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ABSTRACT
Distributed interaction is a computing paradigm in which the in-
teraction with a computer system is distributed over multiple de-
vices, users and locations. Designing and developing distributed
interaction systems is intrinsically difficult as it requires the en-
gineering of a stable infrastructure to support the actual system
and user interface. As an approach to this re-engineering prob-
lem, we introduce NooSphere, an activity-centric infrastructure and
programming framework that provides a set of fundamental dis-
tributed services that enables quick development and deployment
of distributed interactive systems. In this paper, we describe the re-
quirements, design and implementation of NooSphere and validate
the infrastructure by implementing three canonical real deployable
applications constructed on top of the NooSphere infrastructure.
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1. INTRODUCTION
With the widespread introduction of mobile devices (such as tablets
and smartphones) and increased availability of large displays (such
as situated displays and tabletops), setups in which users are en-
gaged with multiple devices at the same time are becoming more
common outside of the traditional smart space environment (such
as Gaia [35] or iLand [37]). Heterogeneous multi-device environ-
ments have the potential to introduce new cross-device interaction
techniques, support seamless shared information spaces based on
the users’ tasks or provide a new platform to explore collaborative
setups. More general, distributed interaction refers to a paradigm
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in which interaction with a computer system is dynamically dis-
tributed over one or multiple (i) users, (ii) devices and (iii) loca-
tions. These three elements change over time and are in an ad-hoc
and dynamic way related to the tasks or activities people are do-
ing. Information is no longer tied to one specific personal device
but multiple personal devices are rather mediators to the ubiquitous
personal information space provided by the internet.

However, as pointed out by Edwards et al. in “The infrastructure
problem in HCI’’, applications and user interfaces are not designed
in isolation but on top of toolkits and infrastructures [15]. In fact,
underlying technology determines to a great extend the capabilities
and limitations of the interactive application. The problems with
designing systems for distributed interaction lies in the fact that
support for a large number of important distributed interconnected
services needs to be in place. In an environment of changing users,
devices and locations, these requirements pose a challenging and
time consuming task to developers. First, there are a large number
of problems related to the storage, sharing, replication, synchro-
nization and contextualization of data and information. In order to
provide seamless support for these, developers need to deal with
complex dynamic network setups, synchronization between net-
work protocols and concurrency issues. Second, there are a number
of challenges related to the discovery and pairing of heterogeneous
devices as well as the integration of distributed interaction systems
in application-oriented platforms. Designing, prototyping and de-
veloping stable distributed interaction applications that are deploy-
able in the wild is extremely challenging because it requires de-
velopers to engineer a stable infrastructure to support a number of
distributed services that support the user interfaces. Moreover, the
complexity of defining and managing a data and context model that
provides the appropriate support for distributed interaction systems,
is intrinsically tied to the architecture of the underlying infrastruc-
ture.

As an approach to this re-engineering problem and exploration into
infrastructure design, we introduce NooSphere, an activity-centric
infrastructure that provides a flexible platform for the prototyping
of distributed interaction systems. We report of the architecture
and components of NooSphere and describe three canonical appli-
cations built on top of NooSphere. The paper concludes with a
reflection on the merits and limitations of our approach.

2. RELATED WORK
Smart space approaches have originally initiated the research into
infrastructures and architectures that support distributed user in-
terfaces (DUI). The seminal work of Marc Weiser [41] at Xerox
PARC describing a ubiquitous vision that includes pads, tabs and



large displays originated a vast body of research in interactive smart
spaces. One of the earliest smart spaces is iLand [37] which used
the roomware BEACH to create shared information spaces that
stretch different displays and devices. Another classic smart space
system, iRoom [22], provides the ability for pointer redirection,
content replication and collaboration through an infrastructure- cen-
tric approach based on an event and data heap.

Project Aura [16] is a pervasive smart space system based on an
adaptive infrastructure that supports surrogate clients that amplify
the capabilities of mobile devices, nomadic file systems through
data staging and network advisors. Aris [8] supports the redirec-
tion of windows and input between different types of devices in-
cluding private devices and public displays in an effort to support
a multi-user legacy user interface environment. Other approaches
that provide support for pointer redirection are Pointright [23] and
Impromptu [9]. XICE allows for the extension of input and out-
put of mobile devices by annexing it to a smart space wall or table
displays [1]. The Gaia Operating system [35] is a meta operating
system that provides support for the coordination of software en-
tities distributed over heterogeneous networked devices contained
inside a physical space. Finally, Shared Substances [17] is a novel
data oriented middleware that proposes to decouple functionality
from data to support the design of multi-surface applications. A
number of systems have been proposed to move beyond the smart
room into smart buildings. ReticularSpaces [5], e.g., is built on top
of a peer-to-peer event system that supports distributed hash maps
to share data between different devices. More recently, the Window
Brokers system [2] introduced an approach to annex devices into a
shared workspace using display servers.

In literature, many existing approaches to pervasive middleware
have been described over the years (including [6, 10, 12]). Several
approaches focus specifically on collaboration inside a pervasive
environment using platform compositions [33], context-awareness
and semantic technologies [39], missions [24], proxy devices [38],
services [34] and roles [18]. Ecora [32] is an agent-based perva-
sive framework for the construction of context-aware applications
that focuses on heterogeneity, scalability, communication and us-
ability. A similar infrastructure is GlobeCon [27] which provides
support for distributed and pervasive computing in large-scale envi-
ronments, thus moving beyond rooms or buildings. For a complete
overview and classification of context-aware systems, we refer to
[19] and [3]. Recently, a number of cloud platforms [25] includ-
ing Google Apps Engine, Microsoft Azure and Amazon S3, have
empowered developers to create applications in which data and ser-
vices transcend the individual device and can be consumed on any
device with internet access. This model adheres much more to the
idea of a personal information cloud [28].

Most of these smart space systems and pervasive infrastructures
however, suffer from three main issues. First, they are contained
in one physical environment (room or building), neglecting some
of the impact of mobility and interconnectivity. Second, most of
these systems are extremely complex to deploy and do not integrate
with existing applications and platforms, putting a great strain on
developers and users. Finally, because these systems transcend in-
dividual devices, they introduce context or aggregation models to
support end-users. However, many of these models are arbitrary
context models and do not reflect the tasks or activities people do
with these systems. NooSphere draws from this previous work to
provide a lightweight infrastructure and programming framework
that unifies the interconnectivity of cloud platforms with the dy-

namics of smart room technology. The core contribution of this
paper is a novel generic and reusable infrastructure that represents
data and context in an activity-centric approach, which reflects the
actual tasks people do with these systems. Informed by prior stud-
ies on activity-centric computing approaches [5, 20], the infrastruc-
ture and all its services are thus designed specifically around this
notion of activity.

3. REQUIREMENTS
Based on the related work discussed above and prior research into
approaches for distributed environments, we have derived 7 core
requirements for distributed interaction systems:

R1: Persistence – the infrastructure should provide a persistence
mechanism that can be used to store data and information
from any location, device type, or context. This will allow
data and information to transcend the local space and context
and become a truly ubiquitous concept based on an extensive
life cycle re-use as described by Moran and Zhai [28]. Ad-
ditionally, to support persistence during offline sessions, the
infrastructure should cache data and events locally.

R2: Distribution – the infrastructure should support synchronous
and asynchronous distribution of data models and files both
in a local space as well as outside of this space. This allows
for the connection of different distributed systems from dif-
ferent domains into one shared distributed interaction space.

R3: Discovery and Pairing – to allow applications and devices
to seamlessly join a distributed space, the system must pro-
vide built-in support for (i) discovery of services, and (ii) an
automatic pairing system that annexes different devices or
applications into one seamless space. Since computer use is
shifting from device specific applications and files to cross-
device information and services, support for aggregation and
composition of multiple devices should be an inherent part
of the infrastructure.

R4: Coordination and Communication – as information and
data is increasingly being used at the same time by multi-
ple users, the infrastructure should support the notion of user
multiplicity by allowing the attachment of specific artifacts,
events, workflows or messages to the underlying data model.
This ensures that applications or devices can support multi-
user coordination and communication tools.

R5: Configuration – configuration refers to the process of deter-
mining the state of an application or device. To seamlessly
move information between different applications or devices,
the infrastructure should support the configuration of infor-
mation on one or multiple devices for one or multiple users.
This will allow users to manage data and services on differ-
ent devices or applications.

R6: Context Handling – to support the use of context-aware
functionality (e.g. location trackers) or embedded systems
(such as Gadgeteer or Arduino), the infrastructure should
provide a mechanism for system specific context processors
that allow for the distribution of context information over all
connected applications and devices.

R7: Interoperability – to fully support a multi-device configu-
ration, the infrastructure should provide support for different
operating systems and platforms by implementing a platform
independent protocol. This will allow future inclusion of new
technologies or platforms.



In order to support quick prototyping, development and deploy-
ment of distributed interaction systems, the requirements should
be implemented with an appropriate level of abstraction, leaving
e.g. networking and file management transparent to the developer.
At the same time, the infrastructure should be extensible to meet
new requirements. NooSphere is a lightweight and scalable toolkit
that implements these requirements and can be used to design, pro-
totype and develop interconnected activity systems for distributed
interaction.

4. NOOSPHERE
NooSphere is an activity-centric service-based infrastructure and
programming framework to support the development and deploy-
ment of distributed interactive systems. It is built on the concept of
communicating activity systems [21]: by using a standardized data
model and a two layered infrastructure consisting of a cloud and
local distributed system, it allows for the deployment of different
distributed interaction applications that can be interconnected. This
implies that data and services are not confined within one system
but can be consumed in all interconnected systems through adap-
tation of the context. This allows developers to built very com-
plex distributed applications that consist of different domain spe-
cific system that are interconnect through the cloud. As illustrated
in Figure 1, NooSphere is therefore composed of two fundamental
components: (i) NooCloud, a cloud platform, and (ii) NooSystem,
a distributed activity system.

Figure 1: The architecture of NooSphere is composed of two
components: (i) NooCloud, a cloud infrastructure that sup-
ports data storage, event distribution and activity management,
and (ii) NooSystem, a dynamic distributed system that supports
cross-device activity management, file and event distribution as
well as a discovery and pairing mechanism.

4.1 Activity-Centric Computing
Activity-centric computing (a concept that was originally intro-
duced by Apple Research [30]) is an interaction paradigm that pro-
vides support for the users’ activities, rather than the tools they use

to perform those activities. An activity is a higher level structure
that encapsulates all resources and tools relevant to a specific task in
order to represent an intention of work. Over the years several ap-
proaches to activity-centric computing have been successfully de-
ployed to support (i) desktop multitasking, (ii) context handling and
(iii) augmented interaction. The paradigm has been applied to dif-
ferent areas in Human-Computer Interaction (HCI), ranging from
task management to collaborative work on the desktop interface [4,
13, 20, 29, 40]. However, more recently the approach has also been
applied to distributed user interfaces and pervasive computing [5, 7,
11, 26] demonstrating its merit as a context model in a multi-device
environment. Based on the experiences and lessons learned from
successfully deploying these activity-centric systems, we propose
to move to a more generalized activity-centric infrastructure, which
will allow for more advanced prototyping and deployment.

Figure 2: NooSphere uses activity as a first class object in all op-
erations. The minimal activity object is composed of (i) users,
(ii) meta information and (iii) actions, which are subtasks that
contain resources such as files or links to web services..

4.2 Activity Model
The main advantage of activity-centric computing is that the activ-
ity model is a reflection of real physical tasks and activities that
people do. Compared to other arbitrary context models (like those
discussed in the related work section), the close mapping between
the intention of the user’s interaction and the digital representa-
tion of that intention allows users to easily use, appropriate and
configure the model thereby minimizing intelligibility problems [5,
20]. The activity model includes information (such as files and re-
sources), coordination information (such as users and roles) and
configuration states (such as application descriptions) making it a
well suited match for a multi-user, multi-device and multi-location
environment. The first class object in the NooSphere infrastructure
is thus an activity, as illustrated in Figure 2. In its minimal con-
figuration, an activity is composed of (i) users, (ii) actions which
contains resources and (iii) meta data.

Users. Users are digital representations of human agents that in-
teract with the activity. They are part of the activity, they own,
shape, define, consume, and share activities by interacting with the
system. While the activity has one owner (the creator of the activ-
ity), it can be accessed by multiple users based on roles or other
limitations imposed on the user object. All changes to the activ-
ity are shared with all users associated with the activity. The user
multiplicity is an inherent part of the infrastructure and can thus be
used to determine how actions and resources of an activity should
be shared or consumed by the application.



Actions. Each activity is subdivided into a set of actions, which
are tasks that are part of the activity. Actions structure how users
interact with the different resources, such as files, folders and web
services. Additionally, actions can be modelled as workflows, which
are structured or unstructured sequences that are imposed or de-
fined by the user. Actions thus describe functions of work as well
as resources that are part of the activity.

Meta Data. Each event that occurs within the activity is logged
and stored into the activity itself for persistence and reflection. The
history can be used to track changes in parts the activity, create
awareness on different actions or simply to visualize the develop-
ment. Each activity is uniquely defined by an identity which con-
sists of meta data such as a name, image or description and a unique
reference number (e.g. GUID). An activity can be connected to
other activities creating hierarchical relationships or references be-
tween activities.

4.3 NooCloud
NooCloud is an event-driven cloud-based service platform that sup-
ports (i) persistence of the activity model, (ii) storage capabilities
for files, events and activity models, and (iii) cloud-based event dis-
tribution. The main component of NooCloud is the activity cloud
controller (ACC), a cloud infrastructure exposed by a RESTful HTTP
API. The ACC is the entry point of the framework and provides a
number of activity-centric services grouped into a set of controllers,
based on the Front Controller design pattern. Each controller is
responsible for every create, read, update and delete (CRUD) op-
eration performed upon its certain area of responsibility and re-
lated tasks are thus forwarded by the ACC to the correct controller.
All controllers are aggregated in the ACC and exposed as an ac-
tivity manager cloud service (AMCS). This service accepts HTTP
requests for all functionality, ranging from file to activity manage-
ment and is thus the public access point. Through the API, users
can create, read, update and delete activity models and containing
resources through pure HTTP requests. On top of this service runs
a public website, which has two main purposes: (i) providing doc-
umentation on the API and (ii) allowing users to create an account
or manage existing accounts.

4.3.1 Storage Controller
The storage controller (SC) provides support for the storage of all
the infrastructure primitives, which are entire activity models, ac-
tions, users, devices and events. The SC supports two types of
storage: (i) registries, which are entries that are stored in a NoSQL
database and (ii) pure storage, which is binary serialized data. Reg-
istries store basic information for quick lookup and support ad-
vanced search and retrieval. The registry supports retrieval of en-
tire activity models, actions, devices and users based on the GUID
described in the entity base class. Because the activity model in
NooCloud needs to be very flexible, a pure storage is implemented
that stores the serialized extensions of the data model objects as
well as actual files in the object cloud storage. This means that the
activity itself and all its resources are saved directly in the cloud
storage while keeping a reference in the lookup registry. (Imple-
menting R1: persistence)

4.3.2 Event Controller
A local activity system can connect to the NooCloud through an
HTTP endpoint that is exposed by the AMCS and handled by the
event controller (EC). When a user or local system connects to the
AMCS, it passes the login attempt to the EC, which establishes a

persistent HTTP connection and returns a connection ID if the ac-
count is found. This ID is then used by the local system as a basic
authentication token and is passed on as a parameter in each of the
following HTTP requests. Users can connect several devices or lo-
cal systems to the same cloud account causing the EC to register the
connection to multiple devices or systems. Whenever a controller
(e.g. storage controller) has handled a request that either changes
data, or is relevant for other users or devices, the EC is asked to
notify the relevant connected devices. The event is pushed to lo-
cal users or systems over the persistent HTTP connection. The EC
uses a centralized key-value store to store events before forwarding
them. Through the EC, the infrastructure supports synchronous up-
dates and work on multiple devices involving multiple users. (Im-
plementing R2: distribution)

4.3.3 Contact Controller
Through the AMCS, a contact controller (CC) takes care of the
handling of user management. A user can prompt another user to
become a contact, and a contact request is thereafter stored in the
registry as well as send to the prompted user. They can then choose
to accept the request, after which the two users are connected and
automatically subscribed to each others activities upon connect. A
contact can be removed at any time, disabling the notifications from
the other user. (Implementing R4: communication and coordina-
tion)

4.4 NooSystem
NooSystem is a dynamic service-based infrastructure that supports
the distribution of activity model instantiations, files, communi-
cation and coordination messages and context representations in
a local multi-device information space. The infrastructure uses a
flexible service model that during compile time can be accessed
through a DLL or class files, while each service at runtime is ac-
cessible through a REST HTTP service that is hosted in its own
url-based service host. The infrastructure is composed of five dis-
tributed subsystems: (i) the activity system, (ii) publish-subscribe
event system, (iii) a file system, (iv) a discovery and pairing system
and (v) a context monitoring system.

4.4.1 Activity System
The activity system is subdivided into two components: activity
manager and activity client. The activity manager (AM) is used as
a coordinator between different local clients and/or managers that
are connected inside the local NooSystem and is directly connected
to one account of the activity cloud controller (ACC). The activity
client on the other hand, is used to consume the activities on local
devices and is directly connected to a local AM, which distributes
the activities to the clients.

The activity manager (AM) is typically connected to an instance
of NooCloud and thus is synchronized with all activities stored in
the cloud for a particular user account. The AM is connected to
the ACC through a Local Activity Controller (LAC), which creates
and maintains a persistent HTTP connected with NooCloud. All
events that are distributed by the ACC are handled by the LAC and
passed on to the AM, which distributes the events through a local
distributed publish / subscribe system to all connected clients. The
AM caches all activities locally to deal with network interruptions
and to speed up the distribution of activities and resources. The
AM is exposed to the local NooSystem through RESTful http ser-
vices. The AM can also be used only in a local setting (without the
cloud link) and can even be connected to the activity store of an-
other AM. The activity client (AC) is composed of a netcontroller



and a platform client. Each AC is connected to a local activity man-
ager (AM) through the netcontroller which registers itself with that
AM with a callback service address that runs a client REST HTTP
service to which the AM can send distributed events. The platform
client (PC) converts the netevents into native events (e.g. C# del-
egates) which are then exposed to the platform integration layer.
Both the activity client (AC) and activity manager (AM) are com-
posed of four local distributed subsystems: (i) event system, (ii)
file system, (iii) discovery system and (iv) context monitor system.
(Implementing R5: configuration)

4.4.2 Event System
The distributed event system (ES) is an HTTP REST publish/subscribe
service that supports the distribution of messages, activity events,
device events, user events, file events and external events. When an
activity client is connected to an activity manager, the client sends
an HTTP request to the manager that contains a device object, de-
scribing the device, and a callback service address on which the
activity client device is running the callback services. The activ-
ity manager registers the activity client and active device and pub-
lishes all events and messages to the host address of the activity
client. These events include system messages which contain either
user content (such as chat messages) or control messages (such as
reconnect requests). The event system also distributes changes to
the activity collection (such as added, removed, changed or locked)
to inform all connected clients to update the local visualization.
Next, every time a device containing an activity client connects to
or disconnects from the activity manager, device messages contain-
ing information about changes in the device collection are sent to
all connected clients. (Implementing R2: distribution)

4.4.3 File System
Both the activity client and activity manager are equipped with a
file system. The file system is composed of a file server, which is
responsible for saving (to disk) and loading files (to stream), and a
file store, which is a key-value store that registers all files that are
part of the loaded activities (NoSQL database). The file service dis-
tributes file events through the event service (request to download,
request to upload and deleted), when files are changed at the activ-
ity manager. The source can be both local (in the NooSystem) but
also external (by an external NooSystem that is connected through
the NooCloud). When a new file is added to an activity by an activ-
ity client, the activity model is first updated to the activity manager,
which will in turn send a request to upload message to the client.
When the client uploads the file to the file store of the manager,
the activity manager sends an request to download to all other con-
nected activity clients as well as the NooCloud. The NooCloud in
its turn will request the local activity manager to upload the file to
the cloud storage. Because all updates are sent to all attached activ-
ity clients and managers, local applications using the infrastructure
can decide how to handle file consistency and potential conflicts.
(Implementing R1: persistence and R2: distribution)

4.4.4 Discovery and Pairing System
Each activity manager is equipped with a broadcast service, which
broadcasts the manager’s name, host address and device informa-
tion (type, physical location and ID) over the local network. When
the broadcast service is started, a separate host with a dedicated
address is launched. The broadcast service can be dynamically (re-
)configured and (de-)activated at runtime, to allow developers to
toggle discovery support. In order to find activity managers on a
local network, both the activity client as well as activity manager

are equipped with a discovery service. This service searches the lo-
cal network for available activity managers and exposes them to the
main controller for consumption. The current version of NooSys-
tem implements both Webservice Discovery as well as Apple Bon-
jour protocols to support different types of devices and operating
systems. (Implementing R3: discovery and pairing)

4.4.5 Context Monitor System
To add support for context-aware and embedded devices (such as
Arduino or location trackers), the activity manager and activity
client are equipped with a context processor. This processor tracks
a collection of IContextService objects which are monitored in sep-
arate threads. Each event triggered by the context processor is dis-
tributed through either the event system (as a context message) or
via a UDP multicast system (for real-time services) that is dynam-
ically launched and attached to the context processor. (Implement-
ing R6: context handling)

Figure 3: The local infrastructure NooSystem, can be deployed
in different configurations: (a) manager and client on the same
devices, (b) peer to peer connection between manager on differ-
ent devices, (c) traditional client server approach with a man-
ager on a dedicated devices or (d) hybrid setup composed of
both dedicated and local managers.

4.5 Deployment
The infrastructure is designed to be modular and scalable and can
thus be used in combination (NooCloud and NooSystem) but also
separate. Since NooCloud provides an open API, any developer
can design a custom activity system using any language or platform
that supports REST HTTP calls. NooSystem on the other hand has
the ability to work with local activities only, thereby removing the
necessity of connecting to the cloud part to use activities. (Imple-
menting R7: interoperability)

The NooSystem is also modular on a local level. Since both the
client and manager are lightweight services, they can be spawned
on either the same or different devices (Figure 3 a) using HTTP ser-
vices. Activity managers can also connect to each other, emulating



a peer to peer system (Figure 3 b). With this approach, different
managers can exchange activities of different users. In case one
device is dedicated for the activity manager, the setup can also be
configured as client-server (Figure 3 c). Because of the service-
based approach, hybrid approaches that merge dedicated managers
and local managers can be connected to form one NooSystem (Fig-
ure 3 d). Finally, the code library provides the ability to use the
activity manager and client directly in code without the need for
dynamic REST HTTP services. Because of the architecture of the
system, the network code is completely transparent for developers,
who simply need to connect to a running service from within their
application. All network code is made transparent by wrappers that
translate network events send by the NooSystem to local delegates.

The NooCloud infrastructure is built on top of the ASP.NET Web
API Framework and runs on the AppHarbour cloud platform. The
event system is implemented using SignalAR in order to support a
cloud-based real-time publish-subscribe mechanism. The NoSQL
database used by NooCloud to create the registries is MONGODB
The cloud infrastructure is exposed to the web through a REST
HTTP API. The Noo System is implemented using Mono WCF
(Windows Communication Foundation), Web API and runs on Win-
dows, Linux OS X and Android. Each service (activity, discovery
and file) runs in a custom built service host (using Owin) which ex-
poses the service through a REST HTTP service. The local storage
is implemented using RavenDB.

5. CASE STUDIES
To validate the functionality of the infrastructure and test the stabil-
ity, performance and feasibility of the architecture, we present three
canonical distributed activity-centric case studies [14] that repre-
sent real deployable and testable system similar to those found and
tested in research and industry. Table 1 provides an overview of the
three applications and their use of the underlying features provided
by NooSphere.

Building different reference applications on top of an infrastruc-
ture has been proposed as a robust research method for evaluating
infrastructures [14, 15]. These applications demonstrate the func-
tionality of the infrastructure and can be used as input for its appli-
cability for supporting application development. In this section, we
present three such case studies, and discuss how they benefit from
using the NooSphere platform. In the case studies we present:

– Case Study #1: co-Activity Manager – reimplementation
of an existing application [20].

– Case Study #2: Dynamic Device Composition – construc-
tion of an application using the basic infrastructure.

– Case Study #3: SmartWard – rapid prototyping of an ad-
vanced research application by leveraging the features of the
infrastructure.

5.1 CS #1: co-Activity Manager

Description. Task- and activity-based desktop systems have been
proposed as a mean to contextualize desktop usage as they re-organize
information based on tasks people do. With the more widespread
availability and usage of tablets and e-readers, significant research
have been investigating how to seamlessly integrate the exchange
of contextual files between different types of devices and users.
In this application, we reimplemented co-Activity Manager [20]
(cAM), an activity-centric desktop manager using the NooSphere

infrastructure and extended its functionality so it seamlessly sup-
ports resource sharing with a tablet containing an e-reading appli-
cation.

Figure 4: co-Activity Manager [20] (cAM) is a multi-user ac-
tivity centric desktop interface that contains an activity bar at
the top of the screen (A). Each activity button represents an on-
going activity; clicking the button will load the virtual desktop
related to the activity as well as repopulate the desktop back-
ground. Files can be related to the activity by dragging and
dropping them on the desktop background of a loaded activ-
ity. The tablet (B) can be paired to cAM by selecting the device
from the auto-detect menu. Users can simply drag and drop
files they want to use on a tablet on the activity bar located at
the top of the screen.

Using the Infrastructure. Using NooSphere as underlying in-
frastructure, the entire network, activity management and commu-
nication code base from the original project (roughly 3000 lines of
code) could be replaced by 50 lines of code required to initialize the
infrastructure. The user interface and features are identical as in
the original implementation. However, the reimplementation that
uses the activity client and activity manager from NooSphere, sim-
ply needed to setup the activity system and hook the user interface
components to the events produced by the infrastructure. Figure 5
shows the code used to set up the activity client using the Noo-
Sphere infrastructure. The code sample first demonstrates how to
create and initialize a new user and device and associate them with
the new activity client and activity manager. It also shows a num-
ber of example event available through the activity client object.
The callbacks hooked to these events are part of the infrastructure
and designed to de-serialize the JSON objects used by the infras-
tructure into native typed c# objects. After opening the activity
client, an activity repository is created (or loaded in case a previous
session is detected), a file server is started and the REST and dis-
covery services are run automatically in the background. Because
the infrastructure automatically includes support for sharing activi-
ties and their containing resources and contacts with other devices,
we extended the system with a tablet application that can be used
for active reading and resource browsing. The tablet application
also implements an activity client, which connects automatically
to the activity manager of cAM using the built-in discovery mech-
anism. All changes to resources are automatically synced by the



Feature #1: Reimplementation #2: Device Composition #3: Extending the infrastructure
Persistence Activities and files across devices in the

cloud
Activities and files in the cloud Local data store and file system

Distribution Synchronisation of activities and re-
sources

Sharing and synchronisation of files Synchronisation of activity states

Discovery Automatic detection of tablet through
background discovery service

Ad hoc pairing triggered by vision sys-
tems

Automatic ad hoc pairing based on lo-
cation /proximity

Coordination Friend list, sharing activity models
through cloud

Device control (master-slave) Activity-centric messaging (nurses
records)

Configuration Structure desktop using activities that
can be deployed on any device.

File management across multiple users
and devices

Multi-user synchronized activity man-
ager

Context No Pointer and touch redirect Location tracker, Arduino support for
RFID scanner

Interoperability Abstracts activities into a shareable
form (JSON)

Resources to encapsulate native files Abstracts activities into a shareable
form (JSON)

Table 1: An overview of the three canonical applications and how they each utilize different features provided by the NooSphere
infrastructure.

Figure 5: The basic infrastructure programming framework
provides developers with a number of objects that hide all the
underlying complexity. This short code sample e.g. exposes all
underlying network, synchronization, serialisation and context
handling through basic events that send back a native usable
object.

infrastructure and presented to the UI by native events. Some mi-
nor updates to the UI of cAM were required to deal with immediate
updates from the tablet device (e.g. dispatch the received object to
the UI thread), but no extra infrastructure code was required to add
an additional device. Table 1 shows how the reimplementation of
cAM uses almost all basic services except context handling, which
was not a requirement for this particular project.

User Experience. The basic services provided by NooSphere
allows for a seamless multi-device experience, in which users need
to perform very little manual setup, or configuration work, in order
to pair devices or share information with other devices. Because
of the built-in discovery system, the user can simply pair devices
by clicking a button. There is thus no need to setup shared fold-
ers, add credentials or install third party applications. Through the
user interface of cAM, the user can simply drag and drop resources
(such as files or contacts) on top of an activity button, which causes
the infrastructure to automatically transfer it to the attached tablet
that visualizes the newly added resources in context of the existing
activities. The consistent use of activities as structuring mechanism
thus provides users with a consistent mental model across devices.

5.2 CS #2: Dynamic Device Composition

Description. Mobile devices such as tablets and smart phones
provide users with a high degree of mobility in accessing informa-

tion such as emails, images and other resources. However, because
of the limited size of their screens, these devices are not appropriate
for accessing large quantities of resources. Because of this, a body
of work (e.g. [36]) has explored the connection between small mo-
bile devices and large situated horizontal displays like tabletops. In
this case study, we demonstrate the ability to pair a mobile device
(a tablet computer) to a tabletop display (Figure 6).

Figure 6: The public tabletop (A) connected to a tablet (B). The
user walks up to an empty public interactive table (C) and sim-
ply places his device on top of the tabletop. The table will rec-
ognize the device and use the discovery to find and connect to
the activity manager of the tablet. All resources related to the
active activity on the mobile device are deployed on the interac-
tive surface (D). When the user switches between activities, the
interactive desk is repopulated with resources related to that
activity. Users can utilize the desk to exchange, modify or man-
age files and resources. Additionally, the system allows the user
to redirect input from the table, thereby providing remote con-
trol over the surface.



Using the Infrastructure. The main complexity and challenges
in any application that supports multi-device composition on an
interactive surface are (i) detecting and pairing with devices, (ii)
file and resource synchronization and (iii) multi-user context (e.g.
what resources belongs to what user). The interactive surface ap-
plication was designed on top of the NooSphere activity client and
activity manager (as seen in Table 1). However, in contrast to the
co-Activity Manager application, the activity clients are dynami-
cally started when a new device is detected. When the interactive
surface detects a new device (using the vision system and static
markers), it automatically launches the built-in discovery system to
find a device with a running activity manager (in this case a tablet)
of which the broadcast code matches the byte value of the detected
tag. The broadcast code is taken from the device object that is ini-
tialized when the activity manager on the tablet is created. When
the activity client on the surface computer pairs with the detected
activity manager, all shared resource (images in this case) are au-
tomatically synchronized between both devices, and visualized on
the surface. Because each loaded image is associated to a specific
activity and its user, the system can distinguish the image set of
each user. Additionally, rather than simply distributing files, the in-
frastructure provides a Resources object which encapsulates a file
and annotates it with meta data. This data can be used by the appli-
cation to do version control or check the association with multiple
users and their activities. To support pointer redirect between dif-
ferent devices (allowing for remote control), the surface and tablet
applications both implement a basic Context Service, which trans-
lates touch events from one device to another. The infrastructure
adds the services to the running activity clients (e.g. as seen in the
code sample in Figure 5) and automatically sets up and distributes
the context information over a UDP multicast connection. Again,
all complex multi-threaded network code, context modelling and
device synchronization is hidden for the developer, allowing them
to focus on the user interface and experiences. Because of all the
supported services of the infrastructure, the total lines of code for
the surface application is less than 800 lines.

User Experience. The synchronized activity state allows users
to easily swap their set of resources on the interactive table. In
a multi-user experience, this thus means that by simply selecting
a different activity on the tablet, the user updates his part of the
shared view. Because the infrastructure allows for easy addition
of new resources, users can simply drag and drop resources from
other users to their device. Again, very little configuration work is
needed to exchange information or update the shared view. The
pointer redirect can be enabled with a simple button click. Al-
though some work on the side of the developer is required to sup-
port relative mapping, the master-slave negotiation and distribution
of coordinates over the built-in UDP connection, creates an easy
to use and transparent system for the end user. The user is thus
given a very simple interface with advanced functionality hidden in
NooSphere.

5.3 CS #3: SmartWard Research Prototyping

Description. In hospital patient wards, the whiteboard and pa-
tient record are two important artifacts to coordinate information
concerning patients. In this case study, we demonstrate the first
rapid prototype implementation of an ongoing research project in
which we are constructing a distributed patient management system
which supports multi-device configuration of patient cases as well
as coordination through a number of automatic tracking, awareness
and communication tools.

Figure 7: The SmartWard system consists of a large interac-
tive whiteboard to display shared information on patients reg-
istered on the ward using RFID (A), a location tracker used to
detect which patients are at the ward or in surgery (one node
visible in B) and a tablet (C) used by doctors and nurses for
more detailed information on the patient.

Using the Infrastructure. As illustrated in Table 1, this proto-
type uses all basic services provided by NooSphere. As in the other
case studies, SmartWard uses activity clients and activity managers
to synchronize activities, user information and resources across all
devices. However, for this more domain specific application, we
extended the infrastructure with a WardNode layer and special-
ized activity models (e.g. Patient, Nurses, Doctors,...). Figure 8
shows the code used by the application to (i) launch an activity sys-
tem (manager or client) and (ii) and connect the distributed patient
repository to a ObservableCollection that can be consumed by the
UI. The WardNode is also connected to a Sonitor ultrasound loca-
tion tracker (Figure 7 B) using NooSphere. The location tracker
is a specialized context processor which runs in a separate service
host managed by NooSphere. This means that the developer can
simply enable the location tracking and use native events to deal
with detections. Finally, the NooSphere event systems allows for
the decoration of activities with custom tags and messages. In the
SmartWard system, the patient records are attached to the custom
patient model as activity-centric messages.

Figure 8: The Wardnode class is a thin infrastructure exten-
sion which transforms NooSphere into a domain specific de-
ployment. The code allows developers to create a distributed
synchronized patient repository, which can be easily consumed
by a MVVM application.

User Experience. To support coordination between clinicians,
the infrastructure provides a patient activity for each active patient
at the ward. This patient activity model is used to keep a strict
synchronized whiteboard view but can also be used to share in-
formation with other clinicians. Since the information exchange



services (such as writing nurse logs or updating the color state of a
patient) are coupled directly to the patient activity model, there is
no additional configuration work in locating the relevant contacts
or starting an additional tool. Simply attaching information to the
patient case will automatically distribute it to all relevant clinicians.
The built-in support for location tracking provides clinicians with
an easy to use and transparent search tool for other clinicians or
artefacts (such as e.g. the patient record) at the ward.

6. DISCUSSION
Distributed interaction is a concept that has been around for many
years, yet very few infrastructures, toolkits or programming frame-
works that support the prototyping, development and deployment
of these types of systems are actively in use. The central goal of
NooSphere is to introduce a new intermediate [15] activity-centric
infrastructure and programming framework that is aimed at pro-
viding a set of fundamental services required to design and deploy
distributed interaction systems.

NooSphere uses activity as a first class object in an effort to re-
flect the intention of users in the modelling of information spaces
that are spread over multiple devices, multiple locations and mul-
tiple people. Compared to traditional smart space and pervasive
computing systems, this data model maps to the real physical tasks
and activities people do in the information spaces provided by the
infrastructure. This close match between the users’ psychological
interpretation of work and the digital aggregation of the resources
required to perform this work, provides users with a stable men-
tal model that has the capability to transcend the individual device.
The model supports the notion of actions to structure work and re-
sources and user multiplicity to allow multi-user access to the same
activity model. Because of this activity model, the infrastructure al-
lows for the creation of activity-centric coordination, configuration
and communication tools that are part of the same activity system.

A central contribution of NooSphere is the aggregation of a cloud
infrastructure, that is used for persistence and distribution of events,
and a local dynamic distributed roomware infrastructure (similarly
to COAST [37]). However, one of the core differences to prior
smartspace systems is that NooSphere does not require specialized
equipment or user interface frameworks but is usable with exist-
ing operating systems and UI toolkits. NooSphere thus encapsu-
lates a number of complex services and systems into one activity-
centric infrastructure, which is exposed through an API or standard
REST interface. The main purpose of this approach is to provide
a truly distributed and persistent platform that provides the ability
to interconnect systems distributed over different locations all over
the world. Combining a dynamic smart room environment with
the persistence of an integrated cloud platform opens up possibil-
ities for new collaborative setups distributed over multiple loca-
tions. This simplification of interconnections between distributed
services or “‘Power in combination” [31] results in a new design
and prototyping platform. By providing a standard architecture and
model for activity-centric computing, we provide developers with
a framework to built interconnectable tools.

Prototyping complex activity-centric distributed system is easier
as a developer is provided with a set of basic services which are
flexible, easy to set up and transparent. All network code, dis-
covery mechanisms, file and activity synchronization, and context
handling are abstracted into the infrastructure and presented to the
developer as basic Mono C# objects and delegates. Because of
this, prototyping and designing distributed user interfaces is sig-

nificantly faster as it requires less lines of code (to debug). Be-
cause of the abstract model iterative changes to the design (e.g.
induced by user-centric design) do not require the re-engineering
of (parts of) the infrastructure. The architecture of the infrastruc-
ture is extensible as controllers and services can be added, allowing
for modifications, extensions and integration with other platforms.
The infrastructure is designed to support a broad range of technical
setups ranging from traditional local client-server-cloud (e.g. Case
Study #1) and peer to peer (e.g. Case Study #2) setups to large
complex cloud-based hybrid setups (e.g. Case Study #3). Because
of the two-layered architecture and component based design, the
infrastructure is scalable and reusable for complex distributed ap-
plications.

The infrastructure currently also has a number of challenges and
limitations. Some services, such as the context processor or dis-
covery mechanism, provided in the local activity system are not
usable in the cloud. Although the infrastructure allows for messag-
ing between activity systems using the cloud event controller, this
approach is practically not feasible for e.g. discovery or high band-
width real-time context data. The current two-tier architecture of
NooSphere is grounded in the design rational that any device that
is part of the activity system is connected to a local network. This
implies that a local device can always be setup as a local activity
manager, thus providing a node with the necessary services. How-
ever, there are a number of use case (e.g. using smartphones on a
3G network) where these services can currently not be provided.
E.g. if the tablet from Case Study #1 would be connected to the
activity cloud over 3G, the local system would not be able to de-
tect it. Although the device would be in the same room, the event
distribution would be done over the cloud, not the local system.

Because of the high level of abstraction of the activity model and
infrastructure design, some use cases require a thin infrastructure
layer on top of the standard NooSphere API. E.g. in Case Study
#3, a domain specific layer was constructed to encapsulate some
of the dynamic ad-hoc node creation as well as an implementation
of the location tracker. This thin layer is not a formal requirement
as the same functionality can be achieved on the bare framework
code. However, adding this thin layer can facilitate development
and help to manage the complexity of more advanced setups. Al-
though NooSphere provides developers with a number of C# ob-
jects and event and a REST API for other programming environ-
ments, there is currently still an integration problem. Because the
infrastructure is primarily focused on data, event and context distri-
bution, the development and integration of these concepts into the
user interface is still left in the hands of the developers. Although
NooSphere greatly reduces the amount of work on the distribution
part, building activity-centric user interfaces (such as [4, 13, 20, 29,
40]) is still a challenging task. A next step could thus be to extend
the API of the infrastructure to deeply integrate with existing op-
erating systems and widely used systems and tools, to provide an
even broader development platform, or activity-based toolkit.

7. CONCLUSION
In this paper we introduced NooSphere, an activity-centric service-
based infrastructure for the prototyping of distributed interaction
systems. We described the motivation, architecture and compo-
nents, and presented three example applications build using Noo-
Sphere. We are currently using the infrastructure for different re-
search projects aiming at deploying multi-device computing sup-
port in hospitals, interactive desks for knowledge workers, and dis-
tributed collaboration in global software development.
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