method that is called by the third-party Web
Servers once the user gave consent. This flow is noted on Sequence Diagram 4.11.
The path of the URI should be the following: ”/wearables/api/oauth/:dataSourceId
/callback”. With this, the DataSource ID can be found in the path. However, most
of the required params, including the ”stateId” (which is the ID of the Authorization-
State object associated with the user’s current authorization session) will be found in
the query parameters as the protocols dictate. The rest can be extracted from there.
The last endpoint is the one that initiates the data collection. In this case, this is
the endpoint that is called by the Web Servers using the subscription mechanism.
The URI in this case is: ”/wearables/api/collection/:dataSourceId”. The ID of the
DataSource, as in the previous cases, can be found in the path. The Ping notification
itself will be present in the request body.

The last thing that needs to be addressed is the way this all fits in into CACHET’s
current projects. As a background, CANS is used to run studies. These studies are
managed by researchers and their aim is to collect data according to a set of rules
defined in a protocol that is contained by the study. The researchers are also capable
of recruitment of participants to the study. Once they are enrolled, they can be
deployed, which results in a creation of a new deployment. This deployment can be
comprehended as a manifestation of the study. It belongs to a recruited user and they
able to upload data to that specific deployment according to the protocol defined in
the study, which also applies to the deployments. These protocols define a device
which is used for data collection. These devices could be numerous things, but the
notable part is that they could be, as of right now, a Garmin or a Fitbit device.
This is where this application comes into the picture, because this allows CANS to
authorize the wearable devices of the users and collect data from them, which prior
this, was not possible. Once a deployment is created, the user receives an email. If the
protocol definition contained a Fitbit or Garmin device as a device description, CANS
will insert an authorization link into the email which can be clicked on by the user
and that will redirect them to the first endpoint, which will start the authorization
flow. By the end of the process, the application should be able to collect data from
the participants, transform the data into the ”data point” format and publish it to
the RabbitMQ. On the other end, CANS will act as a consumer of these messages
and save them.

4.6 Deployment process
As the previous section aimed at designing an implementation that fits into the exist-
ing CANS ecosystem, this section is dedicated to the design of how the implementa-

4.6 Deployment process 55

tion should be deployed into the mentioned infrastructure. Before the actual deploy-
ment configuration can be discussed, the profiling aspect of the application should be
taken care of. There are many configuration constants in the framework/implementa-
tion that need to be externalized. Vert.x offers a way to place JSON files containing
key-value pairs into the classpath, which can be easily read up at the application’s
start time. This configuration files will contain the profile specific connection strings
to RabbitMQ and MongoDB as well as the client configuration settings for the differ-
ent Data Sources. For this version of the project, there is two main profiles that can
be used: local and production. Local is meant to be used for local development, so
the connection string will mainly target localhost as destinations. The production is
aimed at CACHET’s server where CANS is deployed, so the connection strings will
attempt to connect to the existing Docker Network to reach the existing RabbitMQ
instance.

As outlined in Section 3.6, the deployment will use Docker as containerization
technology. The implementation needs to have its own Dockerfile containing the im-
age build logic. Once it can be run as a container, an orchestrator tool is needed to
run multiple docker containers, because MongoDB and the RabbitMQ should also be
started, so the application can establish connection to them. Docker-compose does
just that, with two profile-specific Docker-compose configuration, the entire architec-
ture can be set-up in a single command. The Deployment Diagram on Figure 4.21
showcases the current production profile architecture set-up.

Figure 4.21: Deployment diagram of the Docker Production Configuration.

The application runs in its own docker container with the port 8444 open. That
port is the application’s server’s port. The container is also attached to the same
docker network as the MongoDB’s container and the RabbitMQ’s container. The
docker network makes it possible to use container names in the connection strings
instead of IP addresses, which is a huge benefit. On the noted ports the application
can connect to the other two software. The next Deployment Diagram on Figure 4.22

56 4 Design

illustrates how the deployment is going to look like on CACHET’s Web Server.

Figure 4.22: Deployment diagram of Gardener on the CANS server.

At the left corner of the figure, the mentioned architecture runs. CANS and its
PostgreSQL database runs on different ports, but on the same docker network. Rab-
bitMQ is the only connection between the components, which is beneficial, because
the existing infrastructure on the server did not have to be modified in any way.
The communication happens through the RabbitMQ message queues. One more im-
portant piece of the architecture is the NGINX reverse proxy sitting at the top of
the Webserver module. It is not running in Docker, so it cannot reach the Docker
network, thus it has to target the application on the localhost, which is completely
valid, however, the docker container’s port mapping also have to be configured to
occupy the host’s port 8444. Whenever a request comes in from the outside tar-
geting the ”/wearables/api/*” URI, the reverse proxy redirects the request to the

4.7 Design overview 57

”localhost:8444” location, which is taken by the application, so it can be served. This
deployment configuration is tested and the results will be discussed in chapter 6.2
and 6.3.

4.7 Design overview
To effectively summarize the design process and reason for some of the decisions taken,
the goals of the project should be recapped, stated in section 1.3. The first objective
was to achieve extensibility, the ability for developers to extend the framework with
ease. The deep class hierarchy of DataSource, illustrated on Figure data-source-class,
was designed to achieve this property. In the concrete DataSource classes only the
wearable device specific functionally has to be implemented, every other aspect comes
by inheriting from the super classes. In total with this design, the following parts
have to be implemented, when integrating a new device: The concrete DataSource
class, inheriting from one of the OAuthDataSource classes, a DataCollectionType class
detailing the supported Data Types of that Data Source and lastly, a device specific
IDataTypeTransformer, which will detail the transformation logic to each specific
Data Type. None of these could have been part of the generic framework, because all
of them are device specific information. Furthermore, the question of customisabil-
ity comes down to a lot of factors in the system. Its most important characteristic
was to not limiting the user to specific technologies. The design does not enforce
any technology besides Kotlin and Jackson’s serialization library. This freedom was
achieved by the utilisation of interfaces and dependency injection techniques. The
developers can freely implement their own versions of interfaces with the technologies
they desire and those implementations can be injected into the core classes. Besides
the technologies, data transformation logic was also a huge concern. The Collection
Module current design allows the registration of any IDataTypeTransformer imple-
mentation for any DataSource and the existing code does not have to modified in any
way for the new transformation to succeed. Furthermore, the use of the EventBus
also offers high level of customisability. Developers can register their own handlers
to each of the event types and those handlers will be executed. Lastly, CACHET’s
implementation, as discussed in section 4.6, fulfills their requirements and fits into
the existing infrastructure. The next section will explain the implementation of the
design and elaborate on these statements written here.

58

CHAPTER5
Implementation

This chapter deals with the details of the implementation of the concept presented in
the previous section. First, the structure of the project is explained in more detail.
Secondly, the framework and its components are discussed. Next, it explains how the
implementation uses the framework and meets the requirements set by CACHET, and
finally it discusses the operational details. It is important to note at this point that it
is highly advisable to look at the source code while reading this chapter to gain a better
understanding of the topics discussed, as not only is full documentation provided
using KotlinDoc, but also only the most important pieces of code are presented in
this report.

5.1 Project structure
In order to distinguish the framework and CACHET’s implementation, the project
is implemented using Gradle’s multi-project set-up. This allows separate dependency
declarations, thus the framework remains free of any unnecessary dependency. In
addition, the other merit of this detachment is that the core framework can stay fully
general purpose. CACHET’s requirements do not affect the framework’s functional-
ity, thus it can be reused by other users to implement their requirements. The name
of the project containing the framework and the implementations as subproject is
gardener.parent. In the root folder, the settings.gradle.kts file lists the other two
projects, so Gradle is able to recognise and include them in the build task. The most of
the remaining files here are mostly Gardle related configuration files, a README.md,
used to give an introduction about the project, and a .gitignore file, used by Git1 to
remove files/folders from the version control. The subproject of the framework is
in the gardener.core package and the implementation’s is in the gardener.carp-
implementation package. Both of the subprojects follow the same structure: a
build.gradle.kts file describing the build tasks and dependencies and a src folder con-
taining the source code. In addition, the carp-implementation also harbors a folder
named docker. It contains the Docker specific files such as the main Dockerfile of the
project and profile specific docker-compose files as well as configuration files and set-
up scripts for the MongoDB and RabbitMQ instances. As a result of the multi-project
configuration, both subprojects can be separately built, ran, and tested. Using the

1https://git-scm.com/

60 5 Implementation

parent project, commands can be issued that will be applied for every subproject. In
the following sections, the subprojects will be discussed in detail and in Section 5.4
the building and containerization process will be highlighted.

5.2 Framework
First and foremost, the implementation of the framework has to be detailed in order to
establish the application core. The package of gardener.core contains the src package,
which contains the source code. It has two subpackages, namely main and test. The
test package contains unit and integration tests of the framework’s functionality. This
will be discussed in detail in Section 6.1. The main package is the one containing
the actual source code that is the implementation of the Design Section. There are
four main packages representing the modular design discussed in Section 4.1. The
authorization package contains the Authorization Component exclusive classes. So
does the collection package with the Collection Component specific classes. Moreover,
the common package harbors the the classes and interfaces that are being used by both
components, for instance the EventBus. Lastly, the infrastructure package contains
implementations for the required interfaces, noted on Figure 4.1 mainly for testing
purposes. The repositories are using an in-memory storage, so it is not advised to
use them in a real environment.

5.2.1 Authorization module
This section is dedicated to the Authorization Component, illustrated on Compo-
nent Diagram of Figure 4.3. Before anything else, the package structure should be
discussed. There are five main packages and each of them correlates to one of the
components showcased on the Diagram. However, on the Diagram two more pack-
ages can be observed, namely the AccessParams and DataCollectionType. These are
located in the common package, since they are being used by the Collection Module
as well.

5.2.1.1 AuthorizationRequestParams

Starting off with the authorizationrequest package, it contains the Authorization-
RequestParams classes, represented on Figure 4.6. Since the frameworks aims to
be general and to be implemented in many different ways, it has to offer customis-
ability. The point of these classes is to offer an opportunity to customize the network
calls made during the authorization process. The parameters appended to these col-
lections are excepted to be attached to the requests. Every DataSource will define
its own object of this, because some of them might require specific parameters to be
present. For instance, in case of Withings, a header with a constant value needs to
be present during the authorization. The WithingsDataSource will attach this to its
object, shown on Listing 5.1. In the code snippet, there is one more noteworthy part.

5.2 Framework 61

The parameter passed to the constructor of the return object is a RestrictedMap
object. This is a wrapper class created for cases like this one. This wrapper holds
a mutable map object inside, but restricts the access to it by only allowing to ap-
pend key-value pairs when the key is not already present in the collection. If so, the
append will not succeed. This precaution was taken to avoid users accidentally mod-
ifying parameters that was put there by the framework, just like in Withings’ case
the ”action” key. On the other hand, an immutable version of the wrapped collection
can be requested by the class the values inside can be freely observed.

1 override fun getEstablishedAuthorizationRequestParams():
AuthorizationRequestParams {

2 val additionalParams: MutableMap<String, String> = mutableMapOf("action"
to "requesttoken")

3 return OAuth2AuthorizationRequestParams(additionalParamsForTokens =
RestrictedMap(additionalParams))

4 }

Listing 5.1: AuthorizationRequestParams for Withings.

The abstract AuthorizationRequestParams class is also annotated with Jackson
specific annotations to configure the polymorphic de/serializtion. It defines that the
serialized form of this class will have an additional field called ”type” and the OAuth1
child of the class will contain this field with the value of ”oauth1” and the OAuth2
version is with ”oauth2”. If this were not there, Jackson would not know how to han-
dle the abstract AuthorizationRequestParams classes when it comes to de/serializtion.

Additionally, the last field in the class is the applicationData field. This is a nul-
lable String field, which is there to contain implementation specific data. Developers
implementing the framework can choose what they want to be saved there and the
value of this field will be saved with the AccessParams as well. This was included to
ensure an even higher level of customisability and the benefits will be presented when
CACHET’s requirements will be discussed in Section 5.3.

5.2.1.2 AuthorizationState

Moving on on the list of components, this sections details the AuthorizationState
component. Its class diagram is displayed on Figure 4.5. This class’ objective is to
save information during the authorization process. During OAuth1 and 2, there is a
step when the user is redirected to the vendor’s website to authorize the application.
After the redirection, from the application’s perspective, the HTTP connection is
closed and the task is completed. However, there is data that should be persisted in
every authorization session per user. Information, such the Request Token and Token
Secret when it comes to OAuth1 and the applicationData field, discussed in the pre-
vious section. This data cannot be sent over the wire, because some of these should
be kept secret. Fortunately, both of the protocols offer a way to send arbitrary data
with the authorization requests and the vendors implementing their version of the
protocol are obligated to send those back with the callback as query parameters. The

62 5 Implementation

AuthorizationState object’s id field is the perfect for this case. The id is the only
thing that is required to be sent out from the application and during the callback this
id can be used to query the entire State object and use the data. Therefore, the Autho-
rizationState abstract class contains field for user and data source identifiers, which
can be used to correctly query the state for a given user and for a given data source.
This class is also configured to be serializable in a polymorphic way, as discussed
in the previous section. It has two descendants, the OAuth1AuthorizationState
and OAuth2AuthorizationState classes. These objects can be persisted using the
IAuthorizationStateRepository. It defines the needed persistence functionalities
which to be implemented by the users of the framework. The IAuthorization-
StateService and AuthorizationStateServiceHost which declare and realise the
application services. The Service Host uses the repository to handle the persistence of
the AuthorizationState objects and provides functionalities to manipulate them. This
component’s implementation is pretty straight forward. The significant part is their
place in the whole picture.

5.2.1.3 AccessParams

Even though this is a common concern, it needs to be discussed here, because the
next section will build upon it. The AccessParams represents the authentication to-
kens received after a successful authorization flow in case of OAuth1 and 2. Since the
protocols utilise totally different approaches, it also has two children, the concrete
classes, namely OAuth1AccessParams and OAuth2AccessParams. The Class Diagram
of this component is illustrate on Figure 4.4. The connection between the repository
and service classes and their responsibilities are completely the same, thus this section
will rather focus on the implementation of the domain classes. First of all, the nature
of the access parameters should be discussed in case of different devices. The proto-
cols only dictate the presence of some fields, they do not restrict the expansion, which
leads to the reality that the access parameters of different devices can vastly differ.
Some may include some fields that need to be saved the retrieved when accessing data
from the API. This was the main reason why the AccessParams abstract class stores
the entire response from the third-party API as a Jackson JsonNode object, which rep-
resents JSON file which can be effectively queried and traversed. With this approach,
if any implementation needs something special, it can get it by querying this object,
because it will contain the raw response, ensuring that every device specific parameter
is correctly saved there. Apart from this very significant design decision, it also con-
tains additional fields, such as internalUserId, which is the ID of the user they were
enrolled during the authorization process into the framework. The externalUserId,
which is the ID of the user in the third-party system. The dataSourceId, which is
the ID of the DataSource. The applicationData field, which contains the application
specific data, set by the developer using the framework. The AccessParams class is
also annotated with the usual polymorphic serialization settings, just as detailed in
Section 5.2.1.1. In both OAuth1 and OAuth2 there is one token that can be used to
access the protected resources. The AccessParams class declares an abstract method

5.2 Framework 63

to extract this token from the response. This is the extractAccessToken function,
which has to be overwritten by the subclasses. Apart from that, there is one more
function declared and implemented, which is the getParamValueFor, which purpose
is to get the value for the key passed as a parameter from the params object, which
contains the raw authentication information. Moving on to the first concrete class,
the OAuth1AccessParams declares OAuth1 specific methods to extract protocol
specific information. The extraction is represented on the following Listing 5.2.

1 companion object {
2 const val OAUTH_TOKEN_KEY = "oauth_token"
3 const val OAUTH_TOKEN_SECRET_KEY = "oauth_token_secret"
4 }
5 override fun extractAccessToken(): String {
6 return params.get(OAUTH_TOKEN_KEY).textValue()
7 }

Listing 5.2: OAuth1AccessParams parameter extraction.

It declares the OAuth1 protocol specific keys and tries to extract them from the
raw response. In this case, this is a mandatory field to be present in the authentication
response. However, this might not be the same in other cases, especially in OAuth2.
Its declarations are the following, on Listing 5.3

1 companion object {
2 const val ACCESS_TOKEN_KEY = "access_token"
3 const val REFRESH_TOKEN_KEY = "refresh_token"
4 const val TOKEN_TYPE_KEY = "token_type"
5 const val EXPIRES_IN_KEY = "expires_in"
6 const val SCOPES_KEY = "scope"
7 }
8 override fun extractAccessToken(): String {
9 return params.get(ACCESS_TOKEN_KEY).textValue()
10 }
11 fun extractExpiresIn(): Long? {
12 return params.get(EXPIRES_IN_KEY)?.asLong()
13 }
14 fun determineExpiration(): Boolean {
15 val expiresIn = extractExpiresIn() ?: return true
16 return updatedAt.plusSeconds((expiresIn - 180)) < Instant.now()
17 }

Listing 5.3: OAuth2AccessParams parameter extraction.

The OAuth2 protocol marks the expires_in field as optional, so it might not be
present in an implementation of the protocol. One more important function can be
noted at the bottom of the snippet, called determineExpiration. This function is used,
as the name suggests, determine the expiration. The expires_in field, according to the
specification, contains the seconds the token is valid for counting from the moment of
token creation. If the field is not present, the token is instantly marked as an expired
token. If it is present, the comparison next to the return keyword will be used. The
updatedAt field is used, because it contains the last time the params field was updated

64 5 Implementation

(which is where the expires_in field is extracted from). The deduction of 180 seconds
is used to artificially simulate a long running HTTP response. The application might
have gotten the authentication information with a delay if the network struggled for
some reason and the expires_in field is valid from the moment the token was issued on
the third-part side, therefore without the artificial delay it might determine a token
valid even if it is not.

5.2.1.4 DataSource

Next on the line of discussion is the DataSource package. Class diagram is displayed
on Figure 4.9. This is the main component of the Authorization module. The discus-
sion will be started from the top of the diagram where the most generalized from the
DataSources are shown and on the way down the specialization will be detailed.

Said that, the IDataSource interface declares functionalities that should be used
by the framework’s user. The most important ones are the initiateUserAuthoriza-
tion, getDataCollectionPreparationEventFromPing, and getEstablishedAuthorization-
RequestParams functions. The initiateUserAuthorization is the one that should be
called when a new uses needs to be registered and redirected to the third-party autho-
rization page. This sequence is explained in detail on Figure 4.10. The getDataCol-
lectionPreparationEventFromPing extracts multiple DataCollectionPreparationEvent
object from the raw ping sent by the third-party Web Server. A list is returned, be-
cause some of the ping notifications contain more than one notification object, thus to
extract all of them a list collection is needed. This function is one of the functions that
needs to be implemented in every concrete DataSource just for the reason mentioned,
every ping notification is different. Furthermore, the getEstablishedAuthorizationRe-
questParams function returns a protocol specific AuthorizationRequestParams object
containing device specific constants if there is any. This function has a default im-
plementation in the OAuth1DataSource and OAuth2DataSource, but it can be
overwritten, just like how in Withing’s case, explained in the previous Section.

Moving one layer down on the Diagram, the DataSource abstract class takes
place. As already explained in the Design Section 4.3 of the Authorization module,
this is the last level before the structure branches out into protocol specific imple-
mentations. This is also the place where the protocol independent dependencies
are injected, such as IEventBus, IAuthorizationStateService and IAccessParamsSer-
vice. Firstly, it handles the subscription for the DataCollectionPreparationEvent.
Both OAuth1 and OAuth2 DataSources have to be able to gather the information
necessary for their data collection requirements. Secondly, it implements some of the
methods declared by the IDataSource interface. To examplify, the implementation of
the initiateUserAuthorization function is displayed in the following code snippet on
Listing 5.4.

1 override fun initiateUserAuthorization(
2 userId: String,

5.2 Framework 65

3 dataSourceId: String,
4 params: AuthorizationRequestParams
5): AuthorizationRequest {
6 if (accessParamsService.isUserAlreadyRegistered(userId, dataSourceId)) {
7 throw IllegalArgumentException("User $dataSourceId/$userId is

already authorized. Request aborted.")
8 }
9 val state = registerAuthorizationRequestForUser(userId, dataSourceId,

params.applicationData)
10 val uri = getAuthorizationRedirectUri(state, params)
11 return AuthorizationRequest(uri, state)
12 }

Listing 5.4: Implementation of the initiateUserAuthorization method.

This method’s main responsibility is to only allow new users to register, create a
new AuthorizationState object for the user and construct the full redirection URI with
the newly created state’s ID. Creating the state object (OAuth1AuthorizationState or
OAuth2AuthorizationState) and constructing the URI (calling the protocol specific
operator) is protocol dependent, thus, it has to be implemented in either the OAuth1
or OAuth2 specific DataSource. Inspired by the Template Method Design Pattern,
the class declares two new abstract functions registerAuthorizationRequestForUser
and getAuthorizationRedirectUri. Moreover, despite other abstract functions, it also
declares one more template method, named prepareDataCollection. This is the call-
back function of the DataCollectionPreparationEvent. It consists of two steps. Firstly,
collecting the access parameters for the given user and Data Source using the getAc-
cessParametersFor function, which is fully implemented here, because it is the same
behaviour regardless of the protocol. Secondly, it calls the assembleDataCollectionUri
operation to construct an Uri instance, which represents a web endpoint that should
be called to collect a Data Type. This operation the second one that must be imple-
mented by the concrete DataSource instances, because it is also fully device specific.
This concludes the DataSource abstract class’ part in the hierarchy. From now on,
every operation will be protocol specific. With that said, the OAuth1DataSource and
the OAuth2DataSource need to be detailed.

Starting with OAuth1DataSource, this class implements the OAuth1 protocol
specific details. It declares two more protocol dependent dependencies, such as
OAuth1Client Settings and IOAuth1AuthorizationOperator. The OAuth1
ClientSettings class encapsulates constants that are required by the OAuth1 protocol
and parameters that are device specific, such as which callback URI should be called
by the third-part Web Server or the links where third-party API is located. The
IOAuth1 AuthorizationOperator, as discussed in the Design, performs network
calls that are needed for the OAuth1 authorization flow. Moreover, this class han-
dles the subscription for the OAuth1Event. AuthorizedTokenAcquired. Once
this event is emitted, the acquireAccessToken function is called as a handler, as this
sequence was shown on Figure 4.11. The following functions are also implemented
here: registerAuthorizationRequestForUser, illustrated on Figure 4.10, getAuthoriza-

66 5 Implementation

tionRedirectUri as declared by its superclass, it has to call the IOAuth1Authorization
Operator to construct the required redirection URI, the getEstablishedAuthorization-
RequestParams, which is the default implementation of the function as discussed previ-
ously in Section 5.2.1.1, which returns an empty OAuth1AuthorizationRequestParams
and lastly the publishDataCollectionExecutionEvent, which is called at the end of the
before-mentioned prepareDataCollection function. In case of OAuth1, this method is
just a normal event publication of the DataCollectionExecutionEvent.OAuth1Execution
Event.

Moving to its counterpart, the OAuth2DataSource has to implement the same
functionalities according to the OAuth2 requirements. This DataSource is highly simi-
lar to the OAuth1 version. It also introduces its own version of client settings, which is
OAuth2ClientSettings. Its purpose is the exact same as the OAuth1ClientSettings’s,
but adjusted for the OAuth2 terms. Likewise, the second new dependency is the
IOAuth2AuthorizationOperator. The same network call conductor as the OAuth1
version, but for OAuth2. Furthermore, this class subscribes for the OAuth2Event.
AuthorizationCodeAcquired event and then it is handled with its own acquireAc-
cessToken function. The logic of the function body is the same as in the other
case. The rest of this paragraph will focus on the notable differences compared to
OAuth1. Starting the list with the getAuthorizationRedirectUri call, which in this case
receives OAuth2AuthorizationRequestParams as a parameter. This class contains a
new field, called scopes. This field is a list of String containing the requested scopes
from the third-party API during the authorization process. However, every API re-
quires the scopes to be specified in a different format. For instance, Fitbit requires
them to be separated by white spaces, while Withings accepts them separated by
commas. Consequently, the OAuth2DataSource declares a new function called con-
structScopeStringsForAuthorizationUrl which has to be implemented by the concrete
OAuth2DataSource for the reason mentioned above, it is completely device specific.
Continuing the differences, the second notable one is the publishDataCollectionExe-
cutionEvent. While in OAuth1 it was just a plain event publication, in this case it
something distinct. The code fragment on Listing 5.5 showcases the function body.

1 override fun publishDataCollectionExecutionEvent(
2 dataType: DataCollectionType ,
3 dataCollectionUri: Uri,
4 accessParams: AccessParams
5) {
6 val tokensAreExpired = (accessParams as OAuth2AccessParams).

determineExpiration()
7 val refreshedParams = if (tokensAreExpired) {
8 refreshAccessParametersForUserAndDevice(
9 accessParams.internalUserId,
10 accessParams.dataSourceId,
11 getEstablishedTokenRefreshParams()
12)
13 } else accessParams
14

5.2 Framework 67

15 eventBus.publish(this::class, DataCollectionExecutionEvent.
OAuth2ExecutionEvent(

16 accessParams = refreshedParams,
17 clientSettings = clientSettings,
18 uri = dataCollectionUri,
19 dataIdentifier = dataType
20))
21 }

Listing 5.5: Implementation of the publishDataCollectionExecutionEvent method in
OAuth2DataSource.

As it can be seen, it checks whether the OAuth2AccessParams are expired or
not. The idea is that the DataCollectionExecutionEvent will only contain valid
tokens, so the data collection will not fail due to expired credentials. The expi-
ration check is detailed in Section 5.2.1.3. In case the tokens are expired, a re-
fresh operation is attempted. This is done by calling the refreshAccessParameters-
ForUserAndDevice function, which is also a new, exclusive function declared by the
OAuth2DataSource. It calls the IOAuth2AuthorizationOperator to refresh the ex-
pired tokens and upon successful refreshment it saves the new tokens to the exist-
ing OAuth2AccessParams object and updates it in the database using the IAccess-
ParamsService. After ensuring the validity of the tokens, it omits the DataCollec-
tionExecutionEvent.OAuth2ExecutionEvent. The last difference is the newly declared
getEstablishedTokenRefreshParams. This is also a customisation ensuring operation,
returning an instance of OAuth2TokenRefreshParams. Some third-party APIs
might require the presence of different information during the token refreshment. As
an example, Withings also requires the same ”action” header to be present for token
refreshment, just as in case of requesting normal tokens. This function is also declared
as open, so the concrete classes can overwrite if need be.

5.2.1.5 DataCollectionType

The second common concern that is utilised by the DataSources is the DataCollec-
tionType. Its class diagram can be observed on Figure 4.7. This interface represents
a third-party data type. Its functions are mostly aimed at enforcing the presence of
different information pieces, such as getIdentifier method, which should return the ID
of the Data Type from the third-party API’s perspective, the getNamespace method,
which is supposed to uniquely identify the data from the developer’s perspective. To
exemplify the difference, getIdentifier could be ”activities” in Fitbit’s case and get-
Namespace would be ”com.fitbit.activities.”. Activities is a pretty common data type
among wearables, so the getIdentifier on itself could not be used as as ID in the
framework. Furthermore, getEndpoint method returns the relative URI where the
data can be collected on the vendor’s website and getCustomName, which returns a
humanly readable custom name for the data. Using the previous example, it would
return ”Fitbit Activity Summary”. Additionally, there is one more method called
acceptTransformer. This will be detailed later down in the section. Apart from the

68 5 Implementation

interface itself, its descendants are mainly used in this module. As it can be seen on
the Class Diagram, there is a concrete DataCollectionType for every concrete Data-
Source. Continuing using the Fitbit as an example, Listing 5.6 details a fragment of
its implementation.

1 enum class FitbitDataCollectionType(
2 private val id: String,
3 private val ep: String,
4 private val cn: String,
5 private val ns: String,
6 val version: String = "1",
7) : DataCollectionType {
8 ACTIVITIES(
9 "activities",
10 "activities",
11 "Fitbit Activity Summary",
12 "com.fitbit.activities"
13) {
14 override fun acceptTransformer(transformer: IDataTypeTransformer ,

data: ThirdPartyData): List<Any> {
15 transformer as FitbitDataTypeTransformer
16 return transformer.transformActivities(data)
17 }
18 }
19 override fun getIdentifier() = id
20 override fun getEndpoint() = ep
21 override fun getCustomName() = cn
22 override fun getNamespace(): String = ns
23 }

Listing 5.6: Implementation of the DataCollectionType interface for Fitbit.

FitbitDataCollectionType lists more data types, but only this one is taken as
an example. It is an enumeration, because enums in Kotlin and many other languages
can implement an interface and their nature perfectly fits the data type requirements.
Every concrete DataCollectionType takes a minimum of four arguments in the con-
structor to satisfy the interface’s definition and it it needs be, more arguments can
be specified, just like in case of Fitbit, where another version argument is added,
because some of their data endpoints have different versions than the others. Most
of the interface method are realized in a global way applicable for every enum entry,
except for one, which is the acceptTransformer. This is the method that calls the
correct transformer on the Data Type for data transformation. This is presented
on Figure 4.19. It takes a transformer and the data to be transformed as an ar-
gument, it casts the transformer to its expected type and calls the correct method.
Essentially, this implements the Double Dispatching mechanism. The significance of
this mechanism reveals itself when used in the Data Collection Module. It returns
a list of unknown types, because the framework could not know the correct class of
the transformed type, because it is implemented by the developer using the frame-
work. In addition, the ThirdPartyData taken as an argument contains the whole
raw data retrieved from the third-party API and it might contain multiple data en-

5.2 Framework 69

tries, depending of the data representation of the vendor. The structure of the other
concrete DataCollectionTypes, such as GarminDataCollectionType, DexcomDataCol-
lectionType and WithingsDataCollectionType are implemented in the exact same way,
thus there is nothing important there to mention.

5.2.1.6 Devices

Having the DataSources and DataCollectionTypes explained, the focus should shift
towards how they can be utilised. The concrete device implementations make use of
these classes. The devices package contains the Dexcom, Fitbit, Garmin and Withigns
implementation. All of them incorporates the same structure. An AccessTokenRe-
sponseExtractor utility class, which provides one static method that is supposed
to transform the raw response from third-party Web Server into the protocol spe-
cific AccessParams class. This was mainly made to be used by the developers of the
framework while implementing the OAuthAuthorizationOperators, because almost ev-
ery vendor declares the token response in a different way. Furthermore, there is one
device specific DataTypeTransformer interface, which lists the transformer functions
for every data type declared in the device specific DataCollectionType classes. Last
but not least, there is the main device specific DataSource class, which inherits from
either the OAuth1DataSource or the OAuth2DataSource. To demonstrate the OAuth2
implementation, the FitbitDataSource will be taken as an example. Its Class Diagram
can be seen on Figure 4.12. After inheriting from the OAuth2DataSource, four classes
were left to be implemented. Starting off with the constructScopeStringsForAutho-
rizationUrl function, its implementation can be examined on Listing 5.7.

1 override fun constructScopeStringsForAuthorizationUrl(scopes: List<String >?)
: String {

2 if (scopes != null) {
3 scopes.forEach {
4 if (!Scopes.isValid(it)) {
5 throw IllegalArgumentException("The requested Fitbit scope $it is

not valid!")
6 }
7 }
8 return scopes.joinToString(" ")
9 }
10 return Scopes.values().map { it.key }.toList().joinToString(" ")
11 }

Listing 5.7: Implementation of the constructScopeStringsForAuthorizationUrl
function for Fitbit.

Fitbit requires the scopes to be separated by white-spaces. The function takes
the scopes requested at user enrollment time as an argument, checks whether each of
them are valid using the Scopes nested enumeration, which lists all the available scopes
Fitbit has and and if so, it joins them together as it is required. If no scopes were
passed to the function, it returns back every scope available, because, as the protocol
dictates, scopes have to be present when requesting authorization. Proceeding to the

70 5 Implementation

second necessary method implementation, it is the assembleDataCollectionUri. Its
function body is shown on Listing 5.8.

1 override fun assembleDataCollectionUri(
2 accessParams: AccessParams,
3 dataType: DataCollectionType ,
4 rawPing: JsonNode
5): Uri {
6 dataType as FitbitDataCollectionType
7 val uriString: String = when (dataType) {
8 FitbitDataCollectionType.ACTIVITIES -> "${clientSettings.dataUrl}/${

dataType.version}/user/-/${dataType.getEndpoint()}/date/${
rawPing.get(AP_DATE_KEY).textValue()}.json"

9 FitbitDataCollectionType.HEART_RATE -> "${clientSettings.dataUrl}/${
dataType.version}/user/-/${dataType.getEndpoint()}/date/today/1d
.json"

10 FitbitDataCollectionType.BODY -> "${clientSettings.dataUrl}/${
dataType.version}/user/-/${dataType.getEndpoint()}/date/${
rawPing.get(AP_DATE_KEY).textValue()}.json"

11 FitbitDataCollectionType.SLEEP -> "${clientSettings.dataUrl}/${
dataType.version}/user/-/${dataType.getEndpoint()}/date/${
rawPing.get(AP_DATE_KEY).textValue()}.json"

12 FitbitDataCollectionType.FOOD -> "${clientSettings.dataUrl}/${
dataType.version}/user/-/${dataType.getEndpoint()}/date/${
rawPing.get(AP_DATE_KEY).textValue()}.json"

13 }
14 return Uri(HttpMethod.GET, uriString)
15 }

Listing 5.8: Implementation of the assembleDataCollectionUri function for Fitbit.

As it can be seen, this is where the FitbitDataCollectionType is used, because,
as discussed in Section 5.2.1.5, it has information about the actual data type. For
instance, the endpoint where it is available. Using these, the full collection URIs
can be constructed as the vendor requires them. In the argument list one more
important parameter can be noted, the rawPing. This is the entire ping notification
that the third-part Server sends when it notifies the application about the update
of one data collection. It is practical, because some of the notification may contain
some key information that might be needed for URI construction. In this specific case,
it can be seen being used in the URIs: rawPing.get(AP_DATE_KEY).textValue().
AP_DATE_KEY is a constant in the class with the value of ”date”. This function
call return the value for that field from the ping notification, because Fitbit pings
contain the date that should be queried. Moreover, the third significant function is the
getDataCollectionPreparationEventFromPing. Its implementation is demonstrated on
Listing 5.9.

1 override fun getDataCollectionPreparationEventFromPing(notification: String)
: List<DataCollectionPreparationEvent > {

2 val eventList: MutableList<DataCollectionPreparationEvent > =
mutableListOf()

3 try {

5.2 Framework 71

4 val notificationNode = ConfiguredObjectMapper.instance.readTree(
notification)

5 notificationNode.forEach { ping ->
6 val dataType = FitbitDataCollectionType.from(ping.get(

AP_DATA_TYPE_KEY).textValue()) ?:
7 throw IllegalArgumentException("The requested Fitbit Data Type is

not valid!")
8 eventList.add(
9 DataCollectionPreparationEvent(
10 dataSourceId = DATA_SOURCE_ID,
11 userId = ping.get(AP_USER_KEY).textValue(),
12 dataType = dataType,
13 rawPing = ping
14)
15)
16 }
17 } catch (ex: Exception) {
18 throw IllegalArgumentException("Notification extraction failed for

Fitbit: ${ex.message}. \nSent notification: $notification")
19 }
20 return eventList
21 }

Listing 5.9: Implementation of the getDataCollectionPreparationEventFromPing
function for Fitbit.

Its main responsibility is to construct DataCollectionPreparationEvent instances
from the notification pings. Object instances, because most of the vendors send mul-
tiple notifications in one ping. Therefore, using Jackson’s configured ObjectMapper,
the notification is transformed into a JSON structure and that structure is traversed,
while in each iteration a new DataCollectionPreparationEvent is created according
to the Fitbit notification. Lastly, the events are returned. In the end, the very last
method that has to be implemented is the getId method. It just returns a String
that uniquely identifies the actual DataSource. In this case, this is ”fitbit”. Further-
more, there is one more notable aspect, which comes out in case of Withings. As
discussed before in Section 5.2.1.1, Withings requires some headers to be present at
authorization and token refreshment. These constants are configured in the getEstab-
lishedAuthorizationRequestParams and getEstablishedTokenRefreshParams methods.
Fitbit was not required to implement these, because it does not require any constant
to be present at those times and these functions have default implementation in the
superclass. Moreover, this was the case of OAuth2DataSource classes, but Garmin
utilises OAuth1, therefore it inherits from the OAuth1DataSource. That implementa-
tion is even simpler, because the scopes do not have to be specified there, thus only
three methods had to be implemented: getId, assembleDataCollectionUri and getDat-
aCollectionPreparationEventFromPing. The whole OAuth1 protocol logic came from
the superclass.

72 5 Implementation

5.2.1.7 DataSourceRegistry

The last component in the Authorization Module is the DataSourceRegistry com-
ponent, contained by the package datasourceregistry. Its Class Diagram is shown
in Figure 4.8. Its implementation is bare-bones compared to the previously intro-
duced packages, however, it is still an important part that will be significant during
the implementation. The IDataSourceRegistry interface declares two methods:
getDataSourceById is for retrieving DataSource instances by their ID and activate-
DataSource, which saves the DataSource instances. The DataSourceRegistryHost
realizes this interface and stores the DataSources in the Map collection, where the
key is the DataSource ID and the value is the object itself.

5.2.2 Collection Module
The next module on the framework’s Component Diagram (Figure 4.1) is the Col-
lection Module. Its own component diagram is illustrated on Figure 4.14 and it is
implemented in the collection package and has the following structure: package data
declares classes for the data retrieved from the third-party APIs. Package oauth1
harbors the OAuth1 specific services and so does package oauth2 with the OAuth2
services. The package publisher contains the IDataPublisher interface. The rest of
the classes are located in the root package.

5.2.2.1 DataCollectionSerivce

Starting off the explanation with the most important part of the module, the Data-
CollectionSerivce’s main responsibility is to collect data from the third-party ser-
vices according to the received DataCollectionExecutionEvent. Its interface, IData-
CollectionService declares one function which does just that, the executeDataCol-
lectionRequest. The DataCollectionService is the main class that contains the logic
for data retrieval and transformation. The whole procedure can be observed in the
Sequence Diagrams describing the OAuth2 Data Collection flow, starting from Figure
4.17. Before the implementation of this class is explained, this time it makes more
sense to start from the specialized classes. The OAuth1DataCollectionService
and the OAuth2DataCollectionService are the specialization of the DataCollec-
tionService and the only responsibilities they have are to subscribe to the protocol
specific DataCollectionExecutionEvent and return the protocol specific DataCollec-
tionOperatorBuilder using the getOperator class, which is the only function they
have to implement. The correct DataCollectionOperatorBuilder is injected here
in the constructor. The builder classes’ responsibility is to construct a configured
instance of a protocol specific IDataCollectionOperator, which declares a method
to retrieve data from the third-party servers. Continuing with the DataCollection-
Service, once one type of (OAuth1 or OAuth2) DataCollectionExecutionEvent is re-
ceived, the executeDataCollectionRequest function is called as a callback. The func-
tion body retrieves the correct operator using the getOperator function and calls the

5.2 Framework 73

executeRequest function on it with the specified arguments. One argument is a Kotlin
higher-order function, which is supposed to act as a callback to a successful HTTP
call. This was done to give the user the possibility to handle the HTTP calls asyn-
chronously and in their callbacks only this higher-order function has to be invoked
with the required parameters, which is just the raw response from the third-party
API as a String. This higher-order function can be observed on Listing 5.10.

1 callback = { apiResponse: String -> processFetchedData(event.accessParams,
event.dataIdentifier, apiResponse) }

Listing 5.10: Kotlin higher-order function in the DataCollectionService.

The main aspect to point out here is the actual function that should handle the
response, the processFetchedData. A most significant fragment of its function body
can be observed in Listing 5.11.

1 private fun processFetchedData(accessParams: AccessParams, dataType:
DataCollectionType , result: String) {

2 val resultNode = ConfiguredObjectMapper.instance.readTree(result)
3 val fetchedData = ThirdPartyData(
4 userId = accessParams.internalUserId,
5 dataSourceId = accessParams.dataSourceId,
6 dataIdentifier = dataType,
7 rawResponse = resultNode,
8 applicationData = accessParams.applicationData
9)
10 val transformer = transformerRegistry.getTransformerForDataSource(

fetchedData.dataSourceId)
11 val transformedData = fetchedData.transform(transformer)
12 transformedData.forEach { data -> publisher.publishCollectedData(data) }

Listing 5.11: Implementation of processFetchedData function.

The result parameter contains the entire raw response. Firstly, it is mapped into
a JSON representation. A ThirdPartyData wrapper is instantiated to encapsulate
the response and its meta-data. Then, the transformation begins. The transformer-
Registry is an instance of the IDataTypeTransformerRegistry registry, which contains
registered IDataTypeTransformer instances for each DataSource. Its inner workings
will be detailed later in the section. The actual transform function is part of the
ThirdPartyData class, which can be noted on the following Listing 5.12.

1 fun transform(transformer: IDataTypeTransformer): List<TransformedData> {
2 val transformedDataTypes = this.dataIdentifier.acceptTransformer(

transformer, this)
3 return transformedDataTypes.map { transformedDataType ->
4 TransformedData(
5 dataSourceId = dataSourceId,
6 userId = userId,
7 dataType = dataIdentifier,
8 collectedAt = collectedAt,
9 value = transformedDataType
10)

74 5 Implementation

11 }
12 }

Listing 5.12: Implementation of transform function.

Since the ThirdPartData instance knows what type of data it holds through its
dataIdentifier field, which is a DataCollectionType, it can the acceptTransformer
method to initiate the Double Dispatching mechanism, detailed in Section 5.2.1.5.
After the transformation is completed, it constructs a TransformedData instance,
which is also a wrapper class for the transformed data and its meta-data. This
concludes the transformation. The only part left is to publish the retrieved and trans-
formed data using the IDataPublisher interface. This is supposed to be implemented
by the developer using the framework.

5.2.2.2 DataTypeTransformerRegistry

The last component of the Diagram 4.14 is the DataTypeTransformerRegistry. As
previously mentioned, it is used to keep track of the IDataTypeTransformer imple-
mentations per DataSource. The IDataTypeTransformerRegistry interface de-
clares function to register these transformers and to retrieve them for a given Data-
Source. The DataTypeTransformerRegistryHost realizes this interface and holds
the IDataTypeTransformer objects in a Map collection, where the key is the Data-
Source ID and the value is the object itself. In the previous section, as this DataType-
TransformerRegistryHost was injected into the DataCollectionService, it was able to
retrieve the configured transformer for the given DataSource and use it to transform
the data.

5.2.3 EventBus module
The Authorization module and the Collection module as well heavily rely on the
EventBus to subscribe for messages and to publish their own state. In order for
the whole framework to function properly, the EventBus implementation is critical.
This module’s Class Diagram is displayed on Figure 4.2 and the implementation is
located in the eventbus package, contained by the common package. In the Design
section, precisely in Section 4.2, the structure of the event hierarchy and the purpose
of the IntegrationEvent and DataSourceEvent has already been discussed. This
paragraph is dedicated for the implementation of the actual EventBus class and to
the details of the concrete event classes. The interface IEventBus is used throughout
the entire framework. It declares three methods. The publish method enables ”clients”
to publish an IntegrationEvent. The two remaining functions are both aimed at
subscribing for different kinds of events. They both called subscribe, this the function
is overloaded and the correct function call is decided by the parameter list. The two
function declarations can be observed in Listing 5.13.

1 interface IEventBus {

5.2 Framework 75

2 fun subscribe(subscriber: KClass<*>, eventType: KClass<out
IntegrationEvent>, handler: (IntegrationEvent) -> Unit)

3 fun subscribe(subscriber: KClass<*>, eventType: KClass<out
DataSourceEvent>, dataSourceId: String, handler: (DataSourceEvent)
-> Unit)

4 fun publish(eventSource: KClass<*>, event: IntegrationEvent)
5 }

Listing 5.13: Function declarations of IEventBus.

The first subscribe function offers a way to to be subscribed to any Integration-
Event. The second one is more restricted and only allows it to any DataSourceEvent
and also requires to specify the actual ID of the DataSource. DataSourceEvents can
be emitted by any DataSource, therefore this allows the clients to only subscribe to
events emitted by a certain DataSource of their choosing. For better understanding,
the Listing 5.14 showcases how the OAuth2DataSource subscribes to an Authoriza-
tionCodeAcquired event, which is supposed to be DataSource specific, for these are
only relevant for the certain DataSources.

1 eventBus.subscribe(
2 subscriber = this::class,
3 eventType = OAuth2Event.AuthorizationCodeAcquired::class,
4 dataSourceId = this.getId(),
5 handler = { event: OAuth2Event.AuthorizationCodeAcquired ->

acquireAccessToken(event) } as (DataSourceEvent) -> Unit
6)

Listing 5.14: Event subscription example.

In case of Fitbit, the this.getId() call results in ”fitbit”, thus this handler should
only be executed if an OAuth2Event.AuthorizationCodeAcquired event is emitted and
it contains the DataSource ID value as ”fitbit”. In order to achieve this behaviour
The EventBus abstract class realizes the interface and provides implementation for
the two subscribe methods. Its internal representation of subscription is made using
the Handler protected inner class. It is showed on the following Listing 5.15.

1 protected data class Handler(
2 val eventSource: KClass<*>,
3 val handler: (IntegrationEvent) -> Unit,
4 val dataSourceId: String? = null
5)
6

7 protected val subscribers: MutableMap<KClass<out IntegrationEvent>,
MutableList<Handler>> = mutableMapOf()

8

9 private fun registerHandler(eventType: KClass<out IntegrationEvent>, handler
: Handler) {

10 if (subscribers.containsKey(eventType)) {
11 val handlerList = subscribers[eventType]!!
12 handlerList.add(handler)
13 } else {
14 subscribers[eventType] = mutableListOf(handler)

76 5 Implementation

15 }
16 }

Listing 5.15: Handler class implementation for the EventBus.

Both IntegrationEvent and DataSourceEvent subscriptions are stored in the sub-
scribers Map Collection using the Handler classes as values. In the Handler class the
field dataSourceId is nullable and only has value when it is a DataSourceEvent, that
is how they can be differentiated. The subscribers Map contains a List for values, be-
cause for event there could be more than subscription. The last function in the code
fragment is the registerHandler private method. It manages the subscribers by attach-
ing the handler if there is already a collection registered for the specific eventType.
Otherwise, it creates a new collection and attaches the handler to the new collection.
There is no production ready EventBus implementation in the framework, because it
is supposed to be implemented by the developer using the framework according to
the technology stack they use. However, there is one test implementation, which is
called SingleThreadedEventBus. This class is located in the infrastructure package,
which will be discussed in the next Section.

5.2.4 Infrastructure
As the framework has numerous unsatisfied dependencies, the infrastructure package
aims to provide implementations for them that can be used for testing purposes. In
this chapter, the the classes that realize the required interfaces will be introduced,
which can be seen on the framework’s Component Diagram in Figure 4.1. Firstly,
the before-mentioned SingleThreadedEventBus. It inherits from the EventBus ab-
stract class and provides an implementation for the publish method. As the name sug-
gests, it stays on the same thread and invokes the subscriptions one by one. As next,
regarding the two repositories, the InMemoryAccessParamsRepository and In-
MemoryAuthorizationStateRepository provide in-memory implementations for
their interfaces. Both of the implementations utilise a Map Collection to save the
required domain classes. Lastly, there are EmptyDataTypeTransformer classes
for each of the four concrete DataSources. These realize the device specific DataType-
Transformer interfaces and provide a simple implementation of the required trans-
former methods by simply returning the ThirdPartyData object from the argument
list.

5.3 CACHET’s Implementation
Now that the framework is implemented, it should be customized to meet and fulfil
the requirements formulated by CACHET and connect an fitting implementation of
the framework into the CANS system. An outline of the objective was already given
during the design process in Section 4.5 and 4.6 and the proposed Component Dia-
gram of the implementation was illustrated on Figure 4.20. This section is focused

5.3 CACHET’s Implementation 77

on explaining the showcased components and how the CANS specific requirements
were added. First of all, the package gardener.carp-implementation contains the
Vert.x implementation. In the src package, the kotlin folder contains the source code
and the resources folder contains configuration files, such as profile specific JSON files
detailing the constants used throughout the application and logger configurations in
the logback.xml file. The logging right now is configured to be appended to the con-
sole with the format specified in the configuration file. Moving back to the source
code, the application start point is defined in the AuthenticationModuleApplica-
tion.kt file. It deploys, as Vert.x requires it, the MainVerticle class, which contains
the initiation of the framework and the declaration of the service endpoints. The class’
start function is called from Vert.x to start up the Verticle. It declares the HTTP
server instance that will serve the incoming requests and that runs on the port spec-
ified in the configuration files. To be able to use the constants defined in those files,
the application uses the PropertiesConfig class, which reads up the profile specific
configuration file from the classpath according the the ”profile” environment variable,
which has to be set before the software is run. The value of the variable could be
local, testing and production, just as the prefixes on the configuration files. However,
before the HTTP servlet is started, there is one more function is called, which is the
setUp. The whole framework is initiated here along with the declaration of the routes.
The rest of the chapter is focused on how the instantiation, customisation and the
interconnection of the framework modules are done.

5.3.1 Required interface implementations
As the Component Diagram states, there are eight required interfaces that need to
be implemented in order for the framework to function properly. During the expla-
nation, the CANS infrastructure, especially the running RabbitMQ instance will be
references. The Deployment Diagram of the Server can be noted on Figure 4.22. First
of all, the EventBus, the implementation utilises the SingleThreadedEventBus for
simplicity. Later on this could be changed to use the RabbitMQ instance instead to
support true messaging. For the IDataPublisher implementation, the RabbitMq-
DataPublisher class is used. This connects to a RabbitMQ instance by establishing
a connection at class instantiation time and implements the required interface method
by sending the TransformedData object to the RabbitMQ queue where CANS can
consume it. Furthermore, there are two repositories that need to persist data. both
MongoAccessParamsRepository and MongoAuthorizationStateRepository
utilises MongoDB for this purpose. The MainVerticle instantiates a Vert.x specific
MongoClient, which can be called to persist and query entities. This client is passed
to both classes and they implement the required interface methods using the client
using the NoSQL dialect. Lastly, there are the Operators. From the framework’s per-
spective, four Operators have to be implemented. The Authorization Module requires
the IOAuth1AuthorizationOperator and the IOAuth2AuthorizationOperator. The Col-
lection Module needs an IDataCollectionOperator, which has to have an OAuth1 ver-

78 5 Implementation

sion, which is returned by the IOAuth1DataCollectionOperatorBuilder and an OAuth2
version, which is made by the IOAuth2DataCollectionOperatorBuilder. Both ver-
sions of the Authorization and Data Collection Operators are implemented in the
OAuth1Operator and OAuth2Operator classes. In the Kotlin ecosystem there
any many open-source utility libraries that provide well-tested solution for OAuth
operations, thus implementation by hand is not necessary and more importantly not
advised especially in the cause of OAuth1 due to the presence of cryptography. Im-
plementing the steps of OAuth protocols might lead to unintended bugs. Therefore
to avoid this scenario, the library ScribeKotlin is used. It has support for every func-
tionality required for the framework. However, it only supports the plain OAuth
protocols. In case of Withings, as mentioned in Section 5.2.1.1, it requires certain
parameters to be present during requesting OAuth tokens, thus the requesting Access
Token and Refresh Token part of the library was extended to incorporate adding ad-
ditional arbitrary headers. Other than this minor complication, the implementation
using ScribeKotlin was smooth and straight-forward. Moreover, there is one more as-
pect to these operators that has not been mentioned yet. The question of subscription
will be explained in the following Section.

5.3.2 Subscription handling
In order for the framework to collect data, something has to initiate the collection
flow. The initiation is done by publishing DataCollectionPreparationEvent objects.
This can be done manually, by a scheduled job or by the subscription services pro-
vided by the third-party APIs. Every API requires the subscription to be made in a
different way. In addition, it is mainly making some network calls, so it was decided
to make the subscription handling purely an implementation concern, the framework
does not support hem yet. The decision will be discussed in Section 7.4. The end of
a successful authorization is noted by retrieving the authentication information for
a user. At this point, the software is excepted to query the third-party APIs on the
user’s behalf for data, so just after receiving the authentication information is a good
point to make subscriptions for the user. Starting with the OAuth2DataSources first,
in the retrieveAccessParams method just after the tokens are received, the function
tries to make subscriptions for the given user and the given DataSource. Out of the
three devices using OAuth2, only Fitbit and Withings possesses subscription capabil-
ities, Dexcom does not have one.

On one hand, in case of Fitbit, it is mandatory to have a Subscription set up
and registered on the Fitbit developer portal. Individual subscriptions for users
can only be registered to one of these main Subscriptions. This configuration is
required to be made by hand by the developer. Once the Subscription group is
set up, the ID of the group and a unique verification code is established and as
the next step, it has to be verified using the code. The verification happens in a
way that Fitbit’s Web API calls the application using the registered callback with

5.3 CACHET’s Implementation 79

the verification code. Two calls happen, one with the correct code and one with
a purposefully wrong one and the application has to respond with correct HTTP
Response Code according to the excepted behaviour (204 for the right and 404 for
the wrong one). If the verification was successful, the personal subscriptions can
be submitted. From this, the task is pretty straight-forward. To make a subscrip-
tion, a call has to be made to the following address: ”https://api.fitbit.com/1/user/-
/apiSubscriptions/$userId.json?subscriberId=1”. Where the userId path parameter
is the unique name of the subscriptions. It was chosen to made the internal identifier
of the user, because that is unique. The ID of the Subscription Group is sent in the
query parameter list. After the call, the subscription is created, which subscribes the
user for notification of every available group.

On the other hand, Withings’ subscription handling requires an entirely another
approach. There is no step that requires manual configuration, but instead it requires
two network calls in addition with some cryptographic operations. The first call is
aimed at retrieving the cryptographic nonce (a random string of characters) from
the API and then the second call makes the actual subscription with the new nonce.
These will not be detailed here, because call that have to be made are already detailed
in the official documentation2. The calls require the presence of several client spe-
cific credentials and the cryptographic operation is a SHA-256 hash of the required
parameters, as a Message Authentication Code (MAC) to avoid the modification of
the parameters, because they are transferred as query parameters. After the calls
succeeded, the subscription is created on Withings’ side. As a personal opinion, even
though Withings’ procedure is cumbersome to implement, it was a great to study
their approach to use nonces to prevent replay attacks and MACs to avoid parameter
modifications.

Furthermore, the last DataSource that is implemented is Garmin. It does not
require any subscription submission, the ping notification endpoints have to be con-
figured on their developer portal by hand and they are applicable for every user,
therefore, there is no OAuth2 subscription making in the implementation. If there is
even going to be a need for one, however, the same way could be applied here that
was applied in case of OAuth2.

5.3.3 Framework initialisation
After every necessary interface is implemented, the framework service classes can
be instantiated. The instantiation can also be divided into two batches. One are
the services for the Authorization Module and the others for the Collection Mod-
ule, apart from the EventBus, OAuth1Operator and the OAuth2Operator, which are
needed for both. Starting with the Authorization module, with the repositories im-
plemented, the core services can be instantiated, which are: MongoAuthorization-

2https://developer.withings.com/api-reference

80 5 Implementation

StateRepository, MongoAccessParamsRepository, AuthorizationStateServiceHost, Ac-
cessParamsServiceHost and the DataSourceRegistryHost. The DataSources should
also be created and registered here. Listing 5.16 how the FitbitDataSource is regis-
tered in the Registry.

1 val fitbitClientSettings = OAuth2ClientSettings(
2 clientId = properties.getProperty("fitbit.client.id"),
3 clientSecret = properties.getProperty("fitbit.client.secret"),
4 authorizationUri = properties.getProperty("fitbit.oauth2.authorization.

uri"),
5 accessUri = properties.getProperty("fitbit.oauth2.access.uri"),
6 dataUrl = properties.getProperty("fitbit.data.uri"),
7 callbackUri = properties.getProperty("fitbit.client.callback.uri"))
8 val fitbitDataSource = FitbitDataSource(
9 eventBus,
10 authorizationStateService ,
11 accessParamService ,
12 fitbitClientSettings ,
13 OAuth2Operator(fitbitClientSettings , vertx, properties))
14 dataSourceRegistry.activateDataSource(fitbitDataSource)

Listing 5.16: Service registrations for the Authorization module.

Using the PropertiesConfig object properties the client settings can be extracted
from the configuration file. With those set and the services registered, the DataSource
can be instantiated and with the activateDataSource method registered. The other
DataSource registrations are handled the same way. These are all the steps that
have to be taken to get the Authorization Module operational. Moving forward with
the Collection Module, its required objects are the DataTypeTransformerRegistryHost,
RabbitMqDataPublisher, OAuth2DataCollectionService and OAuth1DataCollection Ser-
vice. In this module, the transformers should also be registered, which is shown on
Listing 5.17.

1 transformerRegistry = DataTypeTransformerRegistryHost().apply {
2 registerTransformer(FitbitDataSource.DATA_SOURCE_ID,

FitbitCarpTransformerI())
3 registerTransformer(GarminDataSource.DATA_SOURCE_ID,

GarminCarpTransformerI())
4 registerTransformer(WithingsDataSource.DATA_SOURCE_ID,

WithingsCarpTransformerI())
5 registerTransformer(DexcomDataSource.DATA_SOURCE_ID,

DexcomEmptyTransformerI())
6 }

Listing 5.17: Transformer registration for the Collection module.

The implementation also contains DataTypeTransformer implementation for every
device, that transforms the ThirdPartyData into CACHET’s required ”data points”
format. With the mentioned classes created and with the necessary connections
configured, the framework is ready to serve requests. In order to do that, however,
the service endpoints have to be configured.

5.3 CACHET’s Implementation 81

5.3.4 Endpoint declarations
The application endpoints declares the HTTP routes on which particular services are
available. The implementation, not counting one endpoint that was specifically made
to handle the Fitbit subscription creation detailed in Section 5.3.2, lists three end-
points in total for handling the user enrollment and data collection procedures. One
common characteristic is that they are all device and user independent. The path
parameters ”dataSourceId” and ”userId” will be present in every case to identify the
DataSource and User.

The first one is the following: ”/wearables/api/authorize/:dataSourceId/:userId”.
This is the first endpoint thatinitiates the user authorization process and redirects
the user to the third-party website. The userId here can be anything, this will be the
internal identifier of the person. This endpoint also excepts query parameters. The
OAuth2 scopes will be set here and transferred in the OAuth2AuthorizationRequest
Params object for the dataSource.initiateUserAuthorization function call. CACHET’s
exclusive requirement was to also save the ”deploymentId”, which is also sent in the
query parameters. The concept of deployments and CACHET’s user-case is detailed
in Section 4.5. This is completely independent from the framework and from the
OAuth2 protocols, this is completely a user specific requirement, therefore it will
be saved in the previously introduced applicationData field in the RequestParams.
This field was designed to accommodate requirements such as this one. This way,
the deploymentId will be saved along with the Access Parameters at the end of the
authorization flow, thus it can be accessed any time. This is important during the
transformation, because their format requires this data to be present in certain fields.

After the user is redirected and gave consent, the third-part Web API will call
the application’s callback, which will be the following endpoint: ”/wearables/api/oau-
th/:dataSourceId/callback”. According to the OAuth standards, the parameters, like
OAuth2’s Authorization Code and OAuth1’s oauth_token will be transferred in the
query parameters, so these need to be extracted and either a OAuth2Event. Authoriza-
tionCodeAcquired or a OAuth1Event.AuthorizedTokenAcquired needs to be published
with the EventBus. Other than the event publication, nothing else needs to be called.

The last endpoint is the ”/wearables/api/collection/:dataSourceId”, which initi-
ates the data collection flow. Here, the HTTP request body will contain, most likely,
the information. By retrieving the right DataSource from the DataSourceRegistry us-
ing the dataSourceId from the path, the method getDataCollectionPreparationEvent-
FromPing will get the raw payload and transform it into protocol specific DataCol-
lectionPreparationEvent. These can be published. Again, the user of the framework
does not have to touch any part of the system besides event publication and calling
one function.

It is important to mention there the design, how the EventBus hides the inner

82 5 Implementation

workings of the system, thus the only task the developer has is to publish the cor-
rect event. The vast majority of the required work in each case is handled by the
framework, the only tasks the user has are to handle the HTTP payload/query pa-
rameters/path variables. When it comes to device specific payloads in case of the
collection endpoint, the transformation of the raw ping into the specific events comes
also out of the box.

5.4 Deployment and Operation
In order to enable the system to collect data about the users and correctly send it
to CACHET’s CANS system, the implementation has to be configured and deployed
into their existing infrastructure.

5.4.1 Dockerization
Before the whole server architecture of CACHET is discussed, the connection between
the MongoDB, RabbitMQ and the application should be explained. Instances of the
mentioned technologies are necessary to be present during runtime, otherwise the
implementation cannot save nor publish data. The Deployment Diagram of the re-
quired infrastructure is displayed on Diagram 4.21. Using Docker Compose, however,
launching instances of them can be easily achieved using their official Docker images
available on Dockerhub. The docker-compose.local.yml file in the gardener.carp-
implementation/docker package describes the set-up of the instances for local devel-
opment using the local application profile. The MongoDB and RabbitMQ instances
can be addressed using localhost and their specified ports. In addition, the docker-
compose file also attaches the required configuration files and set-up scripts for each
instance using volumes property. These files are located in the config folder. For
RabbitMQ, the required configurations are the credentials (rabbitmq.conf), enables
plugins (enabled_plugins) and the queue definitions (definitions.json), which will set
up the queues that CANS uses, so the application can address them and send data.
Moreover, for MongoDB, scripts can be found which will set up a new database in the
MongoDB instance for the application (init-mongo.sh for production and init-mongo-
local.js for local). Moving onto the production profile, which is actually displayed on
the diagram mentioned previously, the docker-compose.yml file will also set up a
RabbitMQ and MongoDB instance with the same configuration as before, however,
this time it also starts the container of the application. In order to do so, a Docker-
file has to be present which describes how to build the image that will contain the
software. The content of the file is showcased on Listing 5.18.

1 FROM gradle:7.2-jdk11 AS builder
2 COPY ./ /src
3 USER root
4 WORKDIR /src
5 RUN gradle clean shadowJar -x test

5.4 Deployment and Operation 83

6

7 FROM openjdk:11
8 WORKDIR /app
9 COPY --from=builder /src/gardener.carp-implementation/build/libs/*.jar app.

jar
10 RUN chown -R root:root /app
11 USER root
12 CMD echo "Starting CARP wearables service..." && exec Kotlin -jar app.jar

Listing 5.18: Dockerfile of the implementation.

This Dockerfile utilises a two-stage build to minimize the size of the final image by
not including the source code and leftover build artifacts by building the app in the
first stage, shown on the first half of the code fragment. The gradle clean shadowJar
-x test will create a Fat JAR of the application, without running the tests because
the integration tests which rely on the presence of the database and message queue
cannot succeed due to the technologies not running. The second stage copies the
JAR from the first stage and runs it. The production Docker Compose takes this
Dockerfile and starts the container of the application using the ”production” profile
set in the environment variable. The Compose File also declares a common docker
network called ”cans” and, as displayed in the Deployment Diagram” each instance
is configured to run on this network, so they can communicate with each other.

5.4.2 Server integration
With the production profile, the application is ready to be deployed into CACHET’s
Web Server. The Deployment Diagram can be found on Figure 4.22. After cloning
the repository on the server and starting the docker-compose.yml file using the com-
mand ”docker-compose up”, the application should start as excepted. However, the
application runs on the server on port 8444, but it is not available from the public
network due to the default security policy being deny all. The CANS server has an
NGINX3 reverse proxy upfront, which is the main entry point, thus everything that
is calling the ”https://cans.cachet.dk” domain goes through it first and depending on
the path it directs the message to the correct application. The current project needs
the ”/wearables/api” path the be opened and connected to localhost:8444, so editing
the configuration file of the NGINX proxy with the code fragment shown on Listing
5.19 will enable the project to serve requests.

1 location ~ ^/wearables/api/(.*) {
2 proxy_pass https://$host:8444$uriis_argsargs;
3 }

Listing 5.19: NGINX configuration fragment.

This is the important part of the configuration that needed to be attached. With
this configuration added, every request calling the ”https://cans.cachet.dk/wearables
/api/...” address will be correctly redirected to the application.

3https://www.nginx.com/

84 5 Implementation

5.4.3 Wearables configuration
The software also has to be registered on the third-party Web Servers. Most of the
companies have a developer portal where there are options to create new applica-
tions, after which the unique OAuth credentials are given to the user. This had to
be done manually, so right now, Fitbit, Garmin, Withings and Dexcom has an appli-
cation registered and their credentials are stored in the profile specific configuration
files. Listing 5.16 already showcased how the properties are used to configure one
DataSource and Listing 5.20 displays the actual properties stored for one DataSource,
specifically for Fitbit.

1 "fitbit.client.id": "XXXX",
2 "fitbit.client.secret": "YYYYYYYYYYYYYYYYY",
3 "fitbit.oauth2.authorization.uri": "https://www.fitbit.com/oauth2/authorize"

,
4 "fitbit.oauth2.access.uri": "https://api.fitbit.com/oauth2/token",
5 "fitbit.data.uri": "https://api.fitbit.com",
6 "fitbit.client.callback.uri": "https://cans.cachet.dk/wearables/api/oauth/

fitbit/callback",
7 "fitbit.client.subscription.code": "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ",

Listing 5.20: Client credentials for Fitbit.

For the production profile, the client.callback.uri property targets the deployed
application. For local development, this is server’s domain is substituted with local-
host. The other properties are static, depending on weather the same application on
the third-party sites is used for local development and production. The application
is determined by the client.id and client.secret, because those are unique for every
application.

5.5 Implementation overview
This Chapter explained how the components detailed in the Design Chapter were im-
plemented using Kotlin and Vert.x. The implementation was able to achieve entirely
what the design dictated. The current build process completes with zero warnings
and errors. CACHET’s specialised version of the framework is also a success and
meets their requirements. The application is containerised, therefore it is ready to
be deployed to a web server. The following Evaluation Chapter will discuss how the
project was tested.

CHAPTER6
Evaluation

In this chapter, we describe the different types of approaches that were used to test
whether the application met the desired requirements. We briefly start with the
integration tests and the requirements for applying the unit tests and finally provide
the results of the application operating on the CANS server with the Fitbit, Garmin
and Withings devices.

6.1 Unit/Integration Tests
First of all, the main evaluation techniques, unit and integration tests, must be dis-
cussed. At this stage, more than a hundred test cases have been implemented to test
the main parts of the system. Specifically, 91 cases for the framework and 9 dedicated
cases for the implementation can be found in the code base. In each of the projects,
the test classes are located in the package test.

In the case of the framework, tests are implemented using the official Kotlin test-
ing library1 to process test cases in a collective manner, and additionally using the
Kotlin version of Mockito2, which is one of the top ten most used Java libraries3 for
mocking and testing, for more fine-grained statements|assertions.

The test architecture follows a certain structure. The parent class of each concrete
test class is the abstract class CoreTest. It initializes the common concerns of the
framework and declares a cleanup method that is automatically executed after each
test case, called clean, whose task is to clean up the repositories to avoid interference
between test case runs. The common concerns mostly use the test implementation
of interfaces from the infrastructure package discussed in section 5.2.4, and some of
them are mocked up with the Mockito method spy, e.g. EventBus and DataPublisher.
This mocking is presented in listing A.1.
The OAuth specific operators are fully mocked with their own implementation in the
test package to avoid network calls. Moreover, the abstract classes OAuth1Test and
OAuth2Test are the ones that instantiate the protocol specific DataSources. One

1https://kotlinlang.org/api/latest/kotlin.test/
2https://site.mockito.org/
3https://www.overops.com/blog/githubs-10000-most-popular-java-projects-here-are-the-top-

libraries-they-use/

86 6 Evaluation

significant aspect to mention here is the resources package containing test data in
the form of JSON files for each concrete DataSource, such as client setting, valid and
invalid authentication information, mock ping notification and wearable data. These
are read and configured in the before-mentioned test classes for each concrete Data-
Source and used throughout the test cases to simulate a real-like behaviour with real
data. Furthermore, each bigger part of the system is tested, such as AccessParams,
DataSourceRegistry, but most importantly, the concrete DataSources. Every concrete
one (Fitbit, Garmin, Dexcom, Withings) has their own test class with test cases that
test either an important function or an entire task flow. As an example, whether the
AccessParamsRepository contains the authentication information at the end of an
authorization flow or there were the correct events fired with the correct parameters
on the EventBus during data collection. One of this test cases can be found on List-
ing A.1. These were possible due to Mockito’s ability to capture function arguments
during execution, so these arguments could get validated with their excepted values.

On the other hand, the implementation part contains much less test cases, since
the main functionality is already tested in the framework and therefore only the own
interface implementations, such as MongoAccessParamRepository, MongoAuthoriza-
tionStateRepository and RabbitPublisher, are evaluated. Although the same structure
is found here, i.e. a main initialization superclass is declared along with a cleaning
method, it differs significantly. First, the JUnit4 integration of Vert.x is used, and
the initialization consists of instantiating the class MainVerticle and deploying it in
Vert.x. Therefore, the entire application is launched just like in a production scenario.
Since the cleanup method uses a real MongoDB instance, it runs NoSQL queries to
clear the specified collections before each test case, so each test case has a clean work-
ing state from the start. Speaking of MongoDB, these tests also require the database
and RabbitMQ to run in Docker containers in order to be used. To avoid deleting
the framework user’s local database, the tests were run using the test profile, which
connects to another test database in the MongoDB instance, so that the local data
remained untouched while the tests were running. Real network calls to real web
servers were not made, as a rate limiting mechanism is used in each case, which de-
nies further requests if too many requests are made from one source and a certain
limit is reached. Therefore, concrete authorization and data collection were not tested
in the implementation.

Finally, a pattern can be observed in both cases regarding the structure of the
test cases. Each consists of three phases. In the first phase, the state required for
the scenario is established by storing or declaring test data. In the second phase, the
commands to be tested are executed. The last phase is the evaluation, where the
results of the execution are determined.

4https://vertx.io/docs/vertx-junit5/java/

6.2 Technical study 87

6.2 Technical study
The first ”live” test that was conducted was the ”Technical Trial” that ran from Oc-
tober 26 to November 8 on CACHET’s main web server. The purpose of this test
run was to determine if the initial version of the implementation and deployment
configuration was capable of performing its intended tasks. These tasks consist of
the implementation being able to enroll users, receive notifications, and perform data
collection for the Fitbit, Garmin, and Withings wearables. Dexcom was screened out
because its services were not available to non-U.S. residents. In terms of deployment,
it is necessary to verify that the Docker setup is valid and that the application can be
deployed on the web server and connected to the existing infrastructure. It should be
noted that CANS integration was not performed at this stage, which was explained
in section 4.5.

With that said, this study only included me as the only participant handling three
watches: Garmin Venu5, Fitbit Versa 26 and a Withings Steel HR7. I had each com-
panion application installed on my Android Smartphone and I have worn the watches
interchangeably during the day.

On the 26th the application was successfully deployed to the Server. Withings
integration was not yet part of the deployment due to it not being implemented yet,
so Fitbit and Garmin were the only ones available. The enrollment process succeeded
by calling the following two URIs: ”https://cans.cachet.dk/wearables/api/authorize/
garmin/ricsi” and ”https://cans.cachet.dk/wearables/api/authorize/fitbit/ricsi”. The
internal user ID was ”ricsi” in both cases. The logs of the successful authorization
of Fitbit can be seen on Figure A.1 and the first ping notifications from Fitbit and
Garmin are shown on Figures A.2 and A.3. These snippets are exported from the
docker container of the application. As of the first day, the enrollment and data collec-
tion flow seemed to be working, however, other complications were discovered, such as
the CANS ”data point” data transformation was incorrect. This bug was found after
checking the logs in CANS to see whether the data pushed to the RabbitMQ instance
and consumed by CANS gets persisted or not. The day after, the second major misbe-
haviour presented itself. The OAuth2 access token, in case of Fitbit, is valid for eight
hours. After their expiration, the tokens were correctly refreshed and saved, however,
the expiration calculation, which determined whether a token was expired or not, was
faulty. After applying fixes to these issues and redeploying the application, the bugs
seemed to be no longer present. After issuing a command on the main PostgreSQL
database of CANS, which returned the collected data points per day for the user ricsi,
it could have been seen that on the first day 19 and on the second day 44 data points
were collected from both watches. Furthermore, on 28th of November, the Withings
integration was done and deployed to the Server. I have enrolled myself using the fol-

5https://www.garmin.com/da-DK/p/643260
6https://www.fitbit.com/global/us/products/smartwatches/versa
7https://www.withings.com/us/en/steel-hr

88 6 Evaluation

lowing uri: ”https://cans.cachet.dk/wearables/api/authorize/withings/ricsi3”, so the
internal user ID for the Withings test user was ricsi3. The authorization concluded
successfully and in the logs it could have been clearly seen that Withings also sends
data. Important to mention that the token refreshment and data transformation fixes
still held up, so no further problems were detected. With all three of the watches au-
thorized the study ran seamlessly until the 8th of November. The logs were monitored
constantly during this period and no error were found. At the end, after querying the
CANS database with the query displayed on Listing 6.1 for data points for users ricsi
and ricsi3, the result displayed on Figure A.4 was seen. A total of 734 data points
were collected throughout the 14 days long period. In the end I started wearing the
watches less and this tendency can clearly be seen on the last days.

1 select count(*), created_at::date from data_points where deployment_id = '
ricsi' or deployment_id = 'ricsi3' group by created_at::date;

Listing 6.1: PostgreSQL query to get the data points per day for user ricsi and
ricsi3.

In the end, the Technical Study was a success, because it demonstrated user
enrollment and data collection can be achieved and the whole project can be deployed
into the CANS ecosystem.

6.3 Fitbit study with CANS
Near the end of the implementation of the project and after a successful first study,
the next and last evaluation milestone was the Fitbit study that was run from the
11th of November until the 16th of December. It was given the name ”Fitbit” for
the reason that only Fitbit devices were involved. CACHET was able to provide
six additional Fitbit devices that were handed out to different participants. These
random people were given the devices and were told to sue them as their daily drivers.

In addition to the increased number of users, the main goal of the study was
see whether the fully aligned version of the project with CANS is able to autho-
rize, collect and publish the data to the main system in the final format they re-
quire. In order to achieve this, the CANS system also had to be modified to in-
corporate the new functionalities. The desired flow was detailed in Section 4.5,
as referenced before, however, the modifications made will quickly be summarized
here as well. A new protocol was made especially for Fitbit that described that
the main master device that will collect the data about the user is going to be a
Fitbit device. CANS’ invitation subsystem was expanded with this scenario, that
whenever a new user is invited to a study that has a Fitbit specific protocol, the
subsystem will attach an authorization link to the email that will redirect the user to
the ”https://cans.cachet.dk/wearables/api/authorize/fitbit/:userId” page, which will
initiate the authorization flow in the application. In my case, the exact authoriza-

6.4 Evaluation overview 89

tion URI looked the following snippet: ”https://cans.cachet.dk/wearables/ api/autho-
rize/fitbit/ aea5fe7c-30aa-4852-b49f-bd0ebabfabfb? scopes=activity,heartrate,weight,
sleep,nutrition,profile,settings & deploymentId=072a7c19-4684-4093-9731-77a78b750148”.
The userId in the previous URI is substituted with the account ID of the user in CANS
and the query parameters, next to the requested OAuth2 scopes, also includes the
deployment ID associated with the user. Inserting this link based on the presence
of device specific protocols was the only modification that was needed on the main
system’s part. Garmin and Withings are also implemented in CANS the same way,
however, one protocol can only handle one kind of device as of right now, thus they
were not included in the study.

After the alignment, on Fitbit’s developer portal an entirely new Application was
created especially for this study. The application’s details can be seen on Figure
A.5. These details are included in the production profile of the deployed software.
Furthermore, on the dashboard, a new study was created. The dashboard itself is
showcased on Figure A.6. Through the dashboard, the user were enrolled one by one
by email addresses. I also invited myself to participate with the Fitbit Versa 2 watch.
After a successful authorization process, my watch instantly uploaded some activities
data from the day after I opened the Android application, which was presented on
the dashboard. Figure A.7 displays that eight activities data point that was uploaded
to my deployment on 11th of November. This means that the following statements
are true:

• The authorization was a success through the email, because the application was
able to retrieve data with the saved authentication information.

• Fitbit notification were correctly created upon authorization, because Fitbit
correctly notified the application through the notification service.

• The data was collected from the vendor and correctly pushed to the main system,
because the dashboard displays it.

• The data was transformed into the right format, because the dashboard can
display it categorized and it is displayed for my deployment.

As a first impression, the application seems to achieve what it sets out to do. In
the following days, six more participants were rolled in in the same way. In each case,
the authorization was a success and the data upload began. The application logs
were constantly monitored, but no errors were found this time.

6.4 Evaluation overview
This chapter explained how the application was tested. The Unit/Integration test
cases aimed at programmatically test out the main functions of the application-core.

90 6 Evaluation

The two tests conducted on the web server had the main purpose to test out the
implementation and operation setup for CACHET. As every test case succeed and
the two deployed tests were a success, it can be stated the application is capable of
performing the tasks required.

CHAPTER7
Discussion

This section provides discussion about how the initial goals were met by the final
implementation, what kind of unique values are provided that elevates this project
from the rest, what limitations the current version possesses and what the future
plans are.

7.1 Goals and results
Section 1.4 described four goals that needed to be satisfied the end of the project.
This section aims to provide a reasoning how those requirements were met.

7.1.1 How can the software be designed that capable of
collecting data from various wearables?

First of all, Section 3.2 presented a handful of different wearable device provider
companies and their unique requirements that should be paid attention to while
designing the solution. Furthermore, Section 3.3 surveyed the field of Web APIs to
assert the common characteristics found in the different wearable providers, such as
the utilisation of OAuth authorization protocols and overwhelming use the JSON data
format. With the possible unique requirements and market standards in mind, Section
4 provided a design that supports OAuth1 and OAuth2 based Web APIs and capable
of collecting, transforming and publishing data represented in different formats. This
claim is proved by the Technical test, described in Section 6.2, where three different
kinds of wearable devices were used to collect data. Even in this trial, the data was
sent to CACHET’s main system, CANS, however, the proper integration of the two
projects was not done yet. After the full integration was designed and implemented,
the Fitbit study, detailed in Section 6.3, showcased how multiple participants, enrolled
in an actual Study that was made on the Web Portal of CANS, were able to upload
device data in the excepted ”data points” format to the main system. With the two
studies conducted, it is clear that the application is perfectly capable of collecting
wearable device data from different providers as long as it is required and permitted.

92 7 Discussion

7.1.2 How can the design offer extensibility?
On one hand, extensibility meant that more wearable devices can be integrated into
the framework over time. On the other hand, even though the framework might be
extensible, but the extension process must take the least amount of effort possible.
To explain how this property was achieved, first the Class Diagram of the DataSource
component on Figure 4.9 has to be mentioned. This exhaustive hierarchy of classes
provides bases for wearable integrations relying on OAuth1 and OAuth2 protocols.
OAuth1DataSource and OAuth2DataSource classes define everything needed to au-
thorize an user and handle user specific authentication information, such as protocol
specific tokens. By inheriting from one of these classes, the entirety of the protocol
specific logic is given for the user. However, as Section 3.2 detailed, some of the
wearable providers might dictate the presence of arbitrary parameters during autho-
rization phases. To exemplify this, the integration of Fitbit and Withings have to be
highlighted. Withings required the an one header, namely the action header, which
must have had the value requesttoken during getting the access tokens and refreshing
them. On the contrary, Fitbit does not specify anything that is not default OAuth2 re-
quirement. This problem was solved by introducing the AuthorizationReqyestParams
class, detailed in Section 5.2.1.1, as they are used to provide a way for the user to
specify parameters like this. The highlighted Listing 5.1 in the Section displays how
it is implemented in the WithingsDataSource. Apart from the custom parameters
requirement, the actual integration of the devices has to be emphasized. There are
currently four devices implemented, Fitbit (FitbitDataSource), Garmin (GarminData-
Source), Withings (WithingsDataSource) and Dexcom (DexcomDataSource). Each of
the before-mentioned classes inherits from the protocol specific DataSource and im-
plements the remaining abstract functions. However, neither of them contains any
implementation that is not entirely provider dependant. Therefore, when new devices
need to be integrated into the system, only the most necessary, provider specific de-
tails have to be implemented, such as the representation of OAuth2 scopes, supported
DataTypes and the provider specific notification ping extraction. The integration of
four completely independent wearable device provider serves as proof that the design
succeeds at achieving the extensibility property in the most convenient way possible.

7.1.3 How can the design offer customisability?
The second most important property of the system is the customisability. The initial
description of the goal was to keep the project technology free. To achieve this require-
ment, the design relies on the design decision of the framework based approach and
following the hexagonal architecture, detailed in Section 3.4. Firstly, the Component
Diagram of the framework on Figure 4.1 needs to be recalled. The Diagram displays
numerous required interfaces that need to be implemented when using the framework.
Every dependency defines some functionality where an actual technology is required.
For instance, the repositories except to be provided with an database implementation,
such as MongoDB. The operators require network communication implementations.

7.1 Goals and results 93

Lastly, the publisher can be provided with anything the user desires. The most sig-
nificant aspect of having these required dependencies is that specific technologies are
not hard-wired into the solution. The only actual dependency the framework has is
the serialization library, Jackson, which was essential for being able to handle JSON
data. The dependencies are dependency injected in the necessary places, therefore
the framework is able to work with the functions declared by the interfaces. Fur-
thermore, the requirements mentioned the need for customisable data transformation
techniques. As detailed at the end of the Section 4.4, the solution took this into consid-
eration and provided a way to register new transformers without modifying the core
logic. To prove that the framework stayed successfully technology independent and
it can be implemented to meet arbitrary requirements, CACHET’s implementation
has to be highlighted. Beforehand, it has to mentioned that the framework was not
influences by the specific requirements formulated by CACHET. With that said, their
conditions were that the data had to be transformed into the ”datapoints” format and
the transformed data has to be pushed to the established RabbitMQ instance. By
providing custom transformers and an implementation for the RabbitMQ integration
and injecting these classes into the framework, their requirements were met. The way
these implementations were provided, just as the MondoDB repositories, any other
technology could have been used and injected in their places. This proves that the
framework achieves customisability and can be implemented in a way to meet one’s
requirements.

7.1.4 How can the solution solve CACHET’s unique requirements?

The last goal was whether the project meets CACHET’s requirements and can pro-
vide a solution for their problem. The previous sections already mentioned how most
of their requirements are satisfied. However, the main proof of the success is the
Fitbit study detailed in Section 6.3. In order to achieve this, their main system also
have to modified with device specific Protocols and new email templates that contain
an authorization link that redirects the user to the authorization endpoint of the
project running on the web server. The detailed design of the integration is discussed
in Section 4.5. As the result of the Fitbit study shows, the requirements were met by
the project with the minimal modification on the existing system’s side possible.

In the end the goals the project set out to achieve were met. A general purpose
software framework was created that can be used for data collection from different
wearable technology providers. The framework can also be freely shaped during the
implementation process to satisfy special requirements, just as it has been done in
CACHET’s case. The next section will talk about how this solutions can provide
unique value against its competition.

94 7 Discussion

7.2 Implications
In the summary of the related work Section 2.5, it was stated that the competition
mostly succeed in extensibility, they seriously lack in customisability. This project,
while supporting the same if not a higher level of extensibility than its competitors,
offers customisability in a way that is not present in any other before-mentioned
projects. Every technological dependency can be freely chosen by the user as well as
the data transformation techniques, which is not present at all in case of the rest. In
addition, the framework can also be implemented as part of an existing project as
well as implemented on its own, such as in CACHET’s case. By focusing solely on
solving the problem of collecting data from wearable vendors and not forcing an entire
platform on the user, just like how AWARE and RADAR-base do, it stays out from
the crowd as a lighter-weight solution. Lastly, SHIMMER is still a great solution,
which it also focuses on solving the collection problem, it is a complete package with
hard-wired dependencies. It can be fired up out of the box and will complete the
task at hand and collect the data in an Open mHealth format. If there is no need
for heavy customisation and different data formats, SHIMMER can get the job done.
Nevertheless, if great customisation capabilities and custom data transformation are
requirements, this project is preferable. In the end, the project proposes unique values
that makes it a great competitor in its field.

7.3 Limitations
This section describes some of the limitations currently identified in the project. The
limitations are split into two categories, one for the framework and one for the imple-
mentation.

7.3.1 Limitations of the framework
First of all, the most obvious limitation of the framework is the only dependency it
has, the serialization library, Jackson. It is one of the most popular serialization
libraries in the Java ecosystem, right next to Gson1 and the official default serializer
of the Spring ecosystem. The problem is not about the choice of the library, but
about that a specific version is configured in the project. A scenario can present
itself that an existing project is using a different version of Jackson and the developer
decides to implement the framework as part of their existing one. Thus, it will lead
to library version mismatch. The existing project ought to use the same or higher
version of Jackson to be able to integrate the framework. It might force the developer
to bump the version of their library. On the other hand, if a newer version is used,
even though it is highly unlikely, but the implementation of the library’s methods

1https://github.com/google/gson

7.3 Limitations 95

that are used by the framework might change and might contain some undesired side
effects that could cause unintended bugs. However, the test-base is always there to
filter out cases, such as this one.

Secondly, the subscription handling is not part of the framework. This is an
important aspect of the Web APIs and most of the time the use of such a service is
preferable over a polling mechanism. However, personally I am still not convinced
weather it should be part of the framework, because it is vastly different in every case.
Among the wearable provides implemented, not even one is similar to the others in
any way. Garmin does not require anything to be handled in the code-base. On the
contrary, Fitbit dictates separate subscription calls for each different user. Addition-
ally, Withings also requires network calls, multiple ones. The requirements of each
case vastly differ from one another. There are also cases, such as Dexcom, which does
not posses a subscription mechanism. The framework was designed in a way that the
data collection can be initiated by anything, only the right event has to be published
to the Event Bus. This event can be omitted by the subscription service or by a
scheduled job, totally depending on the choice of the developer using the framework.
This is why the subscription handling is mainly implementation concern, however,
the framework could provide some helper functionality.

Lastly, there is no functionality to remove users from the system. This is a
serious missing feature, because users must be able to be removed. This idea will be
discussed further in the next, Future Work section.

7.3.2 Limitations of the implementation
The implementation introduces some specific limitations on the top of the ones in-
troduces in the previous section. The first limitation that needs to be discussed is
a continuation of a before-mentioned problem, the subscription handling. The
subscriptions are created once the user is successfully is authorized. This functions as
it is supposed to do so, however, no logs are kept of the subscriptions per user. Right
now, the only user specific subscription creation is in Fitbit’s case and every subscrip-
tion uses the user’s internal identifier as unique identifier, therefore it is manageable.
In addition, once the subscriptions are created, the implementation does not delete
them, because there is no functionality to remove user from the system yet. This will
also be discussed further in the Future Work Section.

Moreover, the personal tokens of each user are stored in the database in
plain-text. Even though the database engine protects the documents, if an attacker
gains access to the database it means that the tokens are compromised and can be
used to request data from the third-party Web APIs. Luckily, the data on itself can-
not be linked to a specific person without further information, because the identifier of
the user is a Deployment ID in the CANS system. However, if more security measures

96 7 Discussion

must be taken, the data can always be encrypted. This will take its toll on the perfor-
mance due to the additional cryptographic operations, but at least the data will not
be stored in plain-text anymore. As a sidenote, Garmin in the notification ping sends
out the long-lived OAuth1 access token of the user in the payload. Even though the
communication happens over HTTPS, it seems insecure. For one, the configuration
of the ping endpoints are done on the developer portal. If that gets compromised and
the callback URIs are modified, the attacker gets the tokens straight from Garmin.
Therefore, the security does not only depend on the application, but on the vendor
as well.

When it comes to security, it is also important to mention that the endpoints
of the application are not protected in any way. Lack of authentication means that
they can be freely invoked by someone who is aware of the endpoint paths. If an at-
tacker gains intel on one of the users enrolled in the system, they could simulate valid
ping notifications from one of the vendors, for instance Fitbit. As a consequence, the
application would try to collect the data from Fitbit, since from its perspective, the
notification is valid. If the attacker replays this attack multiple times, this could result
in blocking the application from collecting data by the vendor’s security mechanism.
To avoid this problem, it is advised to modify the server’s firewall settings to only
allow ping notifications to be only received from the official address of the third-party
vendor. The authorization endpoint in CACHET’s case has to be left open to the pub-
lic due to the email registration links. They cannot be pinpointed to a static location.

Lastly, even though it is not an actual limitation now, but idempotent event
handling has to be mentioned. If a message broker is used to distribute the events,
duplicate message delivery could happen due to network or other errors. If duplicate
messages are delivered and the implementation does not filter them out, it can lead
to bugs. For instance, assuming that the current implementation of the MongoDB
repository is used and a real message broker, if an OAuth2 AuthorizationCodeAc-
quired event is delivered twice, the framework will attempt to get the tokens twice
as well. If both of them succeed, that means two entries will be saved for the given
user in the database, thus it will lead to conflict. The current implementation uses
the SingleThreadedEventBus, therefore networks errors will not happen. However, it
had to be mentioned that the developer implementing the framework must pay at-
tention to these problems when implementing the publish function of the Event Bus.
The events are already equipped with unique identifiers and creation timestamps to
support filtering.

7.4 Future Work
This section is dedicated to discuss the plans for the future. One project cannot be
truly over, there is always some aspects left to refactor or improve. Apart from these,

7.4 Future Work 97

the following bigger tasks are definitely worth considering.

Firstly, the biggest open question, the state of subscription handling. If it will be
decided that it should be part of the framework, first of all, it has to be designed.
Since most of the time it requires several network calls, it is most likely should be
handled just how the OAuth networks calls, with operators. Every wearable device
must have its own operator, since every one of them requires the subscriptions to
be managed in a different way. After the subscriptions are created, the framework
should keep track of them in a separate repository. If it is decided that it stays out
of the application core, the implementation can handle it in the most convenient way.
In the current implementation, the cancellation of the created subscriptions are miss-
ing. This feature is one of the most important to-do tasks, along with removing users
from the system.

The removal of users is needed in the framework as well as in CACHET’s imple-
mentation. In the studies they ran there is a functionality to stop deployments. Once
they are stopped, the data collection in this project must also be stopped. As of
right now, this feature is missing. One could argue that when the user stops using
the smartwatch they were given or the consent is removed from their account which
enables the project to collect data about them, the notifications will no longer be sent
to the project, therefore no new data will be collected. However, this is not a proper
solution. Once the deployment is stopped in CANS, it has to send out a new message
through the RabbitMQ to the project and the implementation has to act upon it by
deleting the subscription and removing the authentication information stored about
the user. The message sending is completely CACHET specific requirement, however,
the reaction to the message, the removal of subscription and user information is a
common concern.

Apart from the missing features, integration of more devices should also be done,
starting with the devices already analyzed in Section 3.2. SHIMMER still offers a
higher variety of devices, therefore it is essential to integrate more to stay competitive.
In addition, default transformers could also be provided in framework, such as the
Open mHealth format transformers.

Integrating more devices and transformers are rather nice-to-have options than
essential. The most significant tasks for the future are the subscription handling and
the user removal.

98

CHAPTER8
Conclusion

This thesis project involved the design, implementation and operation of a service
that is capable of collecting data from various third-party Web APIs. First of all,
a survey of the existing solutions was conducted which resulted in the identification
of properties that are missing from the analysed systems, such as support for cus-
tomisation and extensibility. The project focused on providing a solution that could
improve upon its competitors and offer a viable alternative.

After the goals were identified, the Analysis Chapter provided a comparison among
the possible technological choices the project could utilise for designing and imple-
menting the software. In addition, a comprehensive analysis of the Web APIs of ex-
isting wearable device providers were given in order to identify common and unique
concerns, which contributed to the generic design.

Arguably the most important pieces are the Design and Implementation Chap-
ters. The Design showcased the architecture of the framework, implementation and
deployment of the project through several UML diagrams and reasoned about the
choices made. The explanation started from the highest level of abstraction with
Component Diagrams and ended with detailed Activity Diagrams that focused on
the most important functionalities of the system. Furthermore, the Implementation
Chapter showed how the components and classes were implemented with the chosen
technologies, such as Kotlin, Vert.x and Docker.

After the implementation of the designed software was completed, the Evalua-
tion chapter detailed how the solution was tested. The exhaustive set of unit and
integration tests were introduced as well as the two trials conducted on CACHET’s
web server. Both the trials can be considered a success and every test case passes,
therefore it can be stated that the software works as intended.

Lastly, a discussion was given about the current state of the project, how it suc-
cessfully met the requirements stated by CACHET and how it provides improvements
over the current existing solutions. Additionally, future work recommendations were
also detailed. Overall I believe the project achieved what it had to and I had a blast
doing it. I think it was a great project where I could learn a lot and I could proudly
present it as the final conclusion of my studies here at DTU.

100

APPENDIXA
Figures and Listings

1 \\ declaration of spying EventBus
2 protected val cleanEventBus: IEventBus = SingleThreadedEventBus()
3 protected var spyingEventBus: IEventBus = spy(cleanEventBus)
4

5 @Test
6 fun successfulDataCollectionEventIsFiredUponSuccessfulCollection() {
7 val userId = TestProperties.FITBIT_TEST_USER_EXTERNAL_ID
8 registerFitbitUserFor(userId)
9

10 // Fire preparation events
11 val notificationText = fitbitActivitiesPing.toString()
12 val events = fitbitDataSource.getDataCollectionPreparationEventFromPing(

notificationText)
13 assertEquals(1, events.size)
14 events.forEach { event -> spyingEventBus.publish(this::class, event) }
15

16 // Capture the events that were published
17 val argumentCaptor = com.nhaarman.mockitokotlin2.argumentCaptor<

IntegrationEvent >()
18 verify(spyingEventBus, atLeast(3)).publish(any(), argumentCaptor.capture

())
19

20 // Check if a data collected event is fired
21 val executedEvent = argumentCaptor.allValues.filterIsInstance<

DataSuccessfullyCollectedEvent >().firstOrNull()
22 assertNotNull(executedEvent)
23 assertEquals(userId, executedEvent.userId)
24 assertEquals(FitbitDataSource.DATA_SOURCE_ID, executedEvent.dataSourceId

)
25 assertEquals(FitbitDataCollectionType.ACTIVITIES, executedEvent.dataType

as FitbitDataCollectionType)
26 }

Listing A.1: Example test case for Fitbit.

102 A Figures and Listings

Figure A.1: Successful Fitbit Authorization log for user ricsi in the Technical Study.

Figure A.2: Fitbit ping notification in the Technical Study.

Figure A.3: Garmin ping notification in the Technical Study.

A Figures and Listings 103

Figure A.4: Results of the Technical Study.

Figure A.5: Application details for Fitbit in the Fitbit Study.

104 A Figures and Listings

Figure A.6: Study dashboard of the Fitbit Study.

Figure A.7: My participantion’s dahsboard on the first day of the Fitbit Study.

A Figures and Listings 105

Figure A.8: OAuth1 token exchange.

Figure A.9: OAuth2 Authorization Code grant.

106 A Figures and Listings

Figure A.10: Most used programming languages in 2021.

APPENDIXB
Authorization

Before the OAuth protocols are explained, the definition of the word Authorization
needs to be clarified: Official permission for something to happen, or the act of giving
someone official permission to do something1. This definition perfectly summarizes
up the purpose of an authorization mechanism. In the project’s case, it needs to
get permission from the user to collect their data. Now that it is clear, OAuth is
also an authorization protocol for establishing identity management standards across
services[26]. The protocol proposes a generic framework, which can be used to grant
permission to clients to access protected resources on behalf of the resource owner
without revealing the owner’s secrets.[27, 28]. Both versions are token-based protocols.
Tokens are a string of characters that are established by authorization systems. These
units are most-likely shared between multiple modules, so every token has to uniquely
identifiable and must be not repeated. The token’s purpose is to hold information
about the user or entity they represent. For instance, typical information would be
the identifier of the token, what it can be used for and for how long it is valid[29].
Tokens are issued at the end of the authorization session and those can be used to
access the protected resource.

B.1 OAuth1
OAuth 1.0 was the first step to have a standard identity delegation system[30], which
can solve the problem of delegated access to a protected resource. Version 1.0 of the
protocol was first published in October of 2007[31]. However, an attack was found in
this version, which is detailed in the official report2. After fixing the mistake, a revi-
sion was made public in June of 2009 and was called Revision A. After that, OAuth
1.0A was the default version of the protocol that is used throughout the industry. Fig-
ure A.8[30] showcases how the authorization flow is handled in the first version. The
Three-legged flow3 is illustrated clearly on the picture. The exact parameters required
in each step is well-documented in the official RFC[31], they will not be detailed here4.

1https://dictionary.cambridge.org/dictionary/english/authorization
2https://oauth.net/advisories/2009-1/
3https://oauth1.wp-api.org/docs/basics/Auth-Flow.html
4https://datatracker.ietf.org/doc/html/rfc5849#section-2

108 B Authorization

The first phase is the Temporary Credentials Acquisition (Step 1, 2), where
The client retrieves temporary credentials from the OAuth1 Authorization server.
Secondly, the Authorization phase follows (Step 3, 4, 5). The resource owner au-
thorizes the temporary credentials acquired in the previous phase through the Autho-
rization server and the client gets back the authorized credentials.
Lastly, the Token Exchange phase happens (Step 6, 7). The client exchanges the
authorized credentials to a set of token credentials. This concludes the authorization
flow, because the token credentials can be used to access the protected resources on
the server.

In case of OAuth1, the token on itself is not sufficient to access the resources.
Many other parameters ought to be provided and most importantly, a signature5 of
those parameters as well, which is a hash of the concatenated parameters. Therefore,
it is highly advised to use a well-tested library instead of implementing the steps
manually when it comes to implementation. Furthermore, the tokens themselves are
long-lived tokens. In the specification, there is no notion of token refreshment, yet
they can expire if configured to do so. Most of times, however, OAuth1 tokens posses
an infinite life spam.

One more important aspect to mention in the end is the state handling of the
protocol. The whole process consists of three steps, which also includes asynchronous
communication (phase 2, when the user is redirected), therefore it is essential to store
state information. The protocol definition states that when the user is redirected
and a callback URL is provided (as the definition dictates), it might contain client
provided query parameters. These parameters must be preserved and returned to the
client as they are. Thus, state information can be stored among the query parameters.

B.2 OAuth2
OAuth 2.0 improves upon its predecessor in many ways and renders it obsolete. Ver-
sion 2 of the specification builds on the OAuth 1.0 deployment experience, as well
as additional use cases and extensibility requirements gathered from the wider IETF
community. The OAuth 2.0 protocol is not backward compatible with OAuth 1.0[32].
The new version introduces entirely new terminology and concepts, such as distinct
authorization grant flows and the Access/Refresh token pair. An authorization grant
is a credential representing the resource owner’s authorization (to access its protected
resources) used by the client to obtain an access token6. The four new types of this
grant are: Authorization Code, Implicit, Resource Owner Password Credentials and
Client Credentials. The description of the mentioned grants can be found in the offi-
cial RFC. One of the most used grant is the Authorization code. This could have been

5https://datatracker.ietf.org/doc/html/rfc5849#section-3.4
6https://datatracker.ietf.org/doc/html/rfc6749#section-1.3

B.3 Comparison 109

noted in the previous section, when every wearable Web API implemented it. Figure
A.9 illustrates how the authorization is conducted. In this scenario, obtaining a token
includes only two steps. Firstly, the user is redirected to the Authorization Server
where they can give consent. After they granted permission, the client is contacted
by the Authorization Server trough a callback and given an authorization code. In the
next step, this code can be exchanged to get tokens. OAuth2, as mentioned before,
introduced the notion of Access and Refresh tokens. Access tokens are short-lived
tokens that serve as credentials to access protected resources. On the other hand, Re-
fresh tokens are long-lived ones, who’s purpose is to obtain new access tokens when
they are expired. It is important to mention that the presence of refresh token is
optional, according to the protocol.

OAuth2 also brings in the concept of scopes. The scopes are used to limit the
”power” of tokens. They can be specified during the authorization process and at
the end of the flow the tokens will have the requested scopes associated with them.
Protected resources can have scopes defined for them and only those access token can
retrieve the resources which has the specific scopes required by the resource.

Lastly, the state management is also discussed here. In this case, the specification
explicitly declares a state field7, which can be used to store state information and it
is ensured that this parameter will be returned to the client upon redirection.

B.3 Comparison
This section will provide a brief overview of the two protocols and their relationships8.
As mentioned previously, version 2 is not backwards-compatible and their implemen-
tation is vastly different, even though they set out to solve the same problem. The
second version seems to improve upon the first in almost every aspect. First and
foremost, it eliminates the need of complex cryptographic requirements formulated
by OAuth1 during authorization and accessing resources. OAuth2’s access token can
simply be included in the request without anything else and the resource can be
accessed. Mentioning the cryptographic operations, executing them consumes com-
puting power, especially at scale. In addition, since client credentials are utilised
in every request to make signatures, the resource servers also have to know them
in order to validate the requests. On the contrary,OAuth2 only uses client creden-
tials during the authorization phase. Therefore, scalability favors the second version.
Furthermore, the first version only offered a single way to obtain authorization. In
comparison, OAuth2 lifts this restriction by having four different authorization grants
and the developers can choose whichever fits their needs. Lastly, the tokens are dif-
ferent in each version. While OAuth1 utilises extremely long lived tokens. Once its

7https://datatracker.ietf.org/doc/html/rfc6749#section-4.1.1
8https://www.oauth.com/oauth2-servers/differences-between-oauth-1-2/

110 B Authorization

expired, the user has to be authorized again. OAuth2 solves this issue by introducing
a short-lived and a long-lived token pair. The short-lived access token is used to ac-
cess resources and once it’s expired, the long-lived refresh token can be used to get a
new pair. Thus, the user does not have to be authorized again, only if the long-lived
token also expired due to not using the issued tokens for a longer period of time.

Even tough from this summary it seems like the second version is superior, the first
also has its merits. For instance, assuming that the authentication tokens are stolen
during a communication over the public internet, an attacker cannot do anything
with an OAuth1 token without the secret and other client information. However, the
OAuthh2 token can freely be used to access the protected resource. OAuth1 is still
used in the industry despite its drawbacks. The tech-giant Twitter still offers ways to
authorize with OAuth1 1.0A9. In the end, the use of OAuth2 is advised, because the
first version was marked obsolete. Additionally, it is being constantly developed and
upgraded and with a correct implementation, it can offer a high-level of security[33].

B.4 OAuth libraries
Implementing OAuth authorization is a common requirement when it comes to devel-
opment and there are numerous libraries for every platform. Implementing OAuth
functionalities by hand is error-prone, because the flows are complex and rudimen-
tary implementation without proper testing might lead to unintended bugs. Thus,
well-tested library is necessary. For the Java ecosystem only, there is a wide variety of
libraries available10. Out of the bunch, there are many which are framework specific
or has too many dependencies. One project in particular seems to stand out from
the crowd of libraries that tries to stay framework independent, ScribeJava11. The
library has by far the most amount of stars on GitHub and seems to be the most
popular choice by searching them on popular online communities, such as StackOver-
flow12. The popularity means that it is widely used and has the most support online,
which is a huge benefit when it comes to finding errors. Furthermore, it is a library
that is able to handle OAuth 1.0A as well, which will be useful . Therefore, for its
popularity, lightweight nature and feature set, the library ScribeJava is chosen to be
used during implementation.

9https://developer.twitter.com/en/docs/authentication/oauth-1-0a
10https://oauth.net/code/java/
11https://github.com/scribejava/scribejava
12https://stackoverflow.com/

APPENDIXC
API documentation

This section includes the API documentation for CACHET’s implementation. The
company uses Postman1 as their main API documentation tool, therefore it was done
using their platform. A new collection was created for containing the endpoint de-
scriptions, called Wearables. The Listing C.1 below displays the collection exported
as JSON in the v2.1 format2. This JSON can be imported into a Postman Client and
the collection will be constructed.

The ”item” key contains an array of the endpoints. There are two types in total:
Data Collection and Authorization endpoints. The ”name” field indicates which is
which. Every entry details the exact URI that has to be called with an example
payload if needed and a description of the request.

1 {
2 "info": {
3 "_postman_id": "e685f23c-bc91-4882-a306-c1672f3411ac",
4 "name": "Wearables",
5 "schema": "https://schema.getpostman.com/json/collection/v2.1.0/

collection.json"
6 },
7 "item": [
8 {
9 "name": "Collect Fitbit data",
10 "request": {
11 "method": "POST",
12 "header": [],
13 "body": {
14 "mode": "raw",
15 "raw": "[\n {\n \"collectionType\":\"activities\",\n

\"date\":\"2021-10-26\",\n \"ownerId\":\"9LD6WW\",\n
\"ownerType\":\"user\",\n \"subscriptionId\":\"ricsi

\"\n }\n]",
16 "options": {
17 "raw": {
18 "language": "json"
19 }
20 }
21 },
22 "url": {

1https://www.postman.com/
2https://blog.postman.com/travelogue-of-postman-collection-format-v2/

112 C API documentation

23 "raw": "https://localhost:8444/wearables/api/collection/fitbit",
24 "protocol": "https",
25 "host": [
26 "localhost"
27],
28 "port": "8444",
29 "path": [
30 "wearables",
31 "api",
32 "collection",
33 "fitbit"
34]
35 },
36 "description": "This endpoint endpoint initiates the data collection

process for Fitbit. The body is the official structure of a
ping notification sent by Fitbit. This structure must be
followed if the collection needs to be initiated by hand.\n\n
--------\n\nSuccessful response: \n\n- `204`: No Content.\n\
nUnsuccessful response:\n\n- `500`: Internal Server error, when
the Data Source is not found."

37 },
38 "response": []
39 },
40 {
41 "name": "Collect Garmin data",
42 "request": {
43 "method": "POST",
44 "header": [],
45 "body": {
46 "mode": "raw",
47 "raw": "{\n \"bodyComps\" : [{\n \"userId\" : \"fa70fafa -170a

-4693-8efd-d79379181d92\",\n \"userAccessToken\" : \"5
c26f276-c1f5-4916-81ec-237b9f5cc51a\",\n \"
uploadStartTimeInSeconds\" : 1635176900,\n \"
uploadEndTimeInSeconds\" : 1635176900,\n \"callbackURL\" :
\"https://apis.garmin.com/wellness-api/rest/stressDetails?
uploadStartTimeInSeconds=1634220000&uploadEndTimeInSeconds
=1634221200\"\n }]\n}",

48 "options": {
49 "raw": {
50 "language": "json"
51 }
52 }
53 },
54 "url": {
55 "raw": "https://localhost:8444/wearables/api/collection/garmin",
56 "protocol": "https",
57 "host": [
58 "localhost"
59],
60 "port": "8444",
61 "path": [
62 "wearables",
63 "api",
64 "collection",

C API documentation 113

65 "garmin"
66]
67 },
68 "description": "This endpoint endpoint initiates the data collection

process for Garmin. The body is the official structure of a
ping notification sent by Garmin. This structure must be
followed if the collection needs to be initiated by hand.\n\n
--------\n\nSuccessful response: \n\n- `200`: No Content.\n\
nUnsuccessful response:\n\n- `500`: Internal Server error, when
the Data Source is not found."

69 },
70 "response": []
71 },
72 {
73 "name": "Collect Withings data - specific date",
74 "request": {
75 "method": "POST",
76 "header": [],
77 "body": {
78 "mode": "raw",
79 "raw": "userid=27444008&appli=16&date=2021-10-28",
80 "options": {
81 "raw": {
82 "language": "text"
83 }
84 }
85 },
86 "url": {
87 "raw": "https://localhost:8444/wearables/api/collection/withings",
88 "protocol": "https",
89 "host": [
90 "localhost"
91],
92 "port": "8444",
93 "path": [
94 "wearables",
95 "api",
96 "collection",
97 "withings"
98]
99 },
100 "description": "This endpoint endpoint initiates the data collection

process for Withings. The body is the official structure of a
ping notification sent by Withings. This structure must be
followed if the collection needs to be initiated by hand.\n\n
--------\n\nSuccessful response: \n\n- `200`: No Content.\n\
nUnsuccessful response:\n\n- `500`: Internal Server error, when
the Data Source is not found."

101 },
102 "response": []
103 },
104 {
105 "name": "Collect Withings data - period",
106 "request": {
107 "method": "POST",

114 C API documentation

108 "header": [],
109 "body": {
110 "mode": "raw",
111 "raw": "{\n \"userid\": \"27444008\",\n \"appli\": \"54\",\n

\"startdate\": \"1634824501\",\n \"enddate\":
\"1634770861\"\n}",

112 "options": {
113 "raw": {
114 "language": "json"
115 }
116 }
117 },
118 "url": {
119 "raw": "https://localhost:8444/wearables/api/collection/dexcom",
120 "protocol": "https",
121 "host": [
122 "localhost"
123],
124 "port": "8444",
125 "path": [
126 "wearables",
127 "api",
128 "collection",
129 "dexcom"
130]
131 },
132 "description": "This endpoint endpoint initiates the data collection

process for Garmin. The body is the official structure of a
ping notification sent by Garmin. This structure must be
followed if the collection needs to be initiated by hand.\n\n
--------\n\nSuccessful response: \n\n- `200`: No Content.\n\
nUnsuccessful response:\n\n- `500`: Internal Server error, when
the Data Source is not found."

133 },
134 "response": []
135 },
136 {
137 "name": "Collect Dexcom data",
138 "request": {
139 "method": "POST",
140 "header": [],
141 "body": {
142 "mode": "raw",
143 "raw": "{\n \"user_id\": \"userid\",\n \"data_type\": \"egvs

\",\n \"date\": \"2021-10-25\"\n}",
144 "options": {
145 "raw": {
146 "language": "json"
147 }
148 }
149 },
150 "url": {
151 "raw": "https://localhost:8444/wearables/api/collection/dexcom",
152 "protocol": "https",
153 "host": [

C API documentation 115

154 "localhost"
155],
156 "port": "8444",
157 "path": [
158 "wearables",
159 "api",
160 "collection",
161 "dexcom"
162]
163 },
164 "description": "This endpoint endpoint initiates the data collection

process for Dexcom. This structure must be followed if the
collection needs to be initiated by hand.\n\n--------\n\
nSuccessful response: \n\n- `200`: No Content.\n\nUnsuccessful
response:\n\n- `500`: Internal Server error, when the Data
Source is not found."

165 },
166 "response": []
167 },
168 {
169 "name": "Authorize new user",
170 "request": {
171 "method": "GET",
172 "header": [],
173 "url": {
174 "raw": "https://localhost:8444/wearables/api/authorize/{{

DATASOURCE_ID}}/{{USER_ID}}",
175 "protocol": "https",
176 "host": [
177 "localhost"
178],
179 "port": "8444",
180 "path": [
181 "wearables",
182 "api",
183 "authorize",
184 "{{DATASOURCE_ID}}",
185 "{{USER_ID}}"
186]
187 },
188 "description": "This endpoint is used to start the user

authorization process. After a successful authorization request,
the user will be redirected to the third-party website to give

consent.\n\nParameters:\n\n`DATASOURCE_ID `: The unique
identifier of the Data Source the user should connect to. Values
can be: `fitbit`, `garmin`, `withings`, `dexcom`.\n\n`USER_ID`:
Arbitrary String value that will be the unique identifier of

the user in the system.\n\n--------\n\nSuccessful response: \n\n
- `302`: Redirection\n\nUnsuccessful response:\n\n- `500`:
Internal Server error, when the user with the given id is
already authorized for the given Data Source."

189 },
190 "response": []
191 }
192]

116 C API documentation

193 }

Listing C.1: Postman API documentation.

APPENDIXD
Version Control System

Version controlling helps developers tracking and managing changes during develop-
ment of a software. Version Control System (VCS)s are software tools that helps
developers achieve version control over their projects1. There are many services
available on the market and Git2 is one of the biggest and most widely adopted3

open-source VCS.

The project was developed using GitHub4, which offers repository hosting using
Git for free. Even though I was the only developer on the system, version controlling
was still useful whenever I made a mistake and I needed to roll back to a stable version.
During the development, sensitive information (OAuth secrets) was committed to my
personal repository, thus it cannot be made public, because those could leak from
the commit logs. After removing them, the software was copied to CACHET’s main
GitHub repository without any previous commits and is available on the following
link:

https://github.com/cph-cachet/carp.gardener

1https://www.atlassian.com/git/tutorials/what-is-version-control
2https://git-scm.com/
3https://rhodecode.com/insights/version-control-systems-2016
4https://github.com/

https://github.com/cph-cachet/carp.gardener

118

APPENDIXE
Deployment Guide

E.1 Deployment
This section describes how the current implementation for CACHET should be de-
ployed into the Web Server. Section 5.4.2 detailed how the dokcer-compose.yml file
can be used to fire up an instance of the application along with MongoDB and Rab-
bitMQ instance. This guide shows the actual steps to deploy it.

Prerequisites:

The following requirements have to be met before the application can be deployed.

• The server ought to have Docker Engine installed on it. The installation of
Docker is explained in their documentation1.

• Client-id/Client-secret for OAuth2 and Consumer-key/Consumer-secret for OAuth1
devices must be configured in the profile specific configuration files. The follow-
ing Section E.2 discusses this in detail for each wearable provider.

• The Web Server should open up the ”/wearables/api/*” route for public access.
If there is a reverse proxy installed, it should redirect the requests to the port
8444 where the application will be running.

Deployment process:

• Clone the repository2 to the Web Server if there is Git installed. If not, copy
the code-base to the server.

• Navigate to the docker folder in the carp-implementation package. Execute the
command: docker-compose up. This command starts the ”docker-compose.yml”
and the application, along with the MongoDB and RabbitMQ instances, will
start up using the production profile.

If everything is set up correctly, the docker compose command should be able to
start the application as intended.

1https://docs.docker.com/engine/
2https://github.com/cph-cachet/carp.gardener

120 E Deployment Guide

E.2 Wearable devices setup
This section shows how to set up application on the developer portals for different
wearable devices. Dexcom will not be detailed in this section, because only US-based
developers can register developers account and support real data collection3, therefore
I was not able to create my own account. Fortunately, they provide ”sandbox data”4

to try out their functionalities and imitate ”real” collection and authorization.

E.2.1 Fitbit
Developer portal: https://dev.fitbit.com/apps
To access this website, one should possess a Fitbit Account.

In the ”Register an app” tab, a new application can be created. Figure E.1 illus-
trates the values used in the Fitbit Study.

The significant parts are the Redirect URL and subscriber Endpoint URL fields.
The redirect URL is set to call the callback endpoint of the application, the subscriber
URL is set to call the collection endpoint. Figure E.2 illustrates the final properties.
The client-id and client-secret values need to be copied to the properties file. In
case of Fitbit, there is one more additional value that should be configured, the
verification code. This code will be displayed at the bottom of the picture in the
Verification code section once the application is created. This code must be included
in the properties file along with the others, so the application can handle the Fitbit
subscription verification flow5.

E.2.2 Garmin
Garmin Web APIs are not accessible for the public, it is strictly for business use. To
access the portals, one should have a verified business account registered.

Developer portal: https://developerportal.garmin.com/

On the developer portal a new application can be created. Once it is done, the
consumer-key and consumer-secret will be provided for the user. These two proper-
ties need to be copied to the configuration file. For subscription handling, an other
portal needs to be used.

Application specific portal: https://apis.garmin.com/tools/login

3https://developer.dexcom.com/content/frequently-asked-questions
4https://developer.dexcom.com/sandbox-data
5https://dev.fitbit.com/build/reference/web-api/developer-guide/using-subscriptions

https://dev.fitbit.com/apps
https://developerportal.garmin.com/
https://apis.garmin.com/tools/login

E.2 Wearable devices setup 121

The consumer-key and consumer-secret can be used to access the application spe-
cific configurations. After logging-in, each data type can be individually customized.
For the Technical Study, the configuration of some endpoints can be examined on
Figure E.3 and E.4.

The same way as in Fitbit’s case, the collection endpoint of the application is
configured for each supported data type with the ping system enabled. This way,
Garmin will send ping notifications to the specified URIs.

E.2.3 Withings

Developer portal: https://developer.withings.com/
To access this portal, one should have a Withings account registered.

After login, the application can be created. Figure E.5 shows how my application
was set up for the Technical Study. The important piece here is the Callback URL.
The application’s authorization callback endpoint is configured here.

After the application is set up, the OAuth2 client-id and client-secret is given.
The client-secret is called consumer secret on their portal. These two properties have
to be copied into the configuration file. Figure E.6 displays the final settings.

https://developer.withings.com/

122 E Deployment Guide

Figure E.1: Fitbit application setup.

E.2 Wearable devices setup 123

Figure E.2: Fitbit application settings.

Figure E.3: Garmin callback configuration for data types.

Figure E.4: Garmin ping notification configuration.

124 E Deployment Guide

Figure E.5: Withings application configuration.

E.2 Wearable devices setup 125

Figure E.6: Withings application properties.

126

Acronyms
AMQP Advanced Message Queuing Protocol. 25

API Application Programming Interface. i, 3, 4, 6–13, 15, 17–24, 29, 32, 35, 36,
43–45, 47, 49, 52, 62, 65–68, 72, 73, 78, 79, 81, 91, 95, 99, 109, 111, 120

BASE Basically Available, Soft state, Eventual consistency. 27

CACHET Copenhagen Center for Health Technology. i, v, 2–6, 15–18, 24, 26–28,
30, 31, 39, 48, 52, 54–57, 59, 61, 76, 80–84, 87, 88, 90, 91, 93, 94, 96, 97, 99,
111, 117, 119

CANS Carp Nervous System. 5, 52, 54–56, 76, 77, 82, 85, 87–89, 91, 95, 97

CARP Copenhagen Center for Health Technology Research Platform. 16, 30

DTU Danmarks Tekniske Universitet. 99

HTTP HyperText Transfer Protocol. 7, 18–20, 22, 26, 46, 53, 61, 64, 73, 77, 79, 81,
82

HTTPS Hypertext Transfer Protocol Secure. 96

IETF Internet Engineering Task Force. 108

JSON JavaScript Object Notation. 17–23, 30, 44, 55, 62, 71, 73, 77, 86, 91, 93, 111

JVM Java Virtual Machine. 26

MAC Message Authentication Code. 79

mHealth Mobile Health. 2

NoSQL Not Only Structured Query Language. 27, 28, 77, 86

OAuth Open Authorization. 7, 11, 12, 17–23, 30, 32–34, 36, 38, 39, 42–44, 47, 48,
50, 61–66, 71, 72, 77–79, 81, 84, 85, 87, 89, 91, 92, 96, 97, 107–110, 117, 121

128 Acronyms

OS Operating System. 29

RDBMS Relational Database Management System. 27

REST REpresentational State Transfer. 9, 10, 22

SHA Secure Hash Algorithm. 19, 79

SQL Structured Query Language. 27

UML Unified Modeling Language. 6, 31, 99

URI Uniform Resource Identifier. 17, 18, 22, 35, 37, 41, 44, 50, 54, 65–67, 70, 87,
89, 96, 111, 121

URL Uniform Resource Locator. 17–19, 108, 120, 121

VCS Version Control System. 117

VM Virtual Machine. 29

XML Extensible Markup Language. 20, 22, 28

Bibliography
[1] Tsung-Chien Lu. Using a smartwatch with real-time feedback improves the de-

livery of high-quality cardiopulmonary resuscitation by healthcare professionals.
2019, pages 16–22.

[2] Marco Cipriano. Recent Advancements on Smartwatches and Smartbands in
Healthcare. 2021, pages 117–127.

[3] Bertalan Mesko. “Health IT and digital health: The future of health technology
is diverse.” In: Journal of clinical and translational research 3.Suppl 3 (2018),
page 431.

[4] Bertalan Meskó et al. “Digital health is a cultural transformation of traditional
healthcare.” In: Mhealth 3 (2017).

[5] John Torous et al. “New tools for new research in psychiatry: a scalable and
customizable platform to empower data driven smartphone research.” In: JMIR
mental health 3.2 (2016), e16.

[6] Darius A Rohani et al. “Correlations between objective behavioral features col-
lected from mobile and wearable devices and depressive mood symptoms in
patients with affective disorders: systematic review.” In: JMIR mHealth and
uHealth 6.8 (2018), e165.

[7] Pegah Hafiz et al. “Wearable Computing Technology for Assessment of Cog-
nitive Functioning of Bipolar Patients and Healthy Controls.” In: Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4.4
(2020), pages 1–22.

[8] Kieran Woodward et al. “Harnessing digital phenotyping to deliver real-time
interventional bio-feedback.” In: Adjunct Proceedings of the 2019 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceed-
ings of the 2019 ACM International Symposium on Wearable Computers. 2019,
pages 1206–1209.

[9] Kit Huckvale, Svetha Venkatesh, and Helen Christensen. “Toward clinical digi-
tal phenotyping: a timely opportunity to consider purpose, quality, and safety.”
In: NPJ digital medicine 2.1 (2019), pages 1–11.

[10] Salvatore1 Naddeo et al. “A real-time m-health monitoring system: An inte-
grated solution combining the use of several wearable sensors and mobile de-
vices.” In: Healthinf 2017 (2017), pages 545–552.

130 Bibliography

[11] Frederik Bülthoff and Maria Maleshkova. “RESTful or RESTless - Current State
of Today’s Top Web APIs.” In: CoRR abs/1902.10514 (2019). arXiv: 1902 .
10514. url: http://arxiv.org/abs/1902.10514.

[12] Maria Maleshkova, Carlos Pedrinaci, and John Domingue. Investigating Web
APIs on the World Wide Web.

[13] Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures. 2000.

[14] Mohamad Kassab et al. “Software architectural patterns in practice: an empiri-
cal study.” In: Innovations in Systems and Software Engineering 14 (December
2018). doi: 10.1007/s11334-018-0319-4.

[15] Brett Jones et al. “RabbitMQ performance and scalability analysis.” In: project
on CS 4284 (2011).

[16] Daniela Gotseva, Yavor Tomov, and Petko Danov. “Comparative study Java
vs Kotlin.” In: 2019 27th National Conference with International Participation
(TELECOM). 2019, pages 86–89. doi: 10.1109/TELECOM48729.2019.8994896.

[17] Gjorgji Rankovski and Ivan Chorbev. “Improving Scalability of Web Applica-
tions by Utilizing Asynchronous I/O.” In: ICT Innovations 2016. Edited by
Georgi Stojanov and Andrea Kulakov. Cham: Springer International Publish-
ing, 2018, pages 211–218. isbn: 978-3-319-68855-8.

[18] ANA-GABRIELA BABUCEA. SQL OR NoSQL DATABASES? CRITICAL
DIFFERENCES. 2021.

[19] Shakuntala Gupta Edward and Navin Sabharwal. “Practical Mongodb.” In:
2015, pages 13–23. isbn: 1484206479, 1484206487, 9781484206478, 9781484206485.
doi: 10.1007/978-1-4842-0647-8_2.

[20] Yishan Li and Sathiamoorthy Manoharan. “A performance comparison of SQL
and NoSQL databases.” In: August 2013, pages 15–19. doi: 10.1109/PACRIM.
2013.6625441.

[21] Matúš Sulı́r and Jaroslav Porubän. “A Quantitative Study of Java Software
Buildability.” In: Proceedings of the 7th International Workshop on Evaluation
and Usability of Programming Languages and Tools. PLATEAU 2016. Amster-
dam, Netherlands: Association for Computing Machinery, 2016, pages 17–25.
isbn: 9781450346382. doi: 10.1145/3001878.3001882. url: https://doi.
org/10.1145/3001878.3001882.

[22] Christof Ebert et al. “DevOps.” In: Ieee Software 33.3 (2016), pages 94–100.
[23] Mathijs Jeroen Scheepers. “Virtualization and containerization of application

infrastructure: A comparison.” In: 21st twente student conference on IT. Vol-
ume 21. 2014.

[24] Marek Moravcik et al. “Comparison of LXC and Docker Technologies.” In: 2020
18th International Conference on Emerging eLearning Technologies and Appli-
cations (ICETA). IEEE. 2020, pages 481–486.

https://arxiv.org/abs/1902.10514
https://arxiv.org/abs/1902.10514
http://arxiv.org/abs/1902.10514
https://doi.org/10.1007/s11334-018-0319-4
https://doi.org/10.1109/TELECOM48729.2019.8994896
https://doi.org/10.1007/978-1-4842-0647-8_2
https://doi.org/10.1109/PACRIM.2013.6625441
https://doi.org/10.1109/PACRIM.2013.6625441
https://doi.org/10.1145/3001878.3001882
https://doi.org/10.1145/3001878.3001882
https://doi.org/10.1145/3001878.3001882

Bibliography 131

[25] Erich Gamma. Design Patterns. 1994. isbn: 0201633612.
[26] Barry Leiba. “OAuth web authorization protocol.” In: (2012), page 6123701.

issn: 19410131, 10897801.
[27] E. Hammer-Lahav. “The OAuth 1.0 protocol.” In: (2010).
[28] D. Hardt. “The OAuth 2.0 authorization framework.” In: (2012).
[29] Christian Huber et al. “A secure token-based communication for authentica-

tion and authorization servers.” eng. In: Lecture Notes in Computer Science
(including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 10018 (2016), pages 237–250. issn: 16113349, 03029743. doi:
10.1007/978-3-319-48057-2_17.

[30] Prabath Siriwardena. “OAuth 1.0.” In: Advanced API Security: Securing APIs
with OAuth 2.0, OpenID Connect, JWS, and JWE. Berkeley, CA: Apress, 2014,
pages 75–90. isbn: 978-1-4302-6817-8. doi: 10.1007/978-1-4302-6817-8_6.
url: https://doi.org/10.1007/978-1-4302-6817-8_6.

[31] Eran Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849. 2010. doi: 10.17487/
RFC5849. url: https://rfc-editor.org/rfc/rfc5849.txt.

[32] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. October 2012.
doi: 10.17487/RFC6749. url: https://rfc-editor.org/rfc/rfc6749.txt.

[33] Eugene Ferry, John Raw, and Kevin Curran. “Security evaluation of the OAuth
2.0 framework.” In: Healthinf 2017 (2015), pages 73–101. issn: 2056497x, 20564961.

https://doi.org/10.1007/978-3-319-48057-2_17
https://doi.org/10.1007/978-1-4302-6817-8_6
https://doi.org/10.1007/978-1-4302-6817-8_6
https://doi.org/10.17487/RFC5849
https://doi.org/10.17487/RFC5849
https://rfc-editor.org/rfc/rfc5849.txt
https://doi.org/10.17487/RFC6749
https://rfc-editor.org/rfc/rfc6749.txt

	Abstract
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Background
	1.2 Prior Work
	1.3 Problem statement
	1.4 Research goals and methods
	1.5 Impact - innovation and application
	1.6 Thesis outline

	2 Related Work
	2.1 SHIMMER
	2.2 RADAR-base
	2.3 AWARE
	2.4 Commercial solutions
	2.5 Summary

	3 Analysis
	3.1 Requirements
	3.2 Wearable devices
	3.3 Web APIs
	3.4 Software architecture
	3.5 CANS Implementation
	3.6 Deployment
	3.7 Analysis overview

	4 Design
	4.1 Framework architecture
	4.2 Events
	4.3 Authorization module
	4.4 Data collection module
	4.5 CANS Implementation architecture
	4.6 Deployment process
	4.7 Design overview

	5 Implementation
	5.1 Project structure
	5.2 Framework
	5.3 CACHET's Implementation
	5.4 Deployment and Operation
	5.5 Implementation overview

	6 Evaluation
	6.1 Unit/Integration Tests
	6.2 Technical study
	6.3 Fitbit study with CANS
	6.4 Evaluation overview

	7 Discussion
	7.1 Goals and results
	7.2 Implications
	7.3 Limitations
	7.4 Future Work

	8 Conclusion
	A Figures and Listings
	B Authorization
	B.1 OAuth1
	B.2 OAuth2
	B.3 Comparison
	B.4 OAuth libraries

	C API documentation
	D Version Control System
	E Deployment Guide
	E.1 Deployment
	E.2 Wearable devices setup

	Acronyms
	Bibliography

