
����������
�������

Citation: Bardram, J.E. Software

Architecture Patterns for Extending

Sensing Capabilities and Data

Formatting in Mobile Sensing.

Sensors 2022, 22, 2813. https://

doi.org/10.3390/s22072813

Academic Editor: Christoph M.

Friedrich

Received: 16 February 2022

Accepted: 31 March 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Software Architecture Patterns for Extending Sensing
Capabilities and Data Formatting in Mobile Sensing
Jakob E. Bardram

Department of Health Technology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark;
jakba@dtu.dk

Abstract: Mobile sensing—that is, the ability to unobtrusively collect sensor data from built-in
phone and attached wearable sensors—have proven to be a powerful approach to understanding
the behavior, well-being, and health of people in their everyday life. Different platforms for mobile
sensing have been presented and significant knowledge on how to facilitate mobile sensing has
been accumulated. However, most existing mobile sensing platforms only support a fixed set
of mobile phone and wearable sensors which are ‘built into’ the platform’s generic ‘study app’.
This creates some fundamental challenges for the creation and approval of application-specific
mobile sensing studies, since there is little support for adapting the sensing capabilities to what
is needed for a specific study. Moreover, most existing platforms use their own proprietary data
formats and there is no standardization in how data are collected and in what formats. This poses
some fundamental challenges to realizing the vision of using mobile sensing in health applications,
since mobile sensing data collected across different phones and studies cannot be compared, thus
hampering generalizability and reproducibility across studies. This paper presents two software
architecture patterns enabling (i) dynamic extension of mobile sensing to incorporate new sensing
capabilities, such as collecting data from a wearable sensor, and (ii) handling real-time transformation
of data into standardized data formats. These software patterns are derived from our work on
CARP Mobile Sensing (CAMS), which is a cross-platform (Android/iOS) software architecture
providing a reactive and unified programming model that emphasizes extensibility. This paper
shows how the framework uses the two software architecture patterns to add sampling support for
an electrocardiography (ECG) device and support data transformation into the new Open mHealth
(OMH) data format. The paper also presents data from a small study, demonstrating the robustness
and feasibility of using CAMS for data collection and transformation in mobile sensing.

Keywords: mobile computing; mobile sensing; wearable sensing; mobile health; mHealth; digital
phenotyping; Open mHealth; electrocardiography; ECG

1. Introduction

Mobile sensing enables unobtrusive collection of sensor data from build-in phone
sensors and attached wearable sensors. It has been shown that indicators of behavioral,
social, psychological, and health status can be derived by collecting continuous and real-
world data and applying advanced algorithms to it [1]. A wide range of research studies
have applied mobile sensing to health and wellness applications [2], including, for exam-
ple, the EmotionSense [3], BeWell [4], and StudentLife [5] systems that classify physical
activity, sleep, and social interaction based on sensor data. Similarly, a number of mobile
health (mHealth) applications for mental health have been proposed [6], and studies have
demonstrated correlations and predictive power between phone-based features on physical
activity, mobility, social activity, phone usage, and voice data on the one hand, and mental
health symptoms in, for example, depression [7], bipolar disorder [8,9], and schizophre-
nia [10] on the other.

Sensors 2022, 22, 2813. https://doi.org/10.3390/s22072813 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072813
https://doi.org/10.3390/s22072813
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1390-8758
https://doi.org/10.3390/s22072813
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072813?type=check_update&version=1

Sensors 2022, 22, 2813 2 of 20

To support easy configuration and the deployment of mobile sensing studies, a number
of mobile sensing platforms and programming frameworks have been proposed. These
aim at providing more general-purpose support for mobile sensing, including support for
the configuration of sampling protocols, accessing low-level sensor data, and handling and
storing these data (see Kumar et al. [11] for a review). Most of this research has focused on
providing easy-to-use platforms for the collection of data from mobile phones and storing
this in a cloud-based infrastructure. These platforms typically have the options to configure
a sampling protocol (or ‘study’), enroll a set of participants, deploy the study onto the
participants’ mobile phones and automatically collect data in a cloud infrastructure, which
can be accessed from a web portal. Contemporary examples of this approach include Purple
Robot [12], Sensus [13], the AWARE Framework [14], the Beiwe Research Platform [15],
mCerebrum [16], RADAR-base [17] and LAMP [18], which all are quite elaborate and
mature platforms. These platforms are designed for research and target experimental
behavioral researchers as end-users; the goal is to allow researchers to easily configure
a study, enroll participants, deploy the study on the participants’ phones, and collect the
data automatically with as little interaction with participants as possible.

In our research we have, however, identified three other types of requirements for
mobile sensing that such platforms would need to support. First, often there is a need
for designing a custom app for a particular domain and patient group, and to be able to
add support for mobile and wearable sensing to such special-purpose apps. Often the
motivation for participants to engage in these studies relies on that “there’s something in it
for them” [19], which again means that the app should not be designed with the researcher
in mind, but the participant. Most of the mobile sensing platforms provide a ‘standard’ app
for the participants, with limited support for customization. Rather than such a standard
app, there is a need to have a mobile and wearable sensing programming framework that
allows researchers to easily add relevant data sampling to a special-purpose app during
design and implementation. Second, there is an increasing focus on privacy in the collection
of data from users. The European Union (EU) General Data Protection Regulation (GDPR)
stipulates that only data which are strictly needed for a study must be collected. The recent
strict privacy policies of the App Stores (Apple and Google) state that they do not approve
and publish apps that make use of extensive passive sensing, if data are not used in the
app and shown to the user. For example, if your app is not using and showing location to
the user, the app is not allowed to collect location data. Most of the existing platform apps
collect a fixed set of data types, and even if the collection of a data type can be disabled on
runtime in a study configuration, the app still declares that it is collecting this type of data.
Therefore, there is a need to be able to flexibly add and remove sensing of different data
types from an application-specific app in order to make it legal according to GDPR and
to get it approved in the App Store. Third, there is a need for standardization in mobile
sensing. This includes both how a study protocol is defined, how data are collected, and not
least the format of the data collected. Currently, each mobile sensing platform uses its own
proprietary study configuration and data format. This hampers cross-study comparison,
replicability, and the collection of large compatible datasets for analysis. Moreover, in
the medical domain, a wide range of standards are available and the collection of mobile
sensing data in the health domain need to support such medical data standards. Therefore,
there is a need to support different data formats in mobile sensing.

This paper presents two software architecture patterns [20] that address these three
requirements by showing how a programming framework for mobile sensing can support
dynamic extensibility of data sensing capabilities and for data transformation and format-
ting. These two design patterns are named ‘Sampling Package’ and ‘Data Transformer’
and are presented in Sections 2 and 3, respectively. The presentation of the patterns loosely
follows the Design Pattern book [21] by stating the pattern’s name, classification, intent,
motivation, applicability, structure, dynamic behavior, and consequences. The patterns
have been derived from, and implemented in, the CARP Mobile Sensing (CAMS) program-
ming framework [22] CARP Mobile Sensing (CAMS) is part of the CACHET Research

Sensors 2022, 22, 2813 3 of 20

Platform (CARP) platform [23], where CAMS is the mobile sensing components of CARP.
CAMS is implemented in Flutter using the Dart programming language, and the exam-
ples provided in Sections 2 and 3 are therefore written in Dart. By using the ‘Sampling
Package’ and ‘Data Transformer’ patterns, CAMS becomes highly extensible in a number
of ways: it allows for implementing new data sampling methods (including both phone
sensing, external wearable devices, and cloud-based services); it supports the creation of
new data transformers (both for privacy reasons and data standards), and it allows for
creating custom data managers, which can upload data in a specific format to specific
servers, or other kinds of data off-loading. The patterns are exemplified by showing how
they are used to extend CAMS to collect data from an electrocardiography (ECG) device
and to support data in the Open mHealth (OMH) data format [24,25]. The paper also
demonstrates the feasibility of the sampling package and data transformation patterns
by reporting from a study where mobile sensing data are collected via different sampling
packages and transformed into the OMH data format before storage.

2. The ‘Sampling Package’ Software Architecture Pattern

The ‘Sampling Package’ pattern can be used to specify what data to be collected, the
format of this data, and how data are acquired, including the use of devices or sensors.
A sampling package typically handles a collection of related measure types. For example,
a ‘connectivity’ sampling package can collect data on connectivity status, wifi, and blue-
tooth. The ‘Sampling Package’ pattern is both a structural and behavioral pattern, which
defines the structure of the packages and its associated classes plus its dynamic behavior
when used in mobile sensing.

2.1. Motivation and Application

Different mHealth applications using mobile sensing will need to collect different types
of data from different devices, and these data types are not known to the mobile sensing
framework. Therefore, there is a need for supporting the future addition of collecting data.
Moreover, an mHealth app which is to be released in an app store (e.g., Apple App Store or
Android Play) needs to declare what data it is collecting, such as location data. However,
if the collection of location data were ‘built into’ the mobile sensing framework, then all
apps would need to declare that they were collecting location—even though they were not.
With the current strict privacy rules in the app stores, this would lead the app to be rejected.
Therefore, an app—and hence the sensing framework—needs to include and hence declare
only those data types which are actually used.

The ‘Sampling Package’ pattern solves three problems; (i) encapsulation of the collec-
tion of different but related data types; (ii) specification of data types and how they are
collected, e.g., using a dedicated device; and (iii) dynamic loading and use of relevant data
sampling specified in the study protocol.

2.2. Structure

The sampling package unified modelling language (UML) class diagram is illustrated
in Figure 1. A sampling package implements the following classes:

• SamplingPackage—the overall specification of the packages, specifying which mea-
sures it can collect (dataTypes), what device type it supports, the device manager for
its device, and the list of operating system (OS) permissions needed for this package.

• DeviceManager—specifies how a device is managed. Note that a device may be the
smartphone itself or an external device, such as an ECG sensor. Each sampling package
only handles one device type but several probes can use the same device.

• Probe—the concrete implementation of the collection of data of a specific type from
the underlying OS, connected devices, or external services. Data are streamed from
the probe as DataPoints in the data stream.

• DeviceConfiguration—configuration of the device for this study.
• Data—specifies the format of the data collected and the data itself.

Sensors 2022, 22, 2813 4 of 20

List<DataType> dataTypes
DeviceType deviceType
DeviceManager deviceManager
List<Permission> permissions

void onRegister()
Probe create(DataType)

SamplingPackage

List<DataType> supportedDataTypes
DeviceStatus status

DeviceManager

void configure(DeviceConfiguration)
bool canConnect()
void connect()
void disconnect()

List<DeviceManager> devices

DeviceRegistry

DeviceManager createDevice(DeviceType)
void registerDevice(DeviceManager)
bool supportsDevice(DeviceType)
DeviceManager getDevice(DeviceType)
void unregisterDevice(DeviceType)

dataTypes => [“dk.cachet.carp.movisens”]
deviceType => “dk.cachet…..devices.MovisensDevice”
deviceManager => MovisensDeviceManager

MovisensSamplingPackage

create(String type) => MovisensProbe

status => movisens.status

MovisensDeviceManager

void onConfigure(MovisensDeviceConfiguration)
bool canConnect()
void onConnect()
void onDisconnect()

List<SamplingPackage> packages
List<Permission> permissions

SamplingPackageRegistry

void register(SamplingPackage)

1

*

1

*

1

1 DeviceManager manager
DataType type
ProbeState state
Measure measure
Stream<DataPoint> data

Probe

void initialize(Measure)
void resume()
void pause()
void restart()
void stop()

data => movisens.movisensStream

MovisensProbe

void onInitialize(Measure)
void onResume()
…

DataType type
String roleName

DeviceConfiguration

Json toJson()
void fromJson(json)

DataFormat format
UUID id
DateTime timestamp

Data

Json toJson()
void fromJson(json)

String address
String deviceName
int weight
int age
Gender gender
BodyLocation location

Movisens
DeviceConfiguration

format =>MovisensSamplingPackage.MOVISENS

MovisensData

format => MovisensSamplingPackage.HR
int hr

MovisensHRData

1

*

Figure 1. The static UML diagram of the sampling package pattern with the Movisens device as
an example. *: Multiplicity.

Figure 1 also illustrates how these classes are implemented (specialized) as part of the
MovisensSamplingPackage The Movisens EcgMove4 is a wearable movement and ECG
monitor. The Movisens package can collect data of the type ‘dk.cachet.carp.movisens’,
supports the ‘dk...MovisensDevice’ device type via the MovisensDeviceManager, and
can create a MovisensProbe, which uses the Movisens Android libraries to collect Movisens
data objects, including heart rate (HR) data.

Figure 2 illustrates the dynamic behavior of the sampling package pattern. First,
the sampling package is registered in the SamplingPackageRegistry, which in turn will
register the package’s device manager in the DeviceRegistry. The StudProtocol contains
a specification of what measures to collect on and what devices to use (see Section 4.1 for
details on how a study protocol is defined). A StudyExecutor is responsible for executing
a study as defined in the study protocol. The study executor is configured from the study
protocol, which in turn configures the device manager for each device specified in the
protocol. When the executor is initialized, it iterated through the list of measures and
uses the SamplingPackageRegistry to lookup and create probes for each data type that a
measure specifies. Each probe is initialized with its measure. When the executor is resumed,
each of its probes is resumed, which looks up the device in the DeviceRegistry, which
then is used to collect the data points. Each data point is added to the data stream of the
probe, and all data streams from all probes are aggregated in the executor.

Sensors 2022, 22, 2813 5 of 20

SamplingPackage
Registry DeviceRegistryStudyExecutor

Probe

for all measures

create(measure.type)

onInitialize(measure)

initialize()

Study
Protocol

resume()

for all probes

onResume()

DeviceManager

getDevice()

getDatum()

configure()

for all devices

configure(configuration)

SamplingPackage

register(package)
register(device)

Figure 2. The UML interaction diagram of the sampling package pattern.

2.3. Example

In the following, we shall use the Movisens sampling package as an example of a
sampling package that defines how to collect data from the Movisens ECG device. Listing 1
shows the most important part of the Movisens sampling package implementation. The
package defines what data types it supports (in this case only the MOVISENS data type),
the device type, and what OS-level permissions it needs (these details are not listed, but
include access to Bluetooth). The onRegister callback implementation is presented later,
and the create method creates a new MovisensProbe, which is shown in Listing 2.

Listing 1. Definition of the Movisens sampling package.

class MovisensSamplingPackage implements SamplingPackage {
static const String MOVISENS = "dk.cachet.carp.movisens";

List <String > get dataTypes => [MOVISENS];
String get deviceType => MovisensDevice.DEVICE_TYPE;
DeviceManager get deviceManager => MovisensDeviceManager ();
List <Permission > get permissions => [...]; // details omitted

void onRegister () {
// call -back on registration

}

/// Create a [MovisensProbe].
Probe? create(String type) => (type == MOVISENS) ? MovisensProbe () : null;

}

The MovisensProbe is implemented using a StreamProbe, which can handle data
coming from a stream of data points. The StreamProbe handles the life cycle of a probe (i.e.,
initialize, resumed, pause, restart, and stop) and the MovisensProbe merely has to provide
the stream of data as Data objects. This is done by listening on the stream of Movisens
data coming from the Movisens device manager (accessed as deviceManager.movisens.

Sensors 2022, 22, 2813 6 of 20

movisensStream), and map the incoming events to the MovisensData data format. The
MovisensDeviceManager implements the connection to the Movisens device using a Mo-
visens Flutter plugin. The Movisens device manager is configured using a MovisensDevice
Configuration, which is defined in the study protocol. This device configuration specifies
details of the Movisens device, including its Bluetooth Low Energy (BTLE) address, name,
location, and details on the user such as age, height, and weight (used for the calcula-
tion of metabolic level). The Movisens device manager implements the attributes and
methods shown in Figure 1, including status, and the life-cycle methods onConfigure(),
canConnect(), onConnect(), and onDisconnect(). These call-back methods uses the Mo-
visens Flutter plugin to configure, connect, and disconnect to/from the Movisens device.

Listing 2. Definition of the Movisens probe.

class MovisensProbe extends StreamProbe {
MovisensDeviceManager get deviceManager =>

super.deviceManager as MovisensDeviceManager;

Stream <MovisensData > get stream =>
deviceManager.movisens.movisensStream

.map((event) => MovisensData.fromMap(event))
}

2.4. Consequences

The sampling package pattern allows the design of a mobile sensing framework that is
born ‘empty’, i.e., a framework that does not support any sensing probes, devices, or data
types. The application programmer can then include only those sampling packages and
hence data types which are needed for a specific app. For example, as further presented
below, CAMS only have two built-in sampling packages (the sensor and device packages).
The remaining packages are external to CAMS and are only included and linked if an
application needs them. This is illustrated in Section 4.2, where the included packages are
shown in green whereas the external packages are shown in purple. This modular design
of CAMS has a number of benefits, including decreasing app size, reducing dependencies
to only those packages needed, not having to ask the user for permission to access data
sources that are not used, and—not least—that the app developer can reduce the privacy
permissions during approval of the app in the App Stores. The sampling package concept
also provides a strong modularization model for adding external devices to an app. As
illustrated above, the real-time ECG data collection from the Movisens EcgMove4 device
is implemented as a separate sampling package, which encapsulates the low-level details
of handling this device and its data formats. Similarly, support for collecting sensor data
from the eSense wearable computing platform [26] have been implemented as a separate
sampling package which can collect the button press, accelerometer, and gyroscope sensor
events from the eSense device [27].

3. The ‘Data Transformer’ Software Architecture Pattern

The ‘Data Transformer’ pattern can be used to specify how data are transformed from
one format to another. This includes transformation from the format data are collected in,
to standard data formats for mHealth applications such as the OMH or Fast Healthcare
Interoperability Resources (FHIR) formats. However, transformation can also support
privacy by obfuscating or encrypting data. Data transformation can be linked to a sampling
package, which can provide so-called ‘transformers’ for the data types it collects. For
example, a ‘communication’ sampling package which can collect data on SMS messages,
calendar entries, and phone calls can provide a set of default ‘privacy’ transformers which
removes sensitive data from the collected communication data, such as message content,
phone numbers, attendees in calendar entries, and so forth. Data transformation can
be linked so that several transformers can be chained. In this way, data can first be
obfuscated to preserve privacy and then transformed to the OMH format. The ‘Data

Sensors 2022, 22, 2813 7 of 20

Transformer’ pattern is mainly a behavioral pattern, which defines the dynamic behavior
of data transformation across several transformers when used in mobile sensing.

3.1. Motivation and Application

Data transformation addresses several issues in mobile sensing. First, different
mHealth applications using the data collected by mobile sensing might need to use different
data formats, both locally in the app and when storing this data. This also include different
data storage solutions—such as cloud-based infrastructures—which expects data to be
uploaded in a specific format. For example, if you want to store data in the Open mHealth
Storage Endpoint, you need to upload data in the OMH format. Second, in order to pre-
serve users’ privacy at the source, i.e., on the phone, local data transformation in terms of
obfuscation and encryption might be needed. Third, an application may need to enrich the
collected data with additional, supplementary data which is not part of the data collection
supported in the mobile sensing framework. This can be achieved by transforming the
data by adding additional information. For example, by adding location information as a
geo-tag to a survey, thereby recording where the user filled in the survey.

3.2. Structure

The central part of the Data Transformer pattern is the DataTransformer function that
can transform one piece of Data into another. Listing 3 shows the type definition of the
DataTransformer function.

Listing 3. The type definition of the DataTransformer function.

typedef DataTransformer = Data Function(Data);

The UML class diagram for the Data Transformer pattern is illustrated in Figure 3,
showing the following classes:

• DataTransformerSchema—a data transformer schema contains a set of data trans-
formers, which can transform data within a specific name space. Specific schemes
for specific name spaces inherent from the DataTransformerSchema, such as an OMH,
FHIR, and privacy schemes;

• TransformerSchemaRegistry—a transformer schema registry holds a set of data trans-
former schemes, such as the ones shown in the class diagram;

• DataTransformerFactory—a data transformer factory knows how to create a trans-
former. A transformer factory can be any function anywhere in the code. How-
ever, as illustrated in Figure 3, it is common that the ‘new’ data class itself im-
plements its own factory, thus knowing how to transform data. For example, the
OMHHeartRateDataPoint factory method transformer implements the transforma-
tion from CARP HR data to OMH HR data points.

Figure 3 also illustrates how any ‘new’ data item that a transformer can produce
inherits (is a) Data class itself. This applies for the OMHHeartRateDataPoint, OMHStepCount
DataPoint, FHIRHeartRateObservation, and all other ‘new’ data types. This implies
that a newly transformed data object can be feed to another transformer and further
transformed, thereby enabling a chain of transformers (similar to the pipes-and-filter
software pattern [20]).

Sensors 2022, 22, 2813 8 of 20

List<DataTransformerSchema> schemas

TransformerSchemaRegistry

void register(DataTransformerSchema)
DataTransformerSchema lookup(NameSpace)

NameSpace namespace
List<DataTransformer> transformers

void onRegister()
void add(DataType, DataTransformer)
Data transform(Data)

DataTransformerSchema

namespace => NameSpace.CARP

CARPTransformerSchema

namespace => NameSpace.OMH

OMHTransformerSchema

namespace => NameSpace.FIHR

FIHRTransformerSchema

namespace => “privacy”

PrivacyTransformerSchema

1

*

DataTransformer transformer

DataTransformerFactory

DataFormat format => “omh.heart-rate”

DataTransformer transformer => ((data) => …)

OMHHeartRateDataPoint

DataFormat format => “omh.step-count”

DataTransformer transformer => ((data) => …)

OMHStepCountDataPoint

DataFormat format => “fhir.observation-vitalsigns”

DataTransformer transformer => ((data) => …)

FHIRHeartRateObservation

DataFormat format
…

Data

Json toJson()
void fromJson(json)

Figure 3. The UML class diagram of the ‘Data Transformer’ pattern with the HR data from the Mo-
visens device being transformed into the OMH and FHIR data formats as an example. *: Multiplicity.

The dynamic behavior of the data transformer pattern can be divided into two phases:
(i) setup and (ii) transformation. Figure 4 illustrates the setup phase. Setup is typically
performed in the sampling package upon registration. For each name space, a transformer
schema is looked up in the transformer schema registry, and a transformer for relevant
data types are added to each schema. Figure 4 shows an example from the Movisens
sampling package, which adds three transformers: (i) one that can transform CARP HR
data into OMH HR data points, (ii) one that can transform CARP pedometer data into
OMH step count data points, and (iii) one that can transform CARP HR data into FHIR HR
observations.

MovisensSampling
Package

onRegister()

TransformerSchema
Registry

OMHTransformer
Schema

lookup(NameSpace.OMH)

add(STEP_COUNT,OMHStepCountDataPoint.transformer)

add(HR,OMHHeartRateDataPoint.transformer)

add(HR,FHIRHeartRateObservation.transformer)

FHIRTransformer
Schema

lookup(NameSpace.FHIR)

TransformerSchema
Registry

OMHTransformer
SchemaStudyExecutor

lookup(data_format)

transform(data)

OMHStepCount
DataPoint

get transformer
Stream<data>

Figure 4. The UML interaction diagram of the setup phase of the data transformation pattern.

Sensors 2022, 22, 2813 9 of 20

Figure 5 illustrates the transformation phase. Transformation can be performed any-
where in an app, but if the Data Transformation pattern is combined with the Sampling
Package pattern then transformation can be performed on the data stream of data produced
in the StudyExecutor (see Figure 2). The study executor looks up a transformer schema for
a specific name space (e.g., FHIR) and asks this schema to transform any data object, which
comes from the data stream (which again comes from the probes). When the transformer
schema is asked to transform a piece of data, it checks if it has a transformer (added during
the setup phase). If so, it uses this transformer to transform the data, otherwise it does
nothing (i.e., returns the data unchanged).

MovisensSampling
Package

onRegister()

TransformerSchema
Registry

OMHTransformer
Schema

lookup(NameSpace.OMH)

add(STEP_COUNT,OMHStepCountDataPoint.transformer)

add(HR,OMHHeartRateDataPoint.transformer)

add(HR,FHIRHeartRateObservation.transformer)

FHIRTransformer
Schema

lookup(NameSpace.FHIR)

TransformerSchema
Registry

OMHTransformer
SchemaStudyExecutor

lookup(data_format)

transform(data)

OMHStepCount
DataPoint

get transformer
Stream<data>

Figure 5. The UML interaction diagram of the transformation phase of the data transformation pattern.

3.3. Example

Figures 3–5 show how the ‘Data Transformer’ pattern is used in the Movisens sampling
package. Listing 4 shows how the setup phase of the patterns is implemented as part of the
onRegister() method of the Movisens sampling package. Here the three transformers are
added to the OMH and FHIR transformer schemes.

Listing 4. Setting up DataTransformer functions as part of registering the Movisens sampling
package.

@override
void onRegister () {

TransformerSchemaRegistry ().lookup(NameSpace.OMH).add(
HR,
OMHHeartRateDataPoint.transformer ,

);
TransformerSchemaRegistry ().lookup(NameSpace.OMH).add(

STEP_COUNT ,
OMHStepCountDataPoint.transformer ,

);
TransformerSchemaRegistry ().lookup(NameSpace.FHIR).add(

HR,
FHIRHeartRateObservation.transformer ,

);
}

Transformation can now be performed as shown in Listing 5 where CARP HR data
are transformed to an OMH heart-rate data point.

Listing 5. Lookup and use of a DataTransformer function.

var data = MovisensHRData ()..hr = ’118’;
var omhData = TransformerSchemaRegistry ().lookup(NameSpace.OMH)

.transform(data);
}

Sensors 2022, 22, 2813 10 of 20

Transformers can also be used in a stream, as shown in Listing 6 where all CARP data
from the dataStream are transformed to OMH data points.

Listing 6. Using a transformer in a stream of data.

Stream <Data > dataStream = ...;
Stream <Data > transformedDataStream = dataStream.map((data) => data =

TransformerSchemaRegistry ().lookup(NameSpace.OMH).transform(data));
}

Finally, transformers can also be chained in streams, as shown in Listing 7. Here all
CARP data from the dataStream are first privacy protected using the "privacySchemaName"
transformer, and then transformed to OMH data points. Note that only data which has a
CARP-to-OMH transformer is transformed in these streams. If no transformer exists, the
original CARP data item is kept unchanged. We will see an example of this in the study
reported in Section 5.

Listing 7. Chaining two transformers in a stream of data.

Stream <Datum > transformedPrivateDataStream = dataStream.map((data) => data =
TransformerSchemaRegistry ().lookup(NameSpace.OMH).transform(

TransformerSchemaRegistry ().lookup("privacySchemaName")
.transform(data)));

}

3.4. Consequences

The data transformer pattern allows mobile sensing such as CAMS to implement
on-board data transformation, which can be used for local data privacy protection or
transformation before storage or upload. This allows a mobile sensing framework to be
used in many different types of mHealth applications and using many different types
of data backends. Hence, a sensing framework such as CAMS is not tied to a specific
infrastructure such as CARP and its data format, but can be extended to work with any
data infrastructure and data formats.

One of the limitations to the data transformer pattern is that it implements a one-to-one
transformation where one CARP Data object is transformed into exactly one other Data
object. There is no support for aggregation or splitting of Data objects. This could be a topic
for the extension of the pattern or by embedding this one-to-one mapping as part of a more
general pipes-and-filter software architecture.

4. Enabling Extensibility and Data Transformation in the CAMS Software Architecture

The ‘Sampling Package’ and ‘Data Transformer’ design patterns have been derived
from, and used in, the CAMS software architecture and help to achieve the non-functional
software architecture goal of being highly extensible. CAMS has been evolving over eight
major releases, and has been used in the design and implementation of several released
mHealth applications targeting mental health [28], cardiovascular diseases (CVDs) [29],
and diabetes [30]. These applications are very different in their design and requirements
for mobile sensing, and hence testifies to the wide applicability of CAMS for different
types of applications. This section outlines how the patterns come into play in CAMS and
focuses on its extensibility. For a more detailed presentation of CAMS and its programming
application programming interface (API), runtime model, and performance, please see the
CAMS technical report [22] and the online resources listed in Appendix A.

4.1. Study Protocol

Data collection is configured in a StudyProtocol, which is shown in Figure 6. A
StudyProtocol holds a set of Triggers, which can trigger one or more Tasks, which again
hold a set of Measures. A Measure specifies which type of data should be collected. In
short; triggers defined when to collect data, tasks defined which measures to collect, and
the measures defined what data to collect. Using the Device class, the study protocol

Sensors 2022, 22, 2813 11 of 20

also specifies which devices should be used for data collection. Note that a protocol has
no technical dependencies on any particular devices, sensor technology, or services. By
specifying a set of generic Devices and Measures it in an abstract manner describes why,
when, and what data should be collected. It is up to the runtime infrastructure of the
sensing framework to interpret and execute the protocol in a ‘best-effort’ manner, using the
sensors and devices available on a specific phone. Listing 8 illustrates how a study protocol
is configured in Dart in CAMS. First (line 2–5) the study protocol is created and then a
SmartPhone device is added to the protocol (line 8–9). Then the measures are configured
consisting of a delayed trigger (DelayedTrigger) that triggers one task (AutomaticTask),
which automatically collects accelerometer and gyroscope data. Note that the accelerometer
and gyroscope measures are defined in the sensor sampling package (line 16–17).

UUID owner
String name
String description

StudyProtocol

int id

Trigger

String name

Task

DataType type

Measure

bool isMasterDevice
String roleName
List<DataType> supportedDataTypes

Device

* * *

*

Figure 6. The UML class diagram of the StudyProtocol domain model. *: Multiplicity.

Listing 8. Basic Dart code for setting up a study protocol in CAMS.

// Create a study protocol
StudyProtocol protocol = StudyProtocol(
ownerId: ’user@dtu.dk’,
name: ’Tracking ’,

);

// define devices used for data collection - in this case ,
// its only this smartphone
var phone = Smartphone ();
protocol.addMasterDevice(phone);

// automatically collect accelerometer and gyroscope data on the phone
// but delay the sampling by 10 seconds
protocol.addTriggeredTask(

DelayedTrigger(delay: Duration(seconds: 10)),
AutomaticTask(name: ’Sensor Task’)

.. addMeasure(Measure(type: SensorSamplingPackage.ACCELEROMETER))

.. addMeasure(Measure(type: SensorSamplingPackage.GYROSCOPE)),
phone);

4.2. Runtime Architecture

Figure 7 shows the overall layered software architecture of CAMS, and illustrates
how the ‘Sampling Package’ and ‘Data Transformation’ design patterns are central to this
architecture. The CAMS runtime model consists of three main layers (from the bottom):

• The Sampling Packages layer, which can collect a specific type of measure. CAMS
comes with two built-in sampling packages (the DevicePackage and SensorPackage
shown in green). But by using the ‘Sampling Package’ pattern, most sampling pack-
ages are available as external packages which are used in the app, as needed (shown

Sensors 2022, 22, 2813 12 of 20

in purple). In this way, an app only needs permissions to access sensors, which are
needed in a specific app. The ContextPackage is an example of an externally loaded
sampling package that uses location permissions.

• The Client Manager layer, which runs many of the processes and registries from the two
patterns. The StudyController holds the StudyExecutor, one or more DataTrans-
formers, the DataManager, and the PermissionManager. The Study- Controller is
configured by adding a study protocol to the SmartPhoneClientManager. Once config-
ured, the StudyExecutor is responsible for executing the study deployment, i.e., collect-
ing the data following the pattern shown in Figure 2. As also shown in Figures 2, 4 and 5
the StudyExecutor uses a set of registries to dynamically look the sampling packages,
data transformers, and sensing probes that are needed for executing the study protocol. A
study protocol also specifies how to store data by specifying a ‘data endpoint’, which
again is used to look up an appropriate DataManager in the DataManagerRegistry.
This is, howerver, outside the two design patterns discussed in this paper.

• The Service (top) layer holds one or more DeploymentServices, which is able to
manage and deploy the StudyProtocol. Figure 7 illustrates two such services; the
SmartphoneDeploymentService that can deploy study protocols locally on the phone
and the CarpDeploymentService that can download study protocols from the CARP
Web Services (CAWS). The service layer also holds the DataManager services, which
know how to store, save, or upload data. Figure 7 illustrates two such data man-
agers; the FileDataManager which stores data locally in files on the phone and the
CarpDataManager which uploads data to CAWS.

Beneath (and outside of) CAMS, each sampling package uses one or more Flutter
plugins to access sensors, processes, data, and services in the underlying OS, connected
wearable devices, or online services. For example, accessing the phone’s onboard pedome-
ter, connecting to the Movisens ECG monitor via BTLE, or accessing weather information
via a web API. As illustrated in Figure 7, the CAMS runtime make extensive use of reg-
istries in which different components can be registered and retrieved at runtime. These
registries are core to the extensibility of the framework since they allow for adapting and
extending how data are acquired, formatted, anonymized, stored, and uploaded.

Listing 9 shows how the CAMS sensing runtime is configured and started, and how
the sensed data can be used in an app. Deployment of a study protocol on a device requires
that the device knows the id of the study protocol, and its own role in the study (line 2–3).
As shown in Figure 6, the role of a device in the study protocol is specified as part of
the device configuration of the protocol (called the roleName). The study id and role are
typically obtained via the user—either by typing it in or downloading a configuration
where this is specified, e.g., in a QR code. Then (line 6–7) a client manager is created and
configured, which in turn initializes and configures all the client manager components
shown in Figure 7. Once the client manager is configured, a study controller is created (line
10–11) by specifying the deployment id and the role name of the device (in this case the
phone), after which the controller is ready for executing the study locally on the phone. The
controller can be configured, if needed (line 14) and sensing is resumed/started (line 15).
The collected data are now available in the data stream, which can be used in the app (line
20). At any time, sensing can be controlled via the controller’s life cycle methods; resume,
pause, restart, and stop (e.g., line 25).

Listing 9. Basic Dart code for configuring, starting, and using mobile sensing in CAMS.

1 void sensing () async {
2 String studyId = ...
3 String deviceRole = ...
4

5 // create and configure a client manager for this phone
6 SmartPhoneClientManager client = SmartPhoneClientManager ();
7 await client.configure ();
8

9 // create a controller by deploying a study for this device

Sensors 2022, 22, 2813 13 of 20

10 SmartphoneDeploymentController controller =
11 await client.addStudy(studyId , deviceRole);
12

13 // configure the controller and resume sampling
14 await controller.configure ();
15 controller.resume ();
16

17 ...
18

19 // listening on the data stream and print them
20 controller.data.listen ((DataPoint dataPoint) => print(dataPoint));
21

22 ...
23

24 // pause sensing
25 controller.pause();
26 }

DataTransformer
Registry

SmartPhoneClientManager

SamplingPackage
Registry ProbeRegistry

DataManager
Registry

Sensor
Package

DataManager

Device
Package

Context
Package

Health
Package

Movisens
Package

...
Package

bluetooth

wifi

location activity

sensors pedometer

Operating System

Sampling Packages

StudyExecutor Data
Transformer

BTLE

Apple Health /
Google Fit

sensors

pedometer

light

locationbattery movisens

Flutter Plugins

Data Flow

Control Flow

CARP Mobile Sensing

activity
health

Data ManagersDeployment Services

Smartphone
Deployment
Service

CarpDeployment
Service

Permission
Manager

StudyController

FileDataManager CarpDataManager

Data
Transformer

Figure 7. The overall software architecture and main components of the CARP Mobile Sensing
(CAMS) framework. CAMS consists of three main layers; sampling packages, client manager, and
services. Each sampling package uses one or more Flutter Plugins, which access processes, services,
and data in the native OS or from external wearable devices (such as the AccuCheck Guide Blood
Glucose Monitor (BGM) or the Movisens ECG devices). Sampling is controlled from the client
manager and down to the OS whereas data flow from OS sensors, services, and wearable devices up
towards the data managers.

Sensors 2022, 22, 2813 14 of 20

4.3. Implementation and Availability

CAMS is implemented in Flutter using the Dart language, and is available as open-
source under an MIT license. Flutter is a cross-platform toolkit for building natively-
compiled applications for mobile, web, and desktop from a single codebase [31]. Dart is
a modern object-oriented, reactive programming language optimized for non-blocking
user interface (UI) programming with a mature and complete async-await event-driven
code style, paired with isolate-based concurrency model. The implementation of CAMS
particularly exploits three core aspects of Dart: (i) the asynchronous non-blocking program-
ming style using the Future construct, (ii) the event-driven reactive stream model using
the Stream API, and (iii) access to native OS processes via the PlatformChannel API.

Note that the Flutter plugins shown in Figure 7 are not part of CAMS, but are 3rd
party plugins available from the Flutter package repository (https://pub.dev/ (accessed on
15 February 2022)). The CARP team contributes to this library of Flutter plugins. However,
these plugins are designed to be general-purpose and are not specific to CAMS. CAMS-
specific use of these plugins is implemented in the different sampling packages.

Sampling packages are Flutter packages, which are also released on pub.dev. This has
three important implications: First, sampling packages can be downloaded and added to
a Flutter app as needed when the app is build. Second, in contrast to most other sensing
frameworks which has all the probes built-in, an app developer only needs to download
and add sampling packages which are needed for his/her specific app. Hence, if context
information is not needed for an app, the context package and its permission to collect,
e.g., location is not linked and used. Third, application programmers can share CAMS
sampling packages with each other via pub.dev, which is the official Flutter/Dart code
sharing infrastructure, which also ensures continuous quality assessment of the code.

CAMS has been designed, implemented, and tested over the course of eight major
releases and the core framework and all of its associated plugins, sampling packages, and
data backends have been released on the Flutter pub.dev software package repository.
Appendix A provides an overview of all the online CAMS resources, including API docu-
mentation and online tutorials, and Appendix B contains an overview of currently available
sampling packages and their measures.

5. Study

In order to demonstrate the stability of the data sampling packages and data transfor-
mation in CAMS, we report from a small mobile sensing study. The purpose of this study is
to verify and evaluate the usefulness of sampling package and data transformation patterns
as implemented in CAMS. Hence, focus is on demonstrating how a wide range of measures
can be collected across several sampling packages, and that data from these sampling
packages can correctly be transformed from one data format to another. In this study, we
used the context sampling package for the collection of a range of contextual data points,
including location, activity, air quality, and weather. In addition to these contextual data
types, we also collected data using the device and sensor packages, including battery,
memory, light, noise, screen on/off, and step count. The study protocol was configured
to transform collected data points into the org.openmhealth data format, if possible. The
detailed CAMS study protocol definition is included in Appendix C. Data were collected
over a period of two days (50 h) from one person using a Samsung Galaxy S10e, An-
droid OS level 11. Table 1 shows the total number of collected data points distributed on
measure type.

https://pub.dev/

Sensors 2022, 22, 2813 15 of 20

Table 1. Number of collected measures.

Measure Count

carp.air_quality 61
carp.battery 1107
carp.device 1
carp.light 1850
carp.memory 1855
carp.noise 1857
carp.pedometer 12,846
carp.screen 55
carp.weather 1
omh.geoposition 15,973
omh.physical-activity 2332

Total 37,938

Figure 8 shows the number of collected data types on an hourly basis over the 50 h pe-
riod. Figure 9 shows the distribution of the total number of collected data. We can observe
that 11 different types of data were collected with a wide variety over the 50 h period, re-
flecting differences in activity level and circadian rhythms. Of these 11 types of data, OMH
only supports location (named geoposition) and activity (named psychical-activity),
but we see that the collected data were correctly transformed into these two types. Of all
data, 42% are of type geoposition and 6% are of type psychical-activity. The rest of
the data are kept in the default dk.cachet.carp name space.

01
-F

eb
 17

:00

01
-F

eb
 18

:00

01
-F

eb
 19

:00

01
-F

eb
 20

:00

01
-F

eb
 21

:00

01
-F

eb
 22

:00

01
-F

eb
 23

:00

02
-F

eb
 00

:00

02
-F

eb
 01

:00

02
-F

eb
 02

:00

02
-F

eb
 03

:00

02
-F

eb
 04

:00

02
-F

eb
 05

:00

02
-F

eb
 06

:00

02
-F

eb
 07

:00

02
-F

eb
 08

:00

02
-F

eb
 09

:00

02
-F

eb
 10

:00

02
-F

eb
 11

:00

02
-F

eb
 12

:00

02
-F

eb
 13

:00

02
-F

eb
 14

:00

02
-F

eb
 15

:00

02
-F

eb
 16

:00

02
-F

eb
 17

:00

02
-F

eb
 18

:00

02
-F

eb
 19

:00

02
-F

eb
 20

:00

02
-F

eb
 21

:00

02
-F

eb
 22

:00

02
-F

eb
 23

:00

03
-F

eb
 00

:00

03
-F

eb
 01

:00

03
-F

eb
 02

:00

03
-F

eb
 03

:00

03
-F

eb
 04

:00

03
-F

eb
 05

:00

03
-F

eb
 06

:00

03
-F

eb
 07

:00

03
-F

eb
 08

:00

03
-F

eb
 09

:00

03
-F

eb
 10

:00

03
-F

eb
 11

:00

03
-F

eb
 12

:00

03
-F

eb
 13

:00

03
-F

eb
 14

:00

03
-F

eb
 15

:00

03
-F

eb
 16

:00

03
-F

eb
 17

:00

03
-F

eb
 18

:00

Time

0

500

1000

1500

2000

2500

N
um

be
r o

f D
at

a
P

oi
nt

s

Data Points Collected pr. Hour

carp.air_quality
carp.battery
carp.device
carp.light
carp.memory
carp.noise
carp.pedometer
carp.screen
carp.weather
omh.geoposition
omh.physical-activity

Figure 8. Data collection using the context, device, and sensor sampling packages. Hourly count of
each data type in zulu (GMT) time.

Sensors 2022, 22, 2813 16 of 20

0%
3%
0%

5%

5%

5%34%

0%0%

42%

6%

carp.air_quality
carp.battery
carp.device
carp.light
carp.memory
carp.noise
carp.pedometer
carp.screen
carp.weather
omh.geoposition
omh.physical-activity

Figure 9. Distribution of collected data.

6. Conclusions

This paper has presented the ‘Data Sampling Package’ and ‘Data Transformation’
software patterns. Data sampling packages enable the application programmer to imple-
ment support for collecting new data types and plug this into a mobile sensing framework.
Sampling packages are self-contained packages that can be added to a mobile sensing
framework and hence an app as needed. This allows the programmer to include only those
sensing capabilities which are needed in an application-specific app, thereby reducing
app size and complexity, and adhering to the privacy rules of, e.g., GDPR and the App
Stores. Data transformers allow the application programmer to transform the data collected
by a sensing framework into any other format needed either locally in the app, or when
storing or uploading data. This also enables the privacy protection of data via obfuscation
or encryption, and transformers can be chained for multiple transformation. The design
patterns presented in this paper are generic in nature and can be used for ensuring a high
degree of extensibility when designing a mobile sensing framework.

The utility of these design patterns has been shown by implementation in the CARP
Mobile Sensing (CAMS) programming framework. CAMS is a cross-platform (An-
droid/iOS) mobile programming framework, which in addition to state-of-the-art mobile
and wearable sensing provides a modern reactive programming API with a unified ap-
proach to data sampling, management, transformation, usage, storage, and upload across
different types of data sources and data storage facilities. CAMS provides support for data
sampling from on-board mobile sensors (e.g. accelerometer, location, and step counter),
from phone logs (e.g. call log), from off-board wearable sensors (e.g. ECG monitor), and
web-based services (e.g. weather forecast). In CAMS, sampling packages are implemented
as Flutter packages and can be downloaded and uploaded to the Flutter package shar-
ing repository pub.dev. This fosters visibility, availability, and quality assurance of the
sampling packages.

CAMS has been used in the design and implementation of several mHealth applica-
tions targeting mental health [28], CVDs [29], and diabetes [30]. From an application and UI
point-of-view, these applications are quite different both in terms of technical design and in
data collection and management, which hence demonstrate the flexibility and extensibility
of CAMS for mobile and wearable sensing for a broad range of applications. We hope that
others also can benefit from using and extending CAMS.

Sensors 2022, 22, 2813 17 of 20

Funding: This research was funded by the Copenhagen Center for Health Technology and the
Innovation Fund, Denmark as part of the projects: “Reaching the Frail Elderly Patient for optimizing
diagnosis of atrial fibrillation” (REAFEL) and “Biometric Healthcare Research Platform for research
in psychiatric and neurological diseases using sensor technologies” (BHRP).

Informed Consent Statement: The data was collected by the author.

Data Availability Statement: The data and Jupyter Notebook with the Python scripts used in the
reported study is available at https://github.com/cph-cachet/carp.analysis.sandbox/tree/master/
projects/carp.mobile.sensing/transformation (accessed on 15 February 2022).

Acknowledgments: The author would like to thank Steven Jeuris for detailed discussions and
input on the domain model as well as thorough review of the final paper, and Thomas Nilsson and
Devender Kumar for implementing some of the Flutter plugins, including the Movisens plugin and
sampling package.

Conflicts of Interest: The author declare no conflict of interest.

Appendix A. CAMS Online Resources

CARP Mobile Sensing (CAMS) and its associated sampling and backend packages
have been released as Flutter packages with online API documentation. The core CAMS
Flutter programming framework is available at pub.dev at https://pub.dev/packages/
carp_mobile_sensing. An overview of all software packages is available online at https:
//github.com/cph-cachet/carp.sensing-flutter. The CARP Mobile Sensing (CAMS) online
tutorial on how to use the framework in a Flutter app—including using the different
packages—is available at the CAMS wiki at https://github.com/cph-cachet/carp.sensing-
flutter/wiki. The CAMS home page is available at https://carp.cachet.dk/cams/ which
also contain a set of tutorials and blog post on how to use CAMS and different performance
evaluations of the framework (https://carp.cachet.dk/news/). All of the above web sites
were visited on 15 February 2022. Note that these online resources are constantly updated
to reflect new additions and enhancements to CAMS.

Appendix B. CAMS Measures

Table A1 shows a list of currently available measures in CAMS and which sampling
package they belong to. Compared to other frameworks, CAMS covers most of the common
set of measures and most of them are available on both Android and iOS, which makes
CAMS a good choice for cross-platform implementation of mobile sensing. More packages
and plugins are constantly being designed and released at pub.dev. See https://pub.dev/
publishers/cachet.dk/packages (accessed 15 February 2022) for an overview of the released
CAMS sampling packages and plugins.

Table A1. Measures available in CAMS, their availability on Android and iOS (+ : available, − : not
available), and which package they belong to. The top part lists the sampling packages built into
CAMS; the middle part lists the external sampling packages, and the lower part lists sampling
packages for wearable devices. The external packages are available for download at pub.dev.

Type Android iOS Package Description

accelerometer + + sensors Accelerometer data from the built-in phone sensor
gyroscope + + sensors Gyroscope data from the built-in phone sensor
pedometer + + sensors Step counts from the device on-board sensor
light + − sensors Ambient light from the phone’s front light sensor
device + + device Basic device information
battery + + device Battery charging status and battery level
screen + − device Screen event (on/off/unlock)
memory + − device Free memory

https://github.com/cph-cachet/carp.analysis.sandbox/tree/master/projects/carp.mobile.sensing/transformation
https://github.com/cph-cachet/carp.analysis.sandbox/tree/master/projects/carp.mobile.sensing/transformation
https://pub.dev/packages/carp_mobile_sensing
https://pub.dev/packages/carp_mobile_sensing
https://github.com/cph-cachet/carp.sensing-flutter
https://github.com/cph-cachet/carp.sensing-flutter
https://github.com/cph-cachet/carp.sensing-flutter/wiki
https://github.com/cph-cachet/carp.sensing-flutter/wiki
https://carp.cachet.dk/cams/
https://carp.cachet.dk/news/
https://pub.dev/publishers/cachet.dk/packages
https://pub.dev/publishers/cachet.dk/packages

Sensors 2022, 22, 2813 18 of 20

Table A1. Cont.

Type Android iOS Package Description

connectivity + + connectivity Connectivity status
bluetooth + + connectivity Scanning nearby bluetooth devices
wifi + + connectivity SSID and BSSID from connected wifi networks
location + + context Request the location of the phone.
geolocation + + context Listens to location changes.
activity + + context Activity as recognized by OS
weather + + context Current weather and weather forecasting
air_quality + + context Local air quality from land-based air pollution stations
geofence + + context Entry/dwell/exit events in circular geofences
audio + + audio Records audio from the device microphone
noise + + audio Detects ambient noise from the device microphone.
phone_log + − communication Log of phone calls in/out
text_message_log + − communication Log of text messages (sms) in/out
text_message + − communication Text message (sms) events when received
calendar + + communication All calendar events from all calendars on the phone
apps + − apps List of installed apps
app_usage + − apps App usage over time
survey + + survey User surveys via the Flutter research_package

movisens + − movisens ECG-related data from the Movisens EcgMove4 device.
esense + + esense Sensor and button events from eSense devices.
health + + health Wearable device data from Apple Health/Google Fit.

Appendix C. CAMS Study Protocol

The full study protocol used in the data transformation study.

// define a protocol that transform data into the OMH format
// and saves it in a file
SmartphoneStudyProtocol protocol = SmartphoneStudyProtocol(
ownerId: ’jakba@dtu.dk’,
name: ’Data Transformation Study’,
dataEndPoint: FileDataEndPoint(dataFormat: NameSpace.OMH),

);

// define which devices are used for data collection.
var phone = Smartphone ();
protocol.addMasterDevice(phone);

// add the measures to an automatic task using the common
// measure configurations
protocol.addTriggeredTask(

ImmediateTrigger (),
AutomaticTask ()
.. measures = SamplingPackageRegistry ().common.getMeasureList(

types: [
DeviceSamplingPackage.DEVICE ,
DeviceSamplingPackage.BATTERY ,
SensorSamplingPackage.PEDOMETER , // 60 s
SensorSamplingPackage.LIGHT , // 60 s
MediaSamplingPackage.NOISE , // 60 s
DeviceSamplingPackage.MEMORY , // 60 s
DeviceSamplingPackage.SCREEN , // event -based
ContextSamplingPackage.ACTIVITY , // event -based
ContextSamplingPackage.GEOLOCATION , // event -based

],
),

phone);

// add a periodic measure of weather and air quality
protocol.addTriggeredTask(

PeriodicTrigger(
period: const Duration(minutes: 30),

Sensors 2022, 22, 2813 19 of 20

duration: const Duration(seconds: 2),
),
AutomaticTask ()
.. addMeasure(WeatherMeasure(

type: ContextSamplingPackage.WEATHER ,
apiKey: ’12 b6e8577c734aa9f4f ’))

.. addMeasure(AirQualityMeasure(
type: ContextSamplingPackage.AIR_QUALITY ,
apiKey: ’9e56b2b85c92647df957638c77 ’)),

phone);

References
1. Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun.

Mag. 2010, 48, 140–150. [CrossRef]
2. Bardram, J.E.; Frost, M. The Personal Health Technology Design Space. IEEE Pervasive Comput. 2016, 15, 70–78. [CrossRef]
3. Lathia, N.; Pejovic, V.; Rachuri, K.K.; Mascolo, C.; Musolesi, M.; Rentfrow, P.J. Smartphones for Large-Scale Behavior Change

Interventions. IEEE Pervasive Comput. 2013, 12, 66–73. [CrossRef]
4. Lane, N.D.; Mohammod, M.; Lin, M.; Yang, X.; Lu, H.; Ali, S.; Doryab, A.; Berke, E.; Choudhury, T.; Campbell, A. Bewell:

A smartphone application to monitor, model and promote wellbeing. In Proceedings of the 5th International ICST Conference on
Pervasive Computing Technologies for Healthcare, Dublin, Ireland, 3–26 May 2011; pp. 23–26.

5. Wang, R.; Chen, F.; Chen, Z.; Li, T.; Harari, G.; Tignor, S.; Zhou, X.; Ben-Zeev, D.; Campbell, A.T. StudentLife: Assessing mental
health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 3–14.
[CrossRef]

6. Bardram, J.E.; Matic, A. A Decade of Ubiquitous Computing Research in Mental Health. IEEE Pervasive Comput. 2020, 19, 62–72.
[CrossRef]

7. Saeb, S.; Lattie, E.G.; Schueller, S.M.; Kording, K.P.; Mohr, D.C. The relationship between mobile phone location sensor data and
depressive symptom severity. PeerJ 2016, 4, e2537. [CrossRef] [PubMed]

8. Grünerbl, A.; Muaremi, A.; Osmani, V.; Bahle, G.; Ohler, S.; Tröster, G.; Mayora, O.; Haring, C.; Lukowicz, P. Smartphone-based
recognition of states and state changes in bipolar disorder patients. IEEE J. Biomed. Health Inform. 2015, 19, 140–148. [CrossRef]
[PubMed]

9. Faurholt-Jepsen, M.; Busk, J.; Frost, M.; Vinberg, M.; Christensen, E.; Winther, O.; Bardram, J.E.; Kessing, L.V. Voice analysis as an
objective state marker in bipolar disorder. Transl. Psychiatry 2016, 6, e856. [CrossRef] [PubMed]

10. Barnett, I.; Torous, J.; Staples, P.; Sandoval, L.; Keshavan, M.; Onnela, J.P. Relapse prediction in schizophrenia through digital
phenotyping: A pilot study. Neuropsychopharmacology 2018, 43, 1660–1666. [CrossRef] [PubMed]

11. Kumar, D.; Jeuris, S.; Bardram, J.E.; Dragoni, N. Mobile and Wearable Sensing Frameworks for mHealth Studies and Applications:
A Systematic Review. ACM Trans. Comput. Healthc. 2020, 2, 1–28. [CrossRef]

12. Schueller, S.M.; Begale, M.; Penedo, F.J.; Mohr, D.C. Purple: A Modular System for Developing and Deploying Behavioral
Intervention Technologies. J. Med. Internet. Res. 2014, 16, e181. [CrossRef] [PubMed]

13. Xiong, H.; Huang, Y.; Barnes, L.E.; Gerber, M.S. Sensus: A cross-platform, general-purpose system for mobile crowdsensing in
human-subject studies. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
Heidelberg, Germany, 12–16 September 2016; pp. 415–426.

14. Ferreira, D.; Kostakos, V.; Dey, A.K. AWARE: Mobile context instrumentation framework. Front. ICT 2015, 2, 6. [CrossRef]
15. Torous, J.; Kiang, M.V.; Lorme, J.; Onnela, J.P. New tools for new research in psychiatry: A scalable and customizable platform to

empower data driven smartphone research. JMIR Ment. Health 2016, 3, e16. [CrossRef] [PubMed]
16. Hossain, S.M.; Hnat, T.; Saleheen, N.; Nasrin, N.J.; Noor, J.; Ho, B.J.; Condie, T.; Srivastava, M.; Kumar, S. mCerebrum: A Mobile

Sensing Software Platform for Development and Validation of Digital Biomarkers and Interventions. In Proceedings of the 15th
ACM Conference on Embedded Network Sensor Systems, (SenSys ’17), Delft, The Netherlands, 6–8 November 2017; ACM: New
York, NY, USA, 2017; pp. 7:1–7:14. [CrossRef]

17. Ranjan, Y.; Rashid, Z.; Stewart, C.; Conde, P.; Begale, M.; Verbeeck, D.; Boettcher, S.; Dobson, R.; Folarin, A. RADAR-Base: Open
Source Mobile Health Platform for Collecting, Monitoring, and Analyzing Data Using Sensors, Wearables, and Mobile Devices.
JMIR Mhealth Uhealth 2019, 7, e11734. [CrossRef] [PubMed]

18. Torous, J.; Wisniewski, H.; Bird, B.; Carpenter, E.; David, G.; Elejalde, E.; Fulford, D.; Guimond, S.; Hays, R.; Henson, P.; et al.
Creating a Digital Health Smartphone App and Digital Phenotyping Platform for Mental Health and Diverse Healthcare Needs:
An Interdisciplinary and Collaborative Approach. J. Technol. Behav. Sci. 2019, 4, 73–85. [CrossRef]

19. Bardram, J.E.; Frost, M. Double-Loop health technology: Enabling socio-technical design of personal health technology in clinical
practice. In Designing Healthcare That Works: A Sociotechnical Approach; Elsevier: Amsterdam, The Netherlands, 2017. [CrossRef]

20. Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.; Stal, M. Pattern-Oriented Software Architecture. A System of Patterns; John
Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 1.

http://doi.org/10.1109/MCOM.2010.5560598
http://dx.doi.org/10.1109/MPRV.2016.37
http://dx.doi.org/10.1109/MPRV.2013.56
http://dx.doi.org/10.1145/2632048.2632054
http://dx.doi.org/10.1109/MPRV.2019.2925338
http://dx.doi.org/10.7717/peerj.2537
http://www.ncbi.nlm.nih.gov/pubmed/28344895
http://dx.doi.org/10.1109/JBHI.2014.2343154
http://www.ncbi.nlm.nih.gov/pubmed/25073181
http://dx.doi.org/10.1038/tp.2016.123
http://www.ncbi.nlm.nih.gov/pubmed/27434490
http://dx.doi.org/10.1038/s41386-018-0030-z
http://www.ncbi.nlm.nih.gov/pubmed/29511333
http://dx.doi.org/10.1145/3422158
http://dx.doi.org/10.2196/jmir.3376
http://www.ncbi.nlm.nih.gov/pubmed/25079298
http://dx.doi.org/10.3389/fict.2015.00006
http://dx.doi.org/10.2196/mental.5165
http://www.ncbi.nlm.nih.gov/pubmed/27150677
http://dx.doi.org/10.1145/3131672.3131694
http://dx.doi.org/10.2196/11734
http://www.ncbi.nlm.nih.gov/pubmed/31373275
http://dx.doi.org/10.1007/s41347-019-00095-w
http://dx.doi.org/10.1016/B978-0-12-812583-0.00010-9

Sensors 2022, 22, 2813 20 of 20

21. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.; Patterns, D. Elements of Reusable Object-Oriented Software; Addison-Wesley:
Reading, MA, USA, 1995; Volume 99.

22. Bardram, J.E. The CARP Mobile Sensing Framework—A Cross-platform, Reactive, Programming Framework and Runtime
Environment for Digital Phenotyping. arXiv 2020, arXiv:2006.11904.

23. CACHET Research Platform—A Set of Open-Source Software Component and Frameworks for the Development of Mobile
Health (mHealth) Applications for Digital Phenotyping. Available online: https://carp.cachet.dk (accessed on 15 February 2022).

24. Estrin, D.; Sim, I. Open mHealth architecture: An engine for health care innovation. Science 2010, 330, 759–760. [CrossRef]
[PubMed]

25. IEEE P1752 Open Mobile Health. Available online: https://sagroups.ieee.org/1752/ (accessed on 15 February 2022).
26. Kawsar, F.; Min, C.; Mathur, A.; Montanari, A. Earables for Personal-Scale Behavior Analytics. IEEE Pervasive Comput. 2018,

17, 83–89. [CrossRef]
27. Bardram, J.E. The CAMS ESense Framework: Enabling Earable Computing for MHealth Apps and Digital Phenotyping.

In Proceedings of the 1st International Workshop on Earable Computing, (EarComp’19), London, UK, 10 September 2019;
Association for Computing Machinery: New York, NY, USA, 2019; pp. 3–7. [CrossRef]

28. Rohani, D.A.; Quemada Lopategui, A.; Tuxen, N.; Faurholt-Jepsen, M.; Kessing, L.V.; Bardram, J.E. MUBS: A Personalized
Recommender System for Behavioral Activation in Mental Health. In Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–13.

29. Kumar, D.; Maharjan, R.; Maxhuni, A.; Dominguez, H.; Frølich, A.; Bardram, J.E. mCardia: A Context-Aware Ambulatory ECG
Collection System for Arrhythmia Screening. ACM Trans. Comput. Healthc. 2022, 3, 1–28. [CrossRef]

30. Bardram, J.E.; Cramer-Petersen, C.; Maxhuni, A.; Christensen, M.V.; Bækgaard, P.; Persson, D.R.; Lind, N.; Christensen, M.B.;
Nørgaard, K.; Khakurel, J.; et al. DiaFocus: A Personal Health Technology for Adaptive Assessment in Long-Term Management
of Type 2 Diabetes. ACM Trans. Comput. Healthc. 2022, submitted.

31. Flutter—Google’s Portable UI Toolkit for Building Beautiful, Natively-Compiled Applications for Mobile, Web, and Desktop
from a Single Codebase. Available online: https://flutter.dev (accessed on 15 February 2022).

https://carp.cachet.dk
http://dx.doi.org/10.1126/science.1196187
http://www.ncbi.nlm.nih.gov/pubmed/21051617
https://sagroups.ieee.org/1752/
http://dx.doi.org/10.1109/MPRV.2018.03367740
http://dx.doi.org/10.1145/3345615.3361137
http://dx.doi.org/10.1145/3494581
https://flutter.dev

	Introduction
	The `Sampling Package' Software Architecture Pattern
	Motivation and Application
	Structure
	Example
	Consequences

	The `Data Transformer' Software Architecture Pattern
	Motivation and Application
	Structure
	Example
	Consequences

	Enabling Extensibility and Data Transformation in the CAMS Software Architecture
	Study Protocol
	Runtime Architecture
	Implementation and Availability

	Study
	Conclusions
	CAMS Online Resources
	CAMS Measures
	CAMS Study Protocol
	References

