The Mini-Grid Framework: Application
Programming Support for Ad-hoc, Peer-to-Peer
Volunteer Grids

Jakob E. Bardram and Neelanarayanan Venkataraman

IT University of Copenhagen
Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark
{bardram,nnve}@itu.dk

Abstract. Biological scientists work with bioinformatics algorithms that
are either computational or data intensive in nature. Distributed plat-
forms such as Grids and Peer-to-Peer (P2P) networks can be used for
such algorithms. Classical Grid computing platforms are available only
to a restricted group of biologist, since they are expensive, and require
skilled professionals for deployment and maintenance. Due to its master-
slave architecture, projects deployed using volunteer computing systems
require ‘slaves’ to be convinced to participate. The alternative, P2P ar-
chitecture is mainly used for data sharing. This paper presents the Mini-
Grid Framework which is an P2P infrastructure and programming frame-
work for distribution computational tasks like bioinformatics algorithm.
The Mini-Grid Framework contributes with concepts and technologies
for minimal configuration by non-technical end-users, a ‘resource-push’
auction approach for dynamic task distribution, and context modeling
of tasks and resources in order to handle volatile execution environment.
The efficiency of the infrastructure has been evaluated in several alter-
native experiments.

1 Introduction

The “Grid” refers to the vision of a hardware and software infrastructure pro-
viding dependable, consistent, fast, and inexpensive access to high-end com-
putational capabilities [1]. Such a platform has great potential impact for many
disciplines, such as bioinformatics. Generally speaking, grid computing platforms
can be classified into two main categories; classic high-end grids and volunteer
computing grids [2]. Classical grids provide access to large-scale, intra-and-inter
institutional high capacity resources such as clusters or multiprocessors [1, 3].
However, installing, configuring and customizing such solutions require high tech-
nical knowledge and dedicated hardware and software resources. For these rea-
sons, the deployment and operational cost of such systems are substantial, which
prevents its adoption and direct use by non-technical users, such as biological
researchers.

Volunteer computing systems, on the other hand, allow formation of parallel
computing networks by enabling ordinary internet users to share their com-

2 JE. Bardram and N. Venkataraman

puter’s idle processing power [4, 5]. Such systems require setting up a central-
ized control system responsible for managing the contributed clients, who in
turn periodically request work from a central server. Volunteer computing is
highly asymmetric; it is a ‘master-slave’ architecture in which volunteers sup-
ply computing resource but do submit any work to be done. Public outreach
and incentive structures (like high-score competitions) play a significant role in
attracting volunteers.

The current approaches to grid computing is, as such, very centralized both
technically and in use. Only a relatively few dedicated scientists use the classic
grids like Globus and in volunteering grids, setting up projects is rather cen-
tralized and require significant technical skills and effort. In contrast, our goal
is to create a distributed and ad-hoc approach for scientist to use parallel and
distributed resources in their work. Our current work builds on creating support
for bioinformatics analysis in biology laboratories. In this setting we would like
to support biologists to utilize available computational resources on an ad-hoc
basis. The main challenges in this setting is to support users with no techni-
cal knowledge to perform all the tasks involved in grid computing, i.e. locating
available resources, distributing tasks and data, monitor progress, intervene if
necessary, and to recollect the results for further use. And we want to do this
on the available resource infrastructure, like the desktop and laptop PCs in the
lab. Compared to existing approaches to grid technology, this kind of scenarios
put up requirements for supporting:

Ease of deployment and management of the infrastructure.

— Dynamic peer-to-peer resource discovery.

Resource modeling which takes into account the context of the resources and
the users.

Resource models used for dynamic context-aware task distribution and schedul-
ing.

This paper presents the Mini-Grid Framework, which is a runtime infras-
tructure and programming API enabling the creation of peer-to-peer and ad-
hoc “mini-grids” in a local network environment. The main benefit of such a
mini-grid infrastructure is that it is ready to use for the end-user without any
configuration or management overhead; a user submitting a job simply exploits
the devices visible nearby at the moment. This infrastructure is an important
step in the direction of allowing non-technical scientists — like biologists — to
interactively use a grid in their daily work.

2 Related Work

Large-scale grids often build on the Globus Toolkit [3], which is a middleware for
handling distributed resources and delivering high-performance computational
power to a restricted community of users with a specific goal. TeraGrid® is one

! www.teragrid.org

The Mini-Grid Framework 3

such example. Using Globus, NetSolve [6] and Ninf [7] allow the end-users to
launch libraries installed on the remote machines from their applications using
Grid enabled remote procedure calls. Based on a bag of service approach, Globus
provides key services such as resource, data, and security management.

However, installing, configuring, and customizing Globus middleware requires
a highly skilled support team, such as the London e-Science Centre? or the
Enabling Grids for E-science project®. Participating in grid projects involves
time consuming networking and training processes. Globus based grid computing
infrastructure requires third party resource brokers or meta-schedulers for task
distribution and follows a hierarchical client-server model for scaling.

Volunteer or Desktop Grids, in contrast, is designed to distribute computa-
tional tasks between desktop computers in e.g. a biology lab. Historically, the
Condor project [4] pioneered using the idle time of organizational workstations
to do parallel computing, but the best known infrastructure for volunteer grids
is the Berkeley Open Infrastructure for Network Computing (BOINC) [5, 8].
BONIC is composed of a central scheduling server and a number of clients in-
stalled on the volunteers’ machines. The client periodically contacts the server
to report its availability and get workload. BOINC requires a fixed and static set
of data servers deployed centrally that need to be maintained by each project
team. Further, creating a volunteer computing application involves the process
of obtaining and retaining volunteers, setting up high-profile initiatives like the
the World Community Grid*. Other desktop grid technologies exists, like the
Minimal Invasive Grid [9], and XtremWeb [10].

Condor [11], based on a master-slave architecture, has a centralized schedul-
ing model and file-based configuration management (around 300 parameters).
Condor discovers resources by advertisements [12] containing semi-structured
data model — attribute/expression pairs which lack expressiveness — describing
their capabilities.

All of these desktop grids are, however, using a client-server architecture con-
sisting of a set of servers for project hosting, scheduling, and data management,
and a set of clients which executes the workload. Commercial desktop grids, like
Apple’s Xgrid [13], uses similar centralized schedulers and controllers.

In order to address software architecture qualities like scalability, perfor-
mance, and availability, recent research within software architecture have been
addressing peer-to-peer (P2P) and hybrid software architectures. Such architec-
tures help distribute resources while avoiding the vulnerability of a single-point-
of failure inherent to the client-server architecture. From a utility point of view,
the P2P approach helps utilize the resources (CPU, RAM, and disk) available
of the distributed computers. From a deployment point of view, there is no need
for installing and maintaining various centralized services.

Peer-to-Peer Grids distribute computation in a peer-to-peer fashion. For ex-
ample, the OurGrid project uses a peer-to-peer topology between different labo-

2 www.lesc.imperial.ac.uk
3 www.eu-egee.org
4 www.worldcommunitygrid.org

4 JE. Bardram and N. Venkataraman

ratories [14]. Various protocols for supporting P2P service discovery (e.g. Grid-
nut [15] and GridSearch [16]) and P2P resource discovery [17] has been proposed.
Organizing Condor pools in P2P network, requiring no central coordination, has
been proposed in [18]. XtremWeb [19] envisages the use of peer-to-peer network
for building volunteer computing platform. Our approach differs from existing
P2P grids by addressing pervasiveness: mobility of resources, wireless connection
between resources, and ability to adapt their surroundings — context awareness.

P-Grid [20] is a general purpose P2P distributed infrastructure which dis-
tribute algorithm by a rumor spreading technique for resource discovery and
uses a pull-push model in its updating scheme. P-Grid also uses a reputation
based security model and employs redundant peers for fault tolerance.

The Mini-Grid Framework falls within the P2P Grid category, but has a dif-
ferent focus; instead of supporting inter-lab P2P grids, we are targeting intra-lab
P2P grids —i.e. supporting grids amongst desktop computers inside a lab. More-
over, we target a very volatile and ad-hoc nature of grid resources, including
laptops which frequently enters and leave a network. The terms “ad hoc” and
“volatile” refers to the nature of virtual organizations that can be formed by the
mini-grid framework. We use a ‘resource-push’ approach for task distribution
rather than complex resource discovery mechanism used in current P2P grids.
Although we adopt a market-oriented resource management system in our auc-
tioning system, this is merely for allocating tasks to different resource based on
their capabilities. Overall, our approach is oriented towards ‘social computing’
that enables equal sharing resource and collaboration. This is in contrast to the
‘traditional’ approach to marked-oriented resource sharing in e.g. the Computa-
tional Clouds.

3 The Mini-Grid Framework

In contrast to desktop grids which runs on a fairly stable infrastructure (cabled
networks, stationary desktop PCs, and dedicated servers), the Mini-Grid project
is aiming at supporting the formation of ad-hoc, peer-to-peer grids on an volatile
infrastructure based on whatever devices available, including portable devices
on intermitted networking connections. The Mini-Grid thus supports the ad-hoc
formation of grids based on e.g. students’ laptop computers on a wireless LAN.
But at the same time, the mini-grid could include more powerful nodes, like
desktop PCs and dedicated servers, which would enable the mini-grid to scale
to a more traditional grid using cabled and server-based computers. The Mini-
Grid uses a ‘resource-push’ approach of auction-based dynamic task distribution
rather than the traditional ‘user-pull’ approach. In this ‘resource-push’ approach
(explained in section 3.2), the participating resources express their interest in
executing a computational task dynamically and thus eliminates the requirement
of resource discovery mechanism.

The Mini-Grid Framework is a runtime infrastructure and programming API
for creating and running such mini-grids. This section provides an overview
of Mini-Grid framework, including a description of its architecture, its auction

The Mini-Grid Framework 5

based task distribution and resource discovery, its context modeling of resources
and tasks, and its extension points for specializing its behavior.

3.1 Architecture

A conceptual illustration of the Mini-Grid Framework is shown in figure 1. The
main components are Resource Providers donating computational power, Re-
source Consumers using computational power, and the TaskBus responsible for
distributing tasks and control information. A device participating in the mini-
grid can be a Resource Provider, or a Resource Consumer, or both.

Resource Resource Resource
Provider Provider Provider

<

(TaskBus ()

Bids for Tasks, and]
executes them - 3 Submits a BoT
once received] " |to the TaskBus

Resource Resource
Provider Consumer

Fig. 1. A conceptual model of the Mini-Grid Architecture including the TaksBus and
Resource Consumers and Resource Providers.

The framework is primarily designed for applications whose tasks are inde-
pendent of each other, i.e. the so-called Bag-of-Tasks (BoT) applications, where
each task is an atomic unit of execution. The business logic of a task is encap-
sulated in the execute method of the task.

As shown in figure 2, the Resource Consumer has three components; Sub-
mitter, TaskBus, and Auctioneer. Any BoT application interested in utilizing
the infrastructure submits the tasks to the Submitter along with maximum life
time of the task, called ‘Time-To-Live’ (TTL). TTL is a deadline fixed by the
application within which it expects the results of the task. We assume that
the application using the infrastructure does not know the execution time of
a task in advance. The task include a TaskContext description, which includes
the requirements for the target software and hardware. The TaskBus is used
to announce new tasks in the grid, to collect bids in the auction process and
to distribute tasks and results. Auction-based task distribution is delegated to
an Auctioneer class that implements the auction strategy. The Auctioneer uses
BidEvaluator to evaluated the submitted bids. The protocol of the Task Bus is
detailed in section 3.2.

6 JE. Bardram and N. Venkataraman

<<Interface>>
Task
<<Interface>> + getStatus(UUID taskld) . TaskStatus
Submitter + getResult{UUID taskld):Object
+ submitTask(Task task)
+ getCompletedTask{UUID taskid)
has has
<<Interface>> <<Interface>>
TaskBus Auctioneer
+ put(Task task) + createAuction{TaskContext taskContext)
+ get{UUID taskid):Task
+ peek{UUID taskld):Task has

<<Interface>>
BidEvaluator

+ evaluateBids(submittedBids:Iterator<Bids>)

Fig. 2. Resource Consumer’s Components

As shown in figure 3, the Resource Provider has five components; Ezecutor,
TaskEzxecutor, Bidder, ResourceContext, and the TaskBus. The Executor is re-
sponsible for managing the Resource Provider, including using the TaskBus to
listen to task announcements, and using the Bidder to bid for tasks. The Re-
sourceContext is responsible for checking if a task can be executed on this host
and providing information for computing a Bid. The TaskExecutor is responsible
for the execution of a task.

By extending the mini-grid framework, the application developer can spec-
ify different types of bids suitable for the particular application. Bids can, for
example, be calculated based on the speed of a host, or its level of security. The
resource provider computes the bid value by using the information provided by
the ResourceContext.

Resource discovery is done as part of the auction process, and the mini-
grid hence do not need a separate resource discovery mechanism. During the
auction process, only resources that are currently participating in the mini-grid
environment receive task requests and can submit bids.

3.2 Task Distribution Protocol

The Mini-Grid task distribution protocol is based on auctions. A constant named
Time-to-Bid (TTB) specify the time that Resource Providers have to submit
their bids. Task distribution involves 642 steps:

1. A BoT application generates tasks with a TaskContext description, and sub-
mits them to the Resource Consumer.

2. The Resource Consumer announces each task to all Resource Providers cur-
rently attached to the TaskBus.

The Mini-Grid Framework 7

<<Interface>> <<Interface>>
Executor ResourceContext
+ addContext{ResourceContext context) + TaskC }:Boolean
+ handleTask(UUID taskid) —t
has
has <<Interface>>
<<Interface>> TaskExecutor
TaskBus
+ execute(Tasktask)

+ put(Task task) has
+ get{UUID taskid).Task
+ peek(UUID taskid):Task

<<Interface>>
Bidder

+ submitBid(Bid bid)
+ calculateBid(TaskContext) context)

Fig. 3. Resource Provider’s Components

3. On receiving the announcement, the Resource Providers check with its lo-
cal ResourceContext to see, if it can submit a bid. If not, it ignores the
announcement.

4. The Resource Provider submits a bid. Once the TTB period elapses, the
Resource Consumer proceeds.

5. The Resource Consumer evaluates the submitted bids and selects the optimal
Resource Provider for execution of the task.

6. The Resource Consumer announces the winner. The winning Resource Provider
gets the task from the TaskBus and executes it.

7. On completion of the task execution, the Resource Provider sends a task
completion notification, and return the task including the result of the exe-
cution to the TaskBus.

8. Once the Resource Consumer gets the notification that the task has been
executed, it collects the result from the TaskBus.

The pseudo-code for task allocation in the Resource Consumer is shown in
algorithm 1. The algorithm proceeds if there is at least one Resource Provider
interested in executing the task. If there is no Resource Provider, it times out
and informs the application that it cannot schedule the task in the Mini-Grid
environment.

Since the mini-grid environment is ad-hoc and extremely volatile, participat-
ing resources can leave at any time. In order to handle cases where an executing
node (a Resource Provider) fails or go offline, a simple failure handling mech-
anism has been implemented as part of the mini-grid framework. Along with
the task submission, the application specifies a wall-time, an approximate es-
timation of run time of the task. The resource consumer expects the resource
provider to complete the execution of the task before this time elapses. If the
resource provider has not send a task completion notification before the wall-
time elapses, the resource consumer assumes that resource provider has left the
mini-grid environment. Then the resource provider re-auctions only the task for

8 JE. Bardram and N. Venkataraman

Algorithm 1 Task allocation on the Resource Consumer

Require: Task submitted to distributed submitter

Require: At least one Provider is interested in executing the task
1: for all submittedTask do
2: CALL auctioneer.createAuction(taskContext)

3: time=0

4: while time > timeToBid do

5: submittedBids = CALL auctioneer.getSubmitted Bids()
6: winningBid = Min(submitted Bids)

7: end while

8: CALL auctioneer.notify (winningBid)

9: end for

which it has not received the task completion notification. The application can
specify the number of retires the resource provider can perform. In case the re-
source provider fails to receive task completion notification in all retries, then
the application is notified. Delayed task completion notifications are ignored by
the resource consumer.

3.3 Context Modeling

The context model in the Mini-Grid Framework is a formal model of the charac-
teristics of an entity. Context is based on the notion that entities have properties,
and properties have values. Entities can be described by making statements that
specify the properties of the entity and their values. For example, “Computer
A has Intel Core 2 Extreme QX9650 processor” is a statement used to define
the hardware context of Computer A. Such subject-predicate-object expressions
describes the properties of the entity.

This approach provides expressiveness over the attribute/expression pairs
used in Condor’s ClassAds. This expressiveness permits semantic matching using
domain knowledge expressed as concepts. For example, using attribute/expression
mechanism a resource’s operating system can be defined like “OS = value”. When
an application requires devices having operating system compatible to Unix, it
has to issue a query requesting for disjunction of all Unix compatible operating
system such as;

0S=Linux || 0S=Solaris || 0S=IRIX |]...

Defining such disjunctive set for abstract concepts may contain a number
of elements making the exact matching process, used in traditional resource
matching, more constrained. Instead, in our approach, Unix can be defined as a
subclass of operating system and all variants of Unix operating systems can be
defined as a type of Unix operating system. Using RDF, the above information
can be represented as; “Unix is a operating system”; “Solaris is a type of Unix
operating system”; etc. Then compatibility concept in domain knowledge can be
defined as rules;

The Mini-Grid Framework 9

[compatibleOperatingSystem: ?p rdf:type ?7q, 7q rdfs:subClassOf
operatingSystem -> ?p compatible0S ?q]

Thus, the Mini-Grid Framework enables participation of resource providers in
an auction based on semantic reasoning rather than simple attribute matching.
This approach is very similar to the work done by John Broke et al. [21]. However,
their approach is centralized whereas our approach is distributed.

In the Mini-Grid framework, resources and tasks have context. Currently,
we are using context modeling strictly for technical information about required
hardware and software. However, the model is sufficiently generic to include other
types of context information in the bidding and execution protocol, including
information of the usage context of the device. For example, it can model context
like location of the device and what it is being used for. This will allow the
bidding process to avoid scheduling ‘important’ tasks on devices like student’s
laptops which may be removed from the laboratory.

3.4 Framework Extensions

The Mini-Grid Framework is highly extensible in central places. For example,
the default implementation of the BidEvaluator, schedules a task on the fastest
resource possible. But by extending or overwriting this implementation, the ap-
plication developer can define other goals such as scheduling the task on resource
that has better networking capabilities, has a more stable configuration, or is
trusted.

Similarly, the default auction strategy is a ‘First Price Sealed Bid Auc-
tion’ [22] in which bidders are not aware of each others’ bid value and runs
only a single round. When the bidders receive a bid request, they can determine
the bid value based on their capability. First-price sealed bid auctions has min-
imal communication overhead. However other types of auction can be used by
extending the framework.

4 Implementation

The Mini-Grid Framework has been implemented in Java. The implementation
of the TaskBus uses UDP multicasting for exchanging meta-information about
tasks and bids among the participating devices, and uses TCP connections for
exchanging tasks between submitters and executors. The TaskExecutor is based
on a thread pool, and a simple sequential single-item auction (i.e., tasks are
auctioned one at a time) has been implemented. Though bidding and clearing
the auction is simple, it can miss the optimal allocation. However, combinatorial
auctions where all tasks are auctioned and the bidding happens based on groups
of tasks, can be implemented, but with increased complexity and communication
overhead. By default the framework supports computation of the bid based on
the current load of the resource. However, the framework supports definition of
new types of bids suitable for the application being developed by extending the

10 JE. Bardram and N. Venkataraman

Bid interface. The current implementation of the auction-based task distribu-
tion protocol is sequential; i.e., tasks are auctioned in their submission order.
However, the auctioneer and the application are tied up only for the duration of
the task announcement. Bid submission and evaluation are asynchronous. Thus
the frameworks permits concurrent task submission with minimal waiting time.

Deployment of the mini-grid environment requires minimal configuration
compared to existing approaches. The framework requires a multicast address
for UDP communication and port numbers for TCP/UDP communication at
the time of deployment. Further the framework requires proper configuration for
enabling TCP/UDP communication at firewalls and other network equipments.
These configuration requirements are similar to what is required for users to
share their music collection via Apple iTunes.

The prototype has been integrated with the CLC Bio Workbench for bioin-
formatics research®. This implies that users of the CLC Bio workbench has the
option of executing their bioinformatic algorithms (e.g., BLAST or Tree Align-
ment) in a Mini-Grid environment. A pilot deployment for evaluating the frame-
work is underway at the Danish iNano research centre®.

5 Evaluation

In order to asses the effectiveness of the Mini-Grid framework, we performed
an empirical evaluation in which we compared its performance with a single
machine. The performance is measured on two parameters:

Average waiting time — the average time elapsing from the arrival of the task
at the Submitter to it starts execute at the Executor.

Average turn-around time — the average time elapsing from the arrival of
the task at the Submitter to its completion at the Executor.

For our study, the Mini-Grid ran on a set of 21 identical Intel Core Duo
2.33GHz desktop PCs with 2GB RAM, running MS Windows in a 100Mbs LAN.
Each node could play both the role of resource provider and resource consumer,
but for simplification one node was configured to act as a resource consumer, and
the rest as resource providers with varying resource context. For each auction, the
resource providers submitted different bids by using a random number generator.
Tasks arrived at the Submitter in batch. For the experiment we have considered
computational intensive tasks, i.e., the tasks keep the cpu busy for the period of
their execution time and sequential single task auction for task distribution.

The main overhead in Mini-Grid approach is the time taken for auctioning
the tasks. Hence in order to study the overhead in the mini-grid approach, we
conducted three experiments that shows the impact of TTB on the average
waiting time of a task. In these experiments, we varied the TTB and measured
the average waiting time for a fixed number of tasks and nodes. Then we repeated

5 www.clcbio.com
6 www.inano.dk

The Mini-Grid Framework 11

Experiment# 1
Average Waiting Time
ﬁ (#Resources 5, #Tasks 10
fu
160000
o 140000
,E 120000 —
e 100000 -
£ 80000 —
S 60000 —— EMiniGrid
& 40000 —)
& Single Machine
(]
S 20000 - —
1000 6000 10000
Time-to-Bid {A)
Experiment #2
Average Waiting Time
E (#Resources 10, #Tasks 15
©
@ 250000
Q
£ 200000
=
¥ 150000
S 100000 m MiniGrid
@
? 50000 Single Machine
F 0 [|
6000 10000
Time-to-Bid (B)
Experiment #3
Average Waiting Time
(#Resources 15, #Tasks 20)
300000
=3
© 250000 e
2 200000 ——
§ 150000 e
E,, 100000 ® MiniGrid
£ 50000 I Single Machine
=
- 0 —
s
5 6000 10000
>
< Time-to-Bid (©)

Fig. 4. Experiment #1— #3: Average Waiting Time per Task

the experiment for another fixed number of tasks and resources. The results of
these experiments are shown in figure 5.

In experiment #1, 5 nodes participated and 10 tasks were submitted, and
the TTB was 1,000, 6,000, and 10,000 milliseconds respectively. The experiments
were repeated several times and average numbers are presented here for discus-

12 JE. Bardram and N. Venkataraman

sion. The results shows that the TTB influence the average waiting time by a
proportional constant amount of time. The result implies that the Mini-Grid
application developer has to choose the TTB based on the type of network used
for deployment. For example, in a wired local area network, a TTB value of 200
ms would be sufficient. Here we have considered different values for TTB, in
order to study the behavior in different types of network.

Experiment #2 and #3 were conducted to compare the performance of the
Mini-Grid Framework with single Intel Core Duo 2.33GHz desktop PCs having
2GB RAM. The second experiment was conducted with TTB = 6000 ms, using
10 nodes and 15 tasks, and 15 resources and 20 tasks, measuring the average
waiting time for each task. We have computed the average waiting time for
the same set of tasks when there is only one Executor, i.e. the case of a single
machine. However, the single machine approach do not have the overhead of
TTB. The result show that the mini-grid infrastructure outperforms a single
machine.

Experiment #4 measured the average completion time by having fixed value
for TTB (10000 ms) and task execution time (1000 sec.). We varied the number of
resources participating in the Mini-Grid and the total number of tasks submitted.
The results are shown in figure 5. From the graph, we find that the average
completion time changes only when the number of tasks is a multiple of number
of resource providers. The average completion time decreases with increase in
participation of resource providers.

10000
3000 ;
5000 /

7000 /

5000 /

5000 // /’ —10RP

4000 P 15RP

3000

2000 ;—-—C/{/ ——20RP
1000

Average Completion Time

20 40 80 160

No. of Task

Fig. 5. Experiment #4: Average Completion Time per Task

When a set of task is concurrently submitted, then the auction mechanism
increase waiting time. Experiment #5 was conducted to measure this waiting
time. The x-axis provides number of tasks submitted concurrently and the y-axis
represents the average waiting time of each task in the concurrent submission.
The results are shown in figure 5. The waiting time is directly proportional to
number tasks submitted concurrently. When the execution time of individual

The Mini-Grid Framework 13

tasks are longer and small number of task are submitted concurrently, then this
waiting time is insignificant. When large number of tasks with short execution
time are submitted concurrently, this waiting time will affect the completion
time of the task. However, the framework permits the application developer to
apply other, more suitable auctioneer, if needed.

Evaluation of auction
200
180
160 /
140 /
120 /
100 /
80 /
60 /

40 /
/

20

Average time waiting time of task for auction

10 20 30 40 50 60 70 80 o0 100

Mo. of tasks submitted concurrently

Fig. 6. Experiment #5: Impact of concurrent task submission during auctioning

6 Conclusion

In this paper we have presented the design, implementation and evaluation of the
Mini-Grid Framework which includes an auction based scheduling algorithm for
bag-of-tasks applications on ad-hoc Grids. In comparison to previous approaches
published in the literature, the Mini-Grid Framework eases deployment and man-
agement of the infrastructure, dynamically discovers resources using peer-to-peer
strategy, uses an auction-based task distribution protocol, and models execution
context in a way which allow for semantic reasoning in the scheduling process.
The framework is highly extendable and can be adapted to several types of
applications.

The framework was evaluated by comparing the performance of our frame-
work’s auction based task allocation to the task allocation in the single machine.
The evaluation showed that a mini-grid will exploit available resources for par-
allel computing, thereby out-performing a single machine. The main overhead is
associated with the time used for the bidding process in the task auction.

As an extensible framework, the Mini-Grid Framework has the fundamental
building blocks for creating application that distribute bag-of-tasks in a medium
size ad-hoc network of volunteer computers. Ongoing work is concerned with the
design of context-aware scheduling and contingency management. Context-aware

14 JE. Bardram and N. Venkataraman

scheduling will enable scheduling that takes into account the physical setting of
the involved nodes. Contingency management will help us run on more volatile
and heterogeneous infrastructures. For example, allowing asynchronously task
and result distribution which would allow the resources to be off line for a pe-
riod of time. Currently bioinformatics algorithms (including e.g. BLAST) are
being implemented as a part of the CLC Workbench to use the Mini-Grid in-
frastructure. This will enable us to leverage bioinformatics analysis in a biology
lab using state-of-art user-friendly bioinformatic software and also to explore
hardware accelerated bioinformatics algorithms running on the CLC Cube” and
the CLC Cell®. Peer-to-peer cooperation across LANs has not yet been imple-
mented, but will be addressed using inter-LAN gateways.

References

[1] Foster, I., Kesselman, C.: Computational grids. (1999) 15-51

[2] Kurdi, H., Li, M., Al-Raweshidy, H.: A classification of emerging and traditional
grid systems. Distributed Systems Online, IEEE 9(3) (March 2008) 1-1

[3] Foster, I.: Globus Toolkit version 4: Software for Service-Oriented Systems. Jour-
nal of Computer Science and Technology 21(4) (2006) 513-520

[4] Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations.
In: Proceedings of the 8th International Conference of Distributed Computing
Systems, IEEE Press (1988) 104-111

[5] Anderson, D.P.: BOINC: a system for public-resource computing and storage. In:
GC ’04: Proceedings of the Fifth IEEE/ACM International Workshop on Grid
Computing, New York, NY, USA, ACM Press (2004) 365-372

[6] Seymour, K., YarKhan, A., Agrawal, S., Dongarra, J. In: NetSolve: Grid En-
abling Scientific Computing Environments. Volume 14 of Advances in Parallel
Computing. Elsevier (2005) 33-51

[7] Y, Y.T., Nakada, H., Sekiguchi, S., Suzumura, T., Matsuoka, S.: Ninf-g: A refer-
ence implementation of rpc-based programming middleware for grid computing.
Journal of Grid Computing 1 (2003) 41-51(11)

[8] Anderson, D.P., Christensen, C., Allen, B.: Grid resource management—designing
a runtime system for volunteer computing. In: SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, New York, NY, USA, ACM Press
(2006) 126

[9] Vinter, B.: The Architecture of the Minimum intrusion Grid, MiG. In Broenink,
J., Roebbers, H., Sunter, J., Welch, P., Wood, D., eds.: Communicating Process
Architectures. I0S Press (2005)

[10] Fedak, G., Germain, C., Neri, V., F.Cappello: XtremWeb: a generic global com-
puting system. In: Proceedings of First IEEE/ACM International Symposium on
Cluster Computing and the Grid, IEEE Press (2001) 582-587

[11] Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience 17(2-4) (2005) 323-356

[12] Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource manage-
ment for high throughput computing. High Performance Distributed Computing,
1998. Proceedings. The Seventh International Symposium on (Jul 1998) 140-146

7 www.clecube.com
8 www.clecell.com

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

The Mini-Grid Framework 15

Kramer, D., Maclnnis, M.: Utilization of a local grid of mac os based comput-
ers using xgrid. In: 13th IEEE International Symbosium on High Performance
Distributed Computing. (2004) 264-275

Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mow-
bray, M.: Labs of the World, Unite!!! Journal of Grid Computing 4(3) (2006)
225246

Talia, D., Trunfio, P.. A P2P Grid Services-Based Protocol: Design and Eval-
uation. In Danelutto, M., Laforenza, D., Vanneschi, M., eds.: Proceedings of
Euro-Par 2004. Volume 3149 of Lecture Notes in Computer Science., Springer
Verlag (2004) 1022-1031

Koh, M., Song, J., Peng, L., See, S.: Service Registry Discovery using GridSearch
P2P Framework. Proceeding of CCGrid 2 (2006) 11

Pham, T.V., Lau, L.M., Dew, P.M.: An Adaptive Approach to P2P Resource
Discovery in Distributed Scientific Research Communities. Proceeding of CCGrid
2 (2006) 12

Butt, A.R., Zhang, R., Hu, Y.C.: A self-organizing flock of condors. J. Parallel
Distrib. Comput. 66(1) (2006) 145-161

Fedak, G., Germain, C., Neri, V.: Xtremweb: A generic global computing system.
In: In Proceedings of the IEEE International Symposium on Cluster Computing
and the Grid (CCGRIDO1, Press (2001) 582-587

Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R., Wu, J.: Advanced peer-to-peer networking: The P-Grid
System and its Applications. PIK Journal - Praxis der Informationsverarbeitung
und Kommunikation, Special Issue on P2P Systems (2003)

Brooke, J., Fellows, D., Garwood, K., Goble, C.: Semantic matching of grid re-
source descriptions. In: In Proceedings of the European Across Grids Conference,
2004, http://www.Grid-interoperability.org/semres.pdf, Springer (2004) 240-249
Klemperer, P.: 1. In: Auctions: Theory and Practice. Princeton University Press
(2004)

