
Design, Implementation, and Evaluation of the

Java Context Awareness Framework (JCAF)

Jakob E. Bardram
Centre for Pervasive Healthcare

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark

bardram@daimi.au.dk

DRAFT – April 2005
Date: 2005/06/20 21:07:14 | RCSfile: jcaf.v15.tex,v | Revision: 1.2

Contents

1 Introduction 1
1.1 Goals of the JCAF Platform . 1
1.2 Environmental Assumptions . 2

2 Key Concepts 3
2.1 Context Services . 3
2.2 Entities and Context . 3
2.3 Context Clients . 3
2.4 Context Events . 4

3 The JCAF Runtime Infrastructure 5
3.1 Context Client Layer . 6
3.2 Context Service Layer . 6
3.3 Context Monitor and Actuator Layer 7

4 The JCAF Programming Model 9
4.1 The Context Service API . 9
4.2 Modelling Entity and Context . 10
4.3 EntityListeners and ContextEvent 12

1

List of Figures

3.1 The Runtime Architecture of the JCAF Framework. a – An example of
a deployment situation of a set of context monitors, context actuators,
and a set of cooperating context services. b – Details of a context service. 5

3.2 Interaction Diagram for asynchronous context acqucition using Context
Monitors registered at the Context Service. 7

4.1 The UML diagagram for the Context Service runtime architecture. . . 10
4.2 The UML model of an Entity with a Context containing a range of

ContextItems, each having a certain Relationship to the context. . . 11

2

Abstract

Context-awareness is a key concept in ubiquitous computing. This technical
report described the Java Context-Awareness Framework – JCAF, which is a
Java-based context-awareness infrastructure and programming API for creating
context-aware applications. The report describes:

• The background for JCAF which is research into a context-awareness in-
frastructure in hospitals.

• A system overview, including the key concepts in JCAF.

• The JCAF Architecture.

• The JCAF Programming Model.

Finally, the report provides some examples.

Chapter 1

Introduction

This technical report describes version 1.5 of the Java Context-Awareness Frame-
work – JCAF. JCAF is designed to support Context-Aware Computing and has
come out of our work with the design of context-aware applications in a hos-
pital environment. This background if not discussed in this report – interested
readers are refered to the publication on JCAF [4, 2, 3]. The purpose of this
document is to describe the technical design and implementation of the JCAF
Framework.

This document describes the overall goal of the ABC Framework (section 1.1);
describes the high level architecture of the ABC software system (chapter ??),
including the key concepts; describes the programming model (chapter 4); and
gives some examples of how to use JCAF (chapter ??).

1.1 Goals of the JCAF Platform

A common goal for programming frameworks for context-aware computing is
to enable programmers to easily develop and deploy context-aware applications.
Programmers can focus on modeling and using context information and func-
tionality specific for their application while relying on a basic infrastructure
to handle the actual management and distribution of this information. Re-
quirements for context-awareness systems and/or frameworks have been widely
discussed and described [7, 11, 9, 8, 10, 1, 6, 2].

JCAF incorporates many of the lessons from these previous contributions.
But JCAF is also distinctive in at least three ways: (i) JCAFs service-oriented
infrastructure is a distributed system based on the idea of dividing context
acquisition, management, and distribution in a network of cooperating context
services; (ii) JCAF embodies a general-purpose, robust, modifiable, event-based,
secure architecture; and (iii) JCAF has a generic, extensible, and expressive
Java programming model for the deployment and development of context-aware
applications and context models.

The three distinctive features have emerged out of our analysis of the exist-
ing proposed context-awareness frameworks as well as from our empirical work
within healthcare [2, 5]. The PERVASIVE 2005 paper [4] provides more details
on how JCAF differs from the other related middleware support for context-
aware applications.

1

1.2 Environmental Assumptions

JCAF relies on the existence of a network of reasonable speed connecting com-
puters running and using context services. We assume the latency of the network
is reasonable.

The JCAF system is Java technology-centered. The JCAF architecture gains
much of its simplicity from having the Java programming language as the im-
plementation language. Java serialization, Java RMI, and the ability to dynam-
ically download and run code is central to a number of the features of the JCAF
architecture.

2

Chapter 2

Key Concepts

2.1 Context Services

The most important concept within the JCAF architecture is that of a context
service. A service receive, manage, store, and distribute context information for
entities.

Several context services can cooperate in a peer-to-peer fashion. In this
way dedicated context services can be designed and deployed. For example a
context service may be reponsible for maintaining entities and their context in
an operating room or a context service may be designed and deployed to support
a specific application.

2.2 Entities and Context

An entity models something that you want to manage context information for.
Examples of entities are a person, a patient, a place, a TV, and a PC. Each
entity has a context which is made up of a set of context items each having a
specific relationship to this entity. Hence we can model tuples like ‘Peter uses
his PC’ with the tuple:

(peter:Entity , uses:Relationship , peter’s_pc:ContextItem)

2.3 Context Clients

Context clients can submit context information and can listen to changes in con-
text information for entities. Context clients that specialize in sensing, resolving,
and submitting context information is often called context monitors. Context
clients which are specialized in using context information is often called context
actuators. Monitors and actuators can register at one or more context services
and is notified when they need to provide or use up-to-date context information.

3

2.4 Context Events

The JCAF architecture supports distributed events. A context service allow
special context client (entity listeners) to register interest in events in specific
entities and receive a notification of the occurrence of such an event. The JCAF
programming model also supports type-based subscription, i.e. enabling entity
listeners to subscribe to types of entities, like all patients, persons, or places.
This event mechanism enables distributed event-based programs to be written
with a variety of reliability and scalability guarantees.

4

Chapter 3

The JCAF Runtime
Infrastructure

The JCAF Runtime Infrastructure is illustrated in figure 3.1. Figure 3.1a il-
lustrates a deployment situation with a range of Context Services which are
connected in a peer-to-peer setup, each responsible for handling context in a
specific environment like the operating room. A network of services can cooper-
ate by querying each other for context information. All connections in figure 3.1
are remote and hence all components in JCAF can be distributed in a network.

Figure 3.1: The Runtime Architecture of the JCAF Framework. a – An example
of a deployment situation of a set of context monitors, context actuators, and
a set of cooperating context services. b – Details of a context service.

5

3.1 Context Client Layer

Context Clients are the context-aware applications using the JCAF infrastruc-
ture by accessing one or more context services. Clients can access entities and
their context; they can add or remove context information (and hence work as
a context monitor, see section 3.3); they can add, query for, and use context
transformers; and they can adjust the topology of the context service network.
Clients can access entities and their context information in two ways. Either
following a request-response schema, requesting entities and their context data,
or by subscribing as an Entity Listener, listening for changes to specific entities.
JCAF also supports type-based subscriptions of entity listeners, allowing a client
to subscribe to changes to all entities of a specific type, e.g. patients. Context
clients and entity listeners can access and subscribe to several context services.

3.2 Context Service Layer

Figure 3.1b illustrates the details of a Context Service, which is a long-lived
service process analog to a Web Service, for example. An Entity with its Context
information is managed by the service’s Entity Container. An entity is a small
Java program that runs within the Context Service and responds to changes in
its context. The life cycle of an entity is controlled by the container in which
the entity has been added. The entity container handles subscribers to context
events and notifies relevant clients on changes to entities. An entity, its context
and its life cycle are further discussed in section 4.2.

The Entity components in a Context Service work together and with other
components to accomplish their tasks. Hence they must have ways to access
each other, and to access shared resources. This is the accomplished through
the Entity Environment, which all Entities has a handle to when executing 1.
Besides access to general resources like initialization parameters and logging
facilities, the Entity Environment provides methods for accessing:

• Context Transformers, which are small application-specific Java programs
that a developer can write and add to the Transformer Repository. Cur-
rently the framework contains two type of transformers, namely Trans-
lators, which can translate between one kind of context information to
another, and Aggregators, which can aggregate two types of context in-
formation into one. These can be put together in a chain of transformers
to obtain the desired transformation. The Transformer Repository can be
queried for appropiate transformers on runtime.

• Key-Value Attributes, which are application-specific Java objects accessi-
ble across entities via a key. This can be used to share resources such as
special purpose objects existing only in the environment – e.g. a simple
counter tracking the number of requests from various computers. It can
also be used to access handles (RMI stubs or database connections) to
remote resources – e.g. a handle to an Electronic Patient Records and its
database.

1The Entity Environment is analog to the Web Context in a J2EE Application Server,
where handles to databases, shared objects, and other resources are maintained across servlets.

6

Acces to a Context Service is controlled by a Secure Context Service, which
ensures correct authentication of client requests. This component consists basi-
cally of two parts, namely an access control list, specifying what the requesting
clients can access, and mechanisms for authenticating the client.

3.3 Context Monitor and Actuator Layer

There are two special kinds of context clients: the Context Monitor and the
Context Actuator. A monitor is a client specially designed for acquiring context
information in the environment by cooperating with some kind of sensor equip-
ment, and associate it properly with an entity. A context actuator is a client
designed to work together with one or more actuators to affect or ‘change’ the
context.

The JCAF framework can handle the acquisition and transformation of con-
text information in two modes. In the asynchronous mode monitors constantly
deliver context information to one or more context services, which then can
notify listeners or be queried. In the synchronous mode, the monitor is asked
to sense context information. This is done when the context information for an
entity is requested by a client. In this case, monitors associated with this con-
text information are asked to refresh their context information. A user’s current
activity according to his calendar is an example where the activity monitor asks
the calendar about the activity at the time of calling.

The interaction diagram in figure 3.2 illustrates the dynamics of this syn-
chronous mode. First, a monitor registers itself at a context service by indicat-
ing what type of context information it can provide. When a client, who is an
Entity Listener, is requesting context information by using the getContext()
method, then relevant registered context monitors are called to acquire context
information by calling their getContextItem() method. To avoid deadlocks
(e.g. if the calendar system does not answer), the getContext() method starts
a separate thread to handle monitors and returns immediately with whatever
context information is available currently. When the Context Monitors starts
reporting back (which might take some time), then clients are notified using the
contextChanged() method in the EntityListener interface.

Figure 3.2: Interaction Diagram for asynchronous context acqucition using Con-
text Monitors registered at the Context Service.

7

Similarly, Context actuators can register at a context service by specifying
what type of context items it is an actuator for. When a context item is changed
in the context service (i.e. the contextChanged() method is triggered), then
all context actuators registered as interested in this type of context item are
notified with information about this new context information. This can, for
example, be used to keep context information synchronized across a distributed
network of JCAF components and applications.

8

Chapter 4

The JCAF Programming
Model

The JCAF programming model enables the programmer to create context-aware
applications that are deployable in the JCAF infrastructure. The infrastructure
both enables the programming model and makes use of it. The most important
parts of the programming model is how to use the API of the context services,
how to model context information for entities, and how to make use of the
event-based infrastructure of JCAF.

4.1 The Context Service API

Figure 4.1 shows the UML diagram for the runtime infrastructure for context
services.

The ContextService interface has methods for adding, removing, getting
and setting entities. The getEntity() method returns the service’s copy of
an entity object, whereas the lookupEntity() method contacts other known
services trying to locate the entity object. The lookupEntity() method takes as
arguments the id of the entity to look for, the maximum number of allowed hops
between services in the search, and an DiscoveryListener which is called when
the entity is discovered. The method is non-blocking and relies on notifying the
discovery listener if a matching entity is found.

Embedded in the context service’s API are the APIs for the TransformerRepository,
containing methods for adding and getting transformers, and the ContextClientHandler
interface, containing methods for adding and authenticating a clients, includ-
ing context monitors and actuators. The EntityListenerHandler interface
contains methods for adding, removing, and accessing entity listeners (see sec-
tion 4.3). The EntityEnvironment is shared by all entities in a service and
has methods for setting and getting attributes, accessing information about the
local context service, and accessing the transformer repository.

9

Figure 4.1: The UML diagagram for the Context Service runtime architecture.

4.2 Modelling Entity and Context

Context modeling in JCAF is done by making object-oriented models in Java.
The core modeling interfaces provided by JCAF are the Entity, Context,
Relation, and ContextItem interfaces. JCAF provides default implementa-
tions of these core interfaces. For example the GenericEntity class implements
the Entity interface and can be used to create concrete entities using special-
ization. These are illustrated in figure 4.2.

Persons, places, things, patients, beds, pill containers, etc. are examples of
entities. A Hospital Context and a Office Context, each knowing specific aspects
about a hospital and an office, respectively, are examples of context. Physical
location, activity as revealed by a user’s calendar, and the status of an operation
are examples of context items. Examples of relations are ‘using’ or ‘located’.
Hence, we can model that ‘personX is located in room.333’ where personX is
the Entity, located is the relation, and room.333 is the context item.

The JCAF framework can handle the acqucition and transformation of con-
text information in two ways – synchronously and asynchronously. A context
monitor can continously supply context information (i.e. items) to an entity. For
example, a location monitor can update the location of an entity when it sees
it. A client requesting the context information for an entity will received the
latest location information. This is called asynchronous context management,
because the client and the monitors (in general all clients) work independent
of each other. The asynchronous mode is the prevalent mode in the JCAF
framework. However, some context-aware applications might want to have up-

10

Figure 4.2: The UML model of an Entity with a Context containing a range
of ContextItems, each having a certain Relationship to the context.

to-date context information. Therefore, the JCAF framework also supports the
synchronous mode, where a client requests the context for an entity, and the
entity asks its context to refresh itself. A user’s current activity according to
his calendar is an example, where the activity monitor asks the calendar about
the activity at the time of calling. The synchronous mode is clearly vunable for
deadlocks – e.g. the client may newer return from a call if the calendar system
does not answer. This mode should hence be used with caution.

The central processing part of an Entity is its contextChanged() method
in the EntityListener interface. This method is garanteed to be called by the
entity container whenever this entity’s context is changed. This is a very power-
full way to implement functionality handling changes in the entity’s context and
thereby create some logic, which translates such changes into meaningful activi-
ties for users of the application. For example, we can make the TV react when a
person is approaching it by adding the following code to its contextChanged()
method:

public void contextChanged(ContextEvent event) {
//TODO

}

The contextChanged() method is called if the TV’s context is changed.
This happens if the TV’s own context is changed, or if the context of the Person
changes. Hence, the contextChanged() method is called rescursively down the
line of entities embedded in each other’s context. In the example above ...
TODO!

The ContextItem interface is shown below. It is important to be able to
judge the quality of a context item [10]. For example, how accurate is the
location estimate. The getAccuracy() method is used for this purpose. Im-
plementations of a context items returns a probability between zero and one.
The isSecure() method is used to establish whether this context information
originates from a trusted and authenticated context monitor.

11

public interface ContextItem extends Serializable {
public long getSequenceID();
public boolean isSecure();
public double getAccuracy();
public boolean equals(ContextItem anotherItem);

}

A subtle, but rather important aspect of entities is that they themselves are
context items. Hence, in JCAF it is possible to add an entity as a context item
for another entity. For example, in a Bang and Olufsen Home entertainment
project we needed to model that a person is using a certain A/V equipment,
like a TV or Radio. In JCAF both persons as well as the A/V equipment were
modeled as entities and it was hence easy to model that “personA was using
TVx” by adding TVx to the context of personA with a using relation.

4.3 EntityListeners and ContextEvent

The event-based architecture of JCAF is supported by the EntityListener in-
terface and the ContextEvent class in the programming model. By implement-
ing the EntityListener interface a client can subscribe to changes in context
for an entity. Entity listeners can subscribe to changes in a specific entity or
can subscribe to changes in a specific type of entities. For example, an entity
listener can listen to all person entities. Clients interested in listening to context
changes can implement the EntityListener interface shown below.

public interface EntityListener {
public void contextChanged(ContextEvent event);

}

Entities themselves are aware of changes to their context by implementing
the EntityListener interface (see figure 4.2). The central processing part of
an entity is hence its contextChanged() method. This method is guaranteed
to be called by the entity container whenever this entity’s context is changed.
This is a very powerful way to implement functionality handling changes in the
entity’s context and thereby create logic, which translates such changes into
meaningful activities for users of the application. The ContextEvent object
is a standard java.util.EventObject that gives access to the entity and the
context item, which caused the change. A RemoteEntityListener interface
exists as well, enabling clients to listen on changes to Entities in a remote
context service process. This remote entity listener interface is also used across
context services, thereby enabling one context service to listen to changes on
entities in another context service. In the example where a special ‘operating
context service’ is deployed in a hospital, this context service would listen to
changes concerning e.g. persons who are in the operating room. Hence, in the
AWARE framework developed on top of JCAF (see section ??), this operation
context service would listen to changes to the context of the operating surgeon
and may take appropriate actions, like revealing that he is busy operating or
forward emergency calls only.

12

Acknowlegments

The Danish Center of Information Technology (CIT) and ISIS Katrinebjerg
funded this research. Henrik Bærbak Christensen was much involved in the
early discussion on contet-awareness in hospitals.

13

Bibliography

[1] Gregory D. Abowd. Software engineering issues for ubiquitous computing.
In Proceedings of the 21st international conference on Software engineering,
pages 75–84. IEEE Computer Society Press, 1999.

[2] Jakob E. Bardram. Applications of ContextAware Computing in Hospital
Work – Examples and Design Principles. In Proceedings of the 2004 ACM
Symposium on Applied Computing, pages 1574–1579. ACM Press, 2004.

[3] Jakob E. Bardram. From Desktop Task Management to Ubiquitous
Activity-Based Computing. In Victor Kaptelinin and Mary Czerwin-
ski, editors, Integrated Digital Work Environments: Beyond the Desktop
Metaphor. MIT Press, 2005. To appear.

[4] Jakob E. Bardram. The Java Context Awareness Framework (JCAF) –
A Service Infrastructure and Programming Framework for Context-Aware
Applications. In Hans Gellersen, Roy Want, and Albrecht Schmidt, editors,
Proceedings of the 3rd International Conference on Pervasive Computing
(Pervasive 2005), volume 3468 of Lecture Notes in Computer Science, pages
98–115, Munich, Germany, May 2005. Springer Verlag.

[5] Jakob E. Bardram and Thomas R. Hansen. The AWARE architecture:
supporting context-mediated social awareness in mobile cooperation. In
Proceedings of the 2004 ACM conference on Computer supported coopera-
tive work, pages 192–201. ACM Press, 2004.

[6] L. Capra, W. Emmerich, and C. Mascolo. CARISMA: Context-Aware
Reflective mIddleware System for Mobile Applications. IEEE Transactions
on Software Engineering, 29(10):921–945, October 2003.

[7] Anind Dey, Gregory D. Abowd, and Daniel Salber. A conceptual frame-
work and a toolkit for supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction, 16:97–166, 2001.

[8] Karen Henricksen and Jadwiga Indulska. A software engineering framework
for context-aware pervasive computing. In Proc. PerCom’04. IEEE, 2004.

[9] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Model-
ing context information in pervasive computing systems. In Mahmoud
Naghshineh and Friedemann Mattern, editors, Proceedings of Pervasive
2002: Pervasive Computing : First International Conference, volume 2414
of Lecture Notes in Computer Science, pages 167–180, Zrich, Switzerland,
August 2002. Springer Verlag.

14

[10] Jeffrey Hightower, Barry Brumitt, and Gaetano Borriello. The location
stack: A layered model for location in ubiquitous computing. In Pro-
ceedings of the Fourth IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA’02). IEEE Computer Society Press, 2002.

[11] Fritz Hohl, Lars Mehrmann, and Amen Hamdan. A context system for a
mobile service platform. In H. Schmeck, T. Ungerer, and L. Wolf, editors,
Proceedings of ARCS 2002: Trends in Network and Pervasive Computing,
volume 2299 of Lecture Notes in Computer Science, pages 21–33, Karslruhe,
Germany, March 2002. Springer Verlag.

15

