
ORIGINAL RESEARCH
published: 01 July 2022

doi: 10.3389/fcvm.2022.893090

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 July 2022 | Volume 9 | Article 893090

Edited by:

Josip A. Borovac,

University of Split, Croatia

Reviewed by:

Hasmukh D. Shah,

Bhaikaka University, India

Bartosz Krzowski,

Medical University of Warsaw, Poland

*Correspondence:

Devender Kumar

devender.kmr1@gmail.com

Jakob E. Bardram

jakba@dtu.dk

Specialty section:

This article was submitted to

Cardiovascular Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 10 March 2022

Accepted: 08 June 2022

Published: 01 July 2022

Citation:

Kumar D, Puthusserypady S,

Dominguez H, Sharma K and

Bardram JE (2022) CACHET-CADB: A

Contextualized Ambulatory

Electrocardiography Arrhythmia

Dataset.

Front. Cardiovasc. Med. 9:893090.

doi: 10.3389/fcvm.2022.893090

CACHET-CADB: A Contextualized
Ambulatory Electrocardiography
Arrhythmia Dataset
Devender Kumar 1*, Sadasivan Puthusserypady 1, Helena Dominguez 2, Kamal Sharma 3

and Jakob E. Bardram 1*

1Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark, 2Department of Cardiology,

Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark, 3U. N. Mehta Institute of Cardiology and Research Centre, Civil

Hospital Campus, and SAL Hospital, Ahmedabad, India

ECG is a non-invasive tool for arrhythmia detection. In recent years, wearable ECG-

based ambulatory arrhythmia monitoring has gained increasing attention. However,

arrhythmia detection algorithms trained on existing public arrhythmia databases show

higher FPR when applied to such ambulatory ECG recordings. It is primarily because

the existing public databases are relatively clean as they are recorded using clinical-

grade ECG devices in controlled clinical environments. They may not represent the signal

quality and artifacts present in ambulatory patient-operated ECG. To help build and

evaluate arrhythmia detection algorithms that can work on wearable ECG from free-living

conditions, we present the design and development of the CACHET-CADB, a multi-

site contextualized ECG database from free-living conditions. The CACHET-CADB is

subpart of the REAFEL study, which aims at reaching the frail elderly patient to optimize

the diagnosis of atrial fibrillation. In contrast to the existing databases, along with the

ECG, CACHET-CADB also provides the continuous recording of patients’ contextual data

such as activities, body positions, movement accelerations, symptoms, stress level, and

sleep quality. These contextual data can aid in improving the machine/deep learning-

based automated arrhythmia detection algorithms on patient-operated wearable ECG.

Currently, CACHET-CADB has 259 days of contextualized ECG recordings from 24

patients and 1,602 manually annotated 10 s heart-rhythm samples. The length of the

ECG records in the CACHET-CADB varies from 24 h to 3 weeks. The patient’s ambulatory

context information (activities, movement acceleration, body position, etc.) is extracted

for every 10 s interval cumulatively. From the analysis, nearly 11% of the ECG data in the

database is found to be noisy. A software toolkit for the use of the CACHET-CADB is also

provided.

Keywords: arrhythmias, context-aware ECG, wearable ECG, atrial fibrillation, ambulatory ECG, arrhythmia dataset

1. INTRODUCTION AND BACKGROUND

A heart arrhythmia like AF alone affects nearly 2% of the global adult population and is
one of the major contributors to CVD related morbid conditions and mortality (1, 2). The
management of AF includes anti-coagulation to prevent strokes and heart rhythm-modifier
medications (3, 4). Also, therapies like electrophysiological pulmonary-vein isolation (PVI)
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can also be offered to selected and suitable candidates with
good curative results (5). However, for treatment to be effective
in preventing further complications, early diagnosis and timely
evaluation of AF plays a vital role. Analysis of electrocardiogram
(ECG) signals is a non-invasive and cost-effective way of
diagnosing AF. Due to their transient nature, paroxysmal
AF remains under diagnosed in baseline ECGs and require
long-term ECG monitoring. However, long-term preemptive
monitoring is challenging as manual analysis of days/weeks-
long ECG needed for detecting paroxysmal AF is resource and
time-consuming.

Over the years, many computer-based algorithms have been
developed for faster and accurate detection of AF and other types
of arrhythmias (6). More recently, with the advent of ML and DL,
the field of computer-aided AF analysis has experienced a huge
breakthrough (6–8). As compared to traditional ML and other
feature engineering-based approaches, DL-based models can
achieve end-to-end classification, thus removing the dependence
on domain experts in the classification and stratification process.
Despite all these advancements, one of the major challenge of
using DL in AF classification is the availability of training and
validation datasets. Although the DL algorithms can directly
learn features from raw ECG data, it requires large and
diverse datasets. The training data diversity helps the models
to incorporate all the variations in inter/intra-personal ECG
morphologies.

To meet this demand, many Internet ECG datasets such as
the AFDB (9), MITDB (10), PTB-LX (11), CinCDB (12), OA-
ADB (13), and DeepQ (14) have been published.Table 1 provides
a summary of these publicly available arrhythmia databases.
MITDB and AFDB are the earliest available ones and have
been used extensively as a benchmark in training and evaluating
ML/DL-based arrhythmia detection models (6, 7, 15).

Although the aforementioned databases have made
a significant contribution for developing and evaluating
arrhythmia detection models; generalization and comprehensive
performance evaluation of such models under free-living
conditions remain questionable and face a number of significant
challenges (6, 15, 16):

Firstly, as mobile and wearable technology is advancing,
wearable ECG devices have become available for longitudinal
arrhythmia screening under free-living conditions. However,

TABLE 1 | Technical specifications and ECG annotation statistics of publicly available ECG databases. Freq, sampling frequency (Hz); Ch, no. of ECG channels.

Database Ch
Freq

(Hz)

No.

samples

Sample

length

Rhythm

classes

No.

subjects
Context Remark

AFDB (9) 2 250 23 10 h 4 25 ✗ Continuous, controlled environment

MITDB (10) 2 360 48 30 min 15 47 ✗ Continuous, controlled environment

NSRDB (17) 2 128 18 24 h 1 18 ✗ Continuous, ambulatory

DeepQ (14) 1 250 897 5 min 8 299 ✗ Intermittent, controlled environment

OA-ADB (13) 6 400 2,000 30 s 15 200 ✗ Continuous, ambulatory, patient-operated

CinC2017 (12) 1 300 8,528 9–60 s 4 – ✗ Intermittent, patient-operated

CACHET-CADB 1 1,024 1602 10s 4 24 X Continuous, ambulatory, patient-operated

the majority of the current databases are either collected in
controlled in-hospital settings or, in some cases, under the
environments where patients are sitting without any motion.
Therefore, the recordings are relatively clean and lack the ECG
morphology changes and confounding artifacts that occur under
free-living conditions. When the classification models trained on
these datasets are applied to ambulatory wearable-based ECG
recordings, they result in non-trivial false positives due to the
degradation in the signal quality (18).

Secondly, the patient’s context, such as physical activity and
posture change, food intake (drinks or heavy meal), or mental
stress, are known to introducemorphological changes in the ECG
signal (19, 20). Existing databases only provide the raw ECG data,
while information on the patient’s context during the recording
is missing. Recent systematic literature reviews of computer-
aided arrhythmia analysis highlight that the arrhythmia detection
in an ambulatory setting remains challenging and prone to
mis-classification, without understanding the patient’s context
in which the ECG was undertaken (6, 21). Even during a
manual ECG analysis, whenever a cardiologist finds 10 or 30
s of ECG segment inconclusive, they often look for the longer
context of the patient’s ECG and rely on their knowledge
about arrhythmia epidemiology (22). Therefore, the patient’s
ambulatory context is essential for avoiding inappropriate
classification due to “arrhythmia mimicking artifacts.” Recent
databases like DeepQ (14) have tried to address this problem
by providing ECG recordings under the following three activity
classes viz. sitting, walking, and lying down. These are, however,
still a very limited set of activities and are recorded under
circumstances that are very discordant from the real-world free-
living ambulatory settings.

Thirdly, databases are usually generated from a single center
for a short time period (minutes or hours) on a homogeneous
group of participants. Due to large variations that exist in the
morphologies of ECG waveforms and the lack of diversity in
current datasets, models trained on such datasets result in a large
number of false positives when applied to ECG from different
user contexts, ethnic characteristics, anthropomorphic features,
gender, age group, and time-periods (6, 23, 24). For instance, a
multi-scale convolutional neural networks (23) showed a 98.18%
accuracy when trained and validated on the AFDB, but its
accuracy was reduced to 94.93% when applied on a Chinese
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dataset collected under free-living conditions. Similarly, the
model by Andersen et al. (25) trained on AFDB has an excellent
performance in 5-fold cross-validation on AFDB; however, it
resulted in 4.9% FPR on previously unseen NSR database from
healthy individuals.

To complement the existing databases and to address some
of the above-mentioned challenges, we present the CACHET-
CADB. In contrast to the existing databases, CACHET-CADB
provides the following unique features:

• It contains longitudinal wearable based ECG data from
arrhythmia patients collected under free-living conditions,
thus suitable for training and evaluating algorithms aimed
at enabling real-time ambulatory ECG monitoring of the
patients.

• Along with the ECG dataset, it also provides contextual data
such as activities, body positions, movement accelerations,
patient-reported events like symptoms experienced, sleep
quality, stress level, and food intake. This contextualized
ECG data can help make the end-to-end DL-based ECG
classification models more explainable. Further, identifying
the algorithm’s source of errors in relation to the patient’s
ambulatory context can help in dynamically fine-tune it for
those false-positives prone/inducing contexts under free-living
conditions.

• Is multi-site and diverse (currently, Denmark and India but
will be expanded further).

Currently, the CACHET-CADB contains 259 days long
contextualized ECG data from 24 patients. It also comprises
1,602 annotations of 10 s long ECG-waveform, manually
annotated by two independent qualified cardiologists into four
different heart rhythm classes: AF, NSR, “noise,” and “other.”
The CACHET-CADB is under continuous development, and
annotations by cardiologists will be added to the database as they
become available. The ECG annotation tool will be made public
to increase the effort of crowd-sourcing the annotation process.
Along with the dataset, a set of Python scripts and other software
tools for data access, visualization, and data processing are
available on the CACHET GitHub repository (26). The dataset is
freely available at DTU Data (27) at DTU.

2. METHODS

This section explains the data acquisition process, including
ethical considerations, the data collection methods and
technology, the data specifications, and the annotation process.

2.1. Data Acquisition
2.1.1. Ethical Consideration
The data for the CACHET-CADB was collected in India and
Denmark. In Denmark, the study was exempted for ethical
approval by the Danish Research Ethical Committee because the
ECG recordings were only collected for technical purposes, and
not to be used in a clinical setting (File # H-19071015). In India,
the data collection was done with Mahatma Gandhi University
of Medical Sciences and Technology (MGUMST), Jaipur, and the
process complies with MGUMST’s human participant’s guideline

FIGURE 1 | Data collection setup: (i) a chest-mounted single channel wireless

ECG monitor collecting ECG and inertial (movement) measurements, and (ii)

the mCardia mobile application for collection of patient-reported data (28).

and regulation as stated by the MGUMST Institutional Review
Board (IRB). The approvals were granted on the ground that data
collection was purely for technology development, and that the
data would not be used for clinical diagnosis or treatment of the
patients.

2.1.2. Recruitment
The participants were recruited during their out-patient
arrhythmia clinic visits via a general announcement to participate
in the data collection study. It was also made clear to participants
that their participation was purely for research purposes, and
the collected data would not be used in their ongoing clinical
diagnosis or treatment. Preference was given to the participants
with a known history of paroxysmal AF or high AF risk factors.
All participants signed an informed consent form and allowed
their data to be used and shared publicly after subject identity
anonymization.

2.1.3. Data Collection Method
We used the mCardia system (28) for the data collection. It
uses a single-channel chest-mounted wireless ECG Holter [the
Movisens ECGMove4 (29)] and a mobile application for data
collection (Figure 1). Participants wore the ECG device using
two disposable adhesive wet Ag/AgCl electrodes. All data was
forwarded to, and stored in the CARP (30), which is a secure
and scalable cloud-based infrastructure for health data science
hosted at DTU. Each participant installed the mCardia mobile
application on his/her phone and continuously wore the ECG
device for a minimum of 24 h and up to 3 weeks. Participants
were instructed to change the ECG electrodes daily and fill in
the patient-reported information (symptoms, stress levels, sleep
quality, and food intake) in the mCardia app. They were also
instructed to take off the ECG device only for charging or during
bathing/shower. Further details on the mCardia system and
CARP can be found at https://carp.cachet.dk/mcardia/.

2.1.4. Anonymization and Data Trimming
The initial recording length varied from 24 h to 3 weeks. For
better manageability, analysis, and data handling, recordings
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FIGURE 2 | Overview of data collection and annotation process.

were trimmed and assigned an anonymous ID (see Figure 5). In
each record, the first (0th) and the last days are of variable lengths,
whereas the rest are 24 h long, starting from midnight.

2.2. ECG Annotation Process
Figure 2 shows the process used for annotating the ECG samples
in the CACHET-CADB. A DL based AF detection model (25)
was used to process the raw ECG recording. The AF onset
and offset timestamps marked by the DL model were stored
in CSV files. Thereafter, the segments between the onset and
the offset were chopped into 10 s interval recordings and sent
to two independent cardiologists for manual annotation via a
mobile ECG annotation app. Figure 3 shows the user interface
of the ECG annotation app used for the manual annotation. The
annotation rules were discussed and agreed upon by the two
cardiologists. A 10 s segment was assigned a label if it contained
more than 50% of a particular rhythm type. If there were
multiple rhythm classes in 10 s sample without having a majority
(≥50%) of a particular class, then it was annotated as “others.”
If artifacts in the 10 s signal precluded proper interpretation
of the underlying rhythm, then the sample was annotated as
“noise.” The annotations of the two independent cardiologists
were compared for inter-observer agreement. If there were
disagreement between the two cardiologists, the annotations
were discarded. Thus, the final database only includes samples

where there is an agreement between the two cardiologist’s
annotations.

2.3. Processing Contextual Data
The collected contextual data is of two categories: (1) patient-
reported data collected via the mCardia app, and (2) sensor-
generated data which is passively collected from the sensors on
themobile phone and the ECGMovisens device.Table 2 provides
an overview of the types of collected data.

2.3.1. Patient-Reported Data
Patient-reported contextual data was collected when the patient
manually enters data during the study period. We collected two
types of patient-reported context information; (1) experienced
events, and (2) daily health reports. The events were registered
by patients when they experienced any unusual symptoms (e.g.,
palpitations, heartburn, etc.) during the ECG recording period.
It includes details about the type of symptom, its duration,
activity during the symptom, and a short note providing more
context and experience. Health reports were provided daily and
comprised of a three short survey on meals (timings and type
of meal (light, heavy, moderate), self-perceived stress level, and
sleep quality (on a scale of 1–5). It should be noted that we only
collected food intake timings and quantity (as light, heavy, or
moderate) and not the specific details of what patients ate in
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FIGURE 3 | Mobile application used for ECG annotation.

TABLE 2 | Specifications of the collected data. S, sensed; PR, patient-reported;

EB, event-based.

Collected data type Type Data source Sampling rate

ECG S EcgMove4 1,024 Hz

3D acceleration S EcgMove4 64 Hz

Rotation rate sensor S EcgMove4 64 Hz

Pressure sensor S EcgMove4 8 Hz

Events PR EcgMove4 & Phone EB

Sleep PR & S Phone 1/Day

Dietary PR Phone 1/Day

their meals. The description of the meal itself was optional in the
freestyle text input. The freestyle comments added by patients for
further describing the symptoms or events were either in English
or in the local vernacular language.

2.3.2. Sensor-Generated Data
The sensed context is passively derived from the on-board
sensors (3D acceleration sensor, gyroscope, and pressure sensor)
of the chest-mounted Movisens ECG device and from the
phone’s sensors. Table 2 lists the sensors’ sampling rates. The
DataAnalyzer Tool (31) was used for processing data from
the Movisens sensors, and context data such as movement
acceleration, body position, activity, step count, wear time,
energy expenditure, and MET levels were derived for an interval
of 10 s. The movement acceleration, also known as MAI, is a
typical physical activity metric that depicts bodily movements’
intensity. The MAI is measured in “g,” which is multiples of
Earth’s gravity (1 g = 9.81 m/s2). In the DataAnalyzer Tool, the
body positions were classified based on the inclination obtained
from the 3D accelerometer. Its activity recognition is based on
a white-box decision tree on the features extracted from the

accelerometer and the barometric air pressure data (32). The
type of recognized activities include unknown, lying, sitting,
standing, cycling, slope up, jogging, slope down, walking, and
not-worn. Similarly, the body positions are classified based on
the inclination obtained from the 3D accelerometer. The body
position classes include unknown, lying supine, lying left, lying
prone, lying right, upright, sitting/lying, standing, and not-worn.

3. DATA RECORDS

The CACHET-CADB includes over 259 days of single-channel
contextualized ECG recording from 24 patients previously
diagnosed with or suspected of the high risk of AF. Besides
the patient’s ambulatory contexts, it also contains 1,602, 10 s
long annotation samples of 4 different ECG rhythm classes,
namely, AF, NSR, noise, and others (anything excluding AF,
NSR, and noise). A sample of each of these rhythm classes
is shown in Figure 4. The CACHET-CADB is freely available
on DTU Data figshare (27) under the name “CACHET-
CADB.”

Figure 5 describes the organization of the records
in CACHET-CADB. For better manageability and incorporation
of future updates, the dataset is split into two main parts: (i)
the raw signals (i.e., ECG, 3D accelerometer, angular rate) and
(ii) the annotations, while keeping the same folder structure
inside each part. At the time of drafting this manuscript, the
dataset has 24 records, spanning 259 days of recording from
24 patients of which, 7 were Danish and 17 were Indian. There
were 15 males/9 females—with an average age of 59, and of
which 11 patients had documented one or more AF episodes in
past.

3.1. Raw Signals and Metadata
The raw sensor data is stored in Unisens (33) file format.
It allows simultaneously multi-sensor data, with synchronous
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FIGURE 4 | (A–C) Show the 10 s ECG recordings of AF, NSR, and Noise classes, respectively.

storage at different sample rates, and comes with a human-
readable meta-file in XML format. As illustrated in Figure 5,
for each day the unisens.xml file contains the metadata for the
raw signals. Table 3 describes these metadata in detail. The
general metadata information includes the start timestamp, the
total recording time (in seconds), and the anonymous user
id (same as the anonymous id for the entire recording). The
patient metadata includes height, weight, gender, location of the
ECG sensor, and age at the time of recording. The raw ECG,
3D accelerometer, angular rate, and pressure signals are in the
ecg.bin, acc.bin, angularrate.bin, and press.bin files, respectively.
To allow for any future processing and analysis of the recordings,
the dataset contains the raw signal without any preprocessing
or filtering.

However, given the recordings’ ambulatory nature, any use of
the data would probably need to implement baseline correction
and removal of other artifacts beyond the normal ECG band
[0.5–50 Hz].

3.2. Annotations and Metadata
As shown in Figure 5, the annotations follow the same folder
structures as the raw signals. For each day, the context.xlsx and
annotation.csv files contain the contextual and annotation data,
respectively.

The context.xlsx file contains the patient’s ambulatory context
for every 10 s interval. These contextual data are derived
from a 3D acceleration sensor, gyroscope, and pressure sensor,
as described earlier. Table 4 provides the metadata for these
contextual data, where the attributes listed in the table are
columns in the context.xlsx file. The “unit” column in Table 4

represents the measurement unit of each attribute. The remark
column provides the label of each subclass within the same
column. For instance, ActicityClass has several sub-classes, such
as lying, sitting/standing, cycling, slope up, or jogging. The
corresponding subclass code (0, 1, 2...) represents them in the
activity column of the context.xlsx file. Patient-reported data is
provided as a single JSON file in each annotation folder (see
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FIGURE 5 | The structure of the data records in CACHET-CADB. Overall, the database is divided into two major parts; (i) the raw recordings in binary files and (ii) the

contextual information including patient-reported data and the annotations. Each record is organized according to patient ID first and day in study subsequently.

Figure 5). The JSON file contains two types of data “dailyInfo”,
and “event”. Their metadata are described in Tables 5, 6,
respectively.

The annotaion.csv file contains the cardiologists’ annotation
of hearth rhythms. It contains the following columns: (i) the start
index of 10 s long segment (Start), (ii) the end index of 10 s long
segment (End), and (iii) the ECG rhythm class (Class). Table 7
provides the statistics of each of the annotated rhythm classes and
their associated code in the Class column of the annotation.csv
file.

4. TECHNICAL VALIDATION

4.1. Quality Assessment of ECG Annotation
Although the DL models (25) was used for automatic labeling
(Figure 3), to ensure the quality and integrity of the rhythm
annotation, we have released only the annotations that have been
manually checked by the two independent cardiologists. A 100%
inter-rater agreement policy is followed. The ECG segments on
which there was a disagreement between two cardiologists are not
included in this release.

4.2. Signal Quality Assessment
For testing the validity of the collected ECG data, an ECG signal
quality assessment was done using an auto-correlation-based
noise detector. Subsequently, the Pan Tomkinson algorithm (34)
was used to calculate QRS complex/R-peaks. The steps used in the
validation process are shown in Figure 6. As the ambulatory ECG
signal tends to get contaminated by noise and other artifacts, first,
a band-pass [0.5–50 Hz] filter was applied, and the baseline was
removed. A Savitzky-Golay (35) filter followed this to smoothen
out the data. Thereafter, the signal was chopped into 10 s
long windows, and an auto-correlation based noise detector was
applied to detect the noisy signal. Finally, the Pan Tomkinson
algorithm (34) was used to calculate the QRS complexes and
the R-peaks for each of these 10 s windows. Table 8 shows
the number of R-peaks detected and the percentage of the
noisy signal detected in each record. It should be noted that
the discrepancy in the ECG noise percentage between patients
(or within the same patient for different days) depended on
factors such as how diligent the patients (or, in some cases,
their caretakers) were in timely changing the adhesive ECG
electrodes. In the ECG signal, intervals between the R-peak
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TABLE 3 | Metadata for the signal files described in the unisens.xml file of each record.

Type Key Data type Channel name Description

Duration String Total recording time in seconds

General Timestamp Start String Recording start time

Measurement Id String Anonymous user id

Height String Height in centimeters

Weight String Weight in kilograms

Patient and SensorVersion String Recording device version

Device SensorType String Recording device type

Age String Age at recording in years

SensorLocation String ECG sensors location on body

PersonId String Anonymous user id

Gender String Gender (M/F)

ECG ECG.bin Binary ECG I

Resolution: 12 bit,

Input range CM = 560 mV,

DM = ±5 mV, 3 db

Bandwidth 1.6–33 Hz

Output rate: 1,024 Hz

Accelerometer Acc.bin Binary accX, accY, accZ

3D acceleration sensor

Measurement range: ±16 g

Output rate: 64 Hz

Angular Rate Angularrate.bin Binary

AngularRateX,

AngularRateY,

AngularRateZ

Rotation rate sensor:

Measurement range: ±2,000 dps

Output rate: 64 Hz

Pressure Press.bin Binary Press

Measurement range: 300–1,100 hPa

Noise: 0.03 hPa

Output rate: 8 Hz

Marker Marker.csv Integer

Contains indexes of events when the

patient experienced unusual systems

and tapped on ECG Holter.

Divide the index by 64 to get the

event time in seconds from

the start of the recording.

Output rate: 64 Hz

indicate heart rhythm’s regularity. These RR intervals (RRI)
features have been extensively used in DL-based AF detection
models (25).

Although we did identify noise in the dataset, we did not
exclude the noise from the database. This was done intentionally
to allow the CACHET-CADB to reflect a realistic distribution
of ECG quality as expected under free-living conditions. ECG
riddled with confounding artifacts and varying signal quality is
expected when performing longitudinal ambulatory arrhythmia
screening. Therefore, we put forward the CACHET-DB as a
resource for designing and evaluating DL-based arrhythmia
detection algorithms, which work under free-living condition
without generating false positives. Moreover, the database can
be used for creating unsupervised learning methods, which can
enable feature extraction representing ECG quality variation
in ambulatory settings. As already discussed, one of the main
challenges with the existing arrhythmia ECG datasets is that
they are collected in a clinically controlled environment and
are relatively clean. Models trained on such clean datasets may
result inmany false-positive cases when applied on ECG collected

under free-living conditions that inevitably has low signal quality
and many artifacts (36, 37).

5. DISCUSSION

This paper presents the design and development of a
contextualized ECG database to support the development
and generalization of ECG analysis and arrhythmia detection
models. The CACHET-CADB has been developed as a part of
the REAFEL (38) research project, which focuses on building
mHealth and DL-based solutions for optimizing diagnosis of
AF in the frail and elderly population. CACHET-CADB is
particularly important for researchers who are working on
bringing ECG analysis and AF detection on patient-operated
wearable ECG into widespread adoption under free-living
conditions. The database will be further expanded with more
recordings and ECG annotation as they become available by
following the data annotation and storage setup described above.

The ability to bring arrhythmia detection models in
widespread adoption under free-living conditions is limited by
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TABLE 4 | Contextual-data descriptor table.

Attribute Unit Remark

Time rel [s] Relative time from start of measurements in seconds

Day rel [d] Number of days from start of measurement

Time rel [hh:mm:ss] Relative time from start of measurement

Date abs [yyyy-mm-dd] Absolute date

Time abs [hh:mm:ss] Absolute time

ActivityClass – Activity Class (0 = unknown, 1 = lying, 2 = sitting/standing, 3 = cycling, 4 = slope up, 5 = jogging, 6 = slope down, 7 =

walking, 8 = sitting/lying, 9 = standing, 10 = sitting/lying/standing, 11 = sitting, 99 = not worn)

ActivityEnergyExpenditure [kcal/d] Activity energy expenditure (AEE) in kcal/d

Altitude [m] Altitude from barometer

BodyPosition – Body position (0 = unknown, 1 = lying supine, 2 = lying left, 3 = lying prone, 4 = lying right, 5 = upright, 6 = sitting/lying,

7 = standing, 99 = not worn)

InclinationDown [deg] Inclination of sensor axis down against the vertical (0–180◦)

InclinationForward [deg] Inclination of sensor axis forward against the vertical (0–180◦)

InclinationRight [deg] Inclination of sensor axis right against the vertical (0–180◦)

MET MET value directly calculated from regression models

MovementAcceleration [g] MovementAcceleration: Raw acceleration, bandpass filtered, vector magnitude

NonWearSleepWake – Sleep/Wake detection (0 = wake, 1 = sleep, 2 = not worn)

NonWearTime – Non wear detection (0 = worn, 1 = not worn)

StepCount [steps] Count of steps per output interval

TotalEnergyExpenditure [kcal/d] Total energy expenditure (TEE = BMR + AEE)

VerticalSpeed [m/s] Vertical speed, calculated from barometer

The attributes are the columns of the context.xlsx file in the annotation folder of each day.

TABLE 5 | Metadata of patient-entered context data “dailyInfo” in JSON file.

Field name Description

Date_time Day for which the “dailyInfo” is filled

Bed_time Bed time

Awake_time Wake up time

Sleep_quality Self-assessed sleep quality (1–5)

Stress_level Self-assessed stress level (1–5)

Lunch_time Lunch time

Lunch_weight Lunch quantity (heavy, moderate, light)

Breakfast_time Breakfast time

Breakfast_weight Breakfast quantity (heavy, moderate, light)

Dinner_time dinner time

Dinner_weight Dinner quantity (heavy, moderate, light)

Other_time Time of any other meal/drink

Other_weight Meal/Drink quantity (heavy, moderate, light)

the lack of a patient-operated ambulatory ECG dataset that
truly represents all the confounding contamination expected in
such conditions. The models trained on benchmark datasets
in Table 1 show high performance when tested on the same
datasets or similar datasets collected under clinical supervision.
However, the high classification performances often obtained
on these datasets are not reproducible when applied to patient-
operated ECG data under free-living conditions. The patients-
operated wearable-based ECG under free-living condition is

TABLE 6 | Metadata of patient-entered “event” field in JSON file representing

patient-reported symptoms that the patient may have experienced during the

recording period.

Field name Description

Id Unique id

Notes Note describing the unusual experience/symptoms

Labels n/a

Source How was the event entered? "Tap": By tapping on the

ECG Holter "Self input": Manually created in the app

Deleted1 Was the event Deleted? (true/false)

Comments n/a2

Duration Time in seconds for which symptoms lasted

Symptom Symptom experienced during the unusual event (e.g.,

“Dizziness”)

Activity Patients activity when the unusual symptoms were

experienced

Completed Were the details of an event filled in? True: All fields were

completed. False: Not filled/ Partially filled

Reviewed n/a

Date_time Time of the event as experienced by the patient

1The patient could delete an event, e.g., if it was created by accidentally

tapping the ECG device.
2The patient’s comments are removed for anonymity.

often contaminated with arrhythmia mimicking artifacts and
suffers from poor signal quality. The cause of the poor
performance under free-living conditions is attributed to the lack
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of diversity and relatively good signal quality of ECG wave forms
in these benchmark databases (18).

With wearable technology advancements, single lead portable
ECG monitoring has been gained attraction for arrhythmia
screening under free-living conditions (39). Coupling portable

TABLE 7 | ECG annotation overview showing the class of rhythm types, its code

in the annotation.csv file, and the number of available annotations for each class.

Class Code #

AF 1 747

NSR 2 615

Noise 3 221

Others 4 19

patient-operated ECG monitoring with computer-aided ML
and DL-based classification algorithms can help in real-time
and cost-effective longitudinal arrhythmia screening under free-
living conditions. To achieve high sensitivity and reproducibility
under free-living conditions, the CACHET-CADB provides an
opportunity to train and evaluate arrhythmia detection models
on a dataset representing all the ECG morphology changes
and confounding noise contamination expected in free-living
conditions.

5.1. Context-Aware ECG for Explainable DL
Models
One advantage of CACHET-CADB over the existing database
is the availability of patients’ ambulatory context corresponding
to the recorded ECG. In the absence of patients’ context, the

FIGURE 6 | Analysis of ECG quality, QRS complex, and R-peak detection.

TABLE 8 | Signal quality assessments and detection of QRS complex/R-peaks. Non-wear Time: Time for which device was taken off (for changing,

bathing, for any other reasons).

Record User Id Days No. of R-peaks
Signal duration

(hours)

Noisy signal

(%)

Non-wear time

(hours)

P1 a2b3c4@cachet.dk 12 1,158,069 241.58 7.48 6.15

P2 t1y2u3@cachet.dk 7 673,950 139.40 6.47 1.03

P3 q1w2e3@cachet.dk 15 1,440,323 315.77 8.40 41.08

P4 p1q2w3@cachet.dk 8 739,199 173.14 5.80 10.85

P5 b1t2s3@cachet.dk 8 665,666 147.97 16.27 25.50

P7 k9v3r7@cachet.dk 12 913,892 260.16 12.43 41.91

P6 s1a2n3@cachet.dk 12 1,241,040 257.34 3.26 8.82

P8 g4v3r7@cachet.dk 22 2,895,927 479.16 9.90 77.98

P9 c1x2p3@cachet.dk 12 921,713 247.78 29.61 82.21

P10 k1x2p3@cachet.dk 16 1,297,163 359.85 31.72 80.28

P11 v2c3r4@cachet.dk 16 1,363,671 326.96 12.72 61.26

P12 r4p2n8@cachet.dk 14 1,988,086 308.91 6.88 6.31

P13 f7c4n6@cachet.dk 19 1,964,554 412.19 2.65 16.63

P14 j4y9x6@cachet.dk 12 1,035,832 262.94 29.90 111.36

P15 u3h6c1@cachet.dk 14 1,385,906 315.49 28.05 79.08

P16 i6t2v4@cachet.dk 17 1,567,938 359.86 6.29 25.71

P17 z2y4b9@cachet.dk 15 1,280,062 325.34 6.02 19.18

P18 g2v5x7@cachet.dk 5 431,256 92.95 3.23 1.54

P19 m1t2a3@cachet.dk 4 272,549 75.22 3.59 2.51

P21 y1t2r3@cachet.dk 8 778,148 168.93 10.34 12.10

P23 m1n2b3@cachet.dk 7 762,802 160.54 7.24 6.33

PNSR-1 deku_test@cachet.dk 1 105,079 24.00 0.49 0.56

PNSR-3 j5f3c2@cachet.dk 1 92,134 26.44 27.14 0.00

PNSR-4 w1y3n2@cachet.dk 2 191,867 48.00 5.63 2.05

Total 259 25,166,826 5529.94 726.57
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FIGURE 7 | Explainable deep learning: This Figure shows a contextualized view of a deep learning-based AF detection model Andersen’s (25) performance on a

single day of ECG from CACHET-CADB. In 24 h of ECG under free-living conditions, short segments of false positive in a model’s output are linked to change in

activity, change in body position, and sudden movement accelerations.

ECG analysis under free-living conditions is prone to mis-
classification and misinterpretation (6). The contextual data
can also be used for multi-model input and context-based
heuristics to dynamically fine-tune the models’ sensitivity and
specificity under different user contexts in ambulatory settings.
To reduce the FPR, algorithms should be made adaptive
to the user’s context—i.e., the sensitivity and specificity of
algorithms should be dynamically adjustable. For instance,
in the elderly population, there is a significantly higher
prevalence of falls in patients with AF (40). Suppose an
algorithm is applied to elderly patients’ data and if a fall is
detected, then the algorithm should factor-in for the fall in the
dynamic adjustment of its sensitivity and specificity. Similarly,
information about AF triggering contexts (41) such as high
stress-level, food-intake (heavy meal), drinks (alcohol, caffeine)
can be utilized to make algorithms more sensitive in those
contexts.

Furthermore, the contextual data can pave the way for
improving the interpretability of ML and DL models (42).
For instance, Figure 7 shows a DL model’s AF classification
results, the “ground truth” annotations, and patient’s
ambulatory contexts (body position, activities, movement
acceleration) for 24 h long record in CACHET-CADB. It
can be inferred from Figure 7 that the model is resulting
in more FP whenever there is a change in activity, body
position, and movement acceleration, which is most
prominent after 09:00 o’clock. Such information can be
made available to a cardiologist for the manual inspection
of the dataset thereby providing a better insight into when
and why the AF detection algorithm has identified an AF
episode. The information can also be utilized to build post-
processing heuristics around these FP prone ambulatory
contexts (43). With CACHET-CADB, we aim to provide the
DL research community rich longitudinal contextualized
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ECG data that can help build and evaluate models which
realistically work on patient-operated ECG from free-living
ambulatory conditions.

5.2. Wearable ECG in Arrhythmia
Monitoring and Its Economic Implications
The CACHET-CADB database is collected using the mCardia
(28) system in the REAFEL (38) project, and its cost is
comparable to other wearable-based single channel ECG devices.
The main focus of the REAFEL study is to diagnose atrial
fibrillation from patient-operated wearable ECG, away from
highly controlled clinical environments, and thereby to make
an accessible diagnostic tool for vulnerable populations who
have difficulties in accessing to such clinically controlled
measurements. Already, ambulatory wearable ECG has
been found to be cost-effective in the detection of AF and
reducing unnecessary hospital visits (44). However, there are
significant potential economic gains in reducing manual
examination of longitudinal ambulatory ECG by using
automated arrhythmia detection algorithms. As pointed
out by Wu et al. (14), the lack of sizable annotated and diverse
ECG wearable datasets for testing and evaluating is one of the
leading causes behind non/slow improvements in classification
algorithms’ performance. By making available the CACHET-
CADB, we aim to help researchers to develop and evaluate
algorithms for patient-operated wearable ECG, thereby making
longitudinal ambulatory monitoring more economically robust
and feasible.

6. USAGE NOTES

The design, data-descriptor, and the software tools for
using CACHET-CADB are presented and made available
for public use. When using this database, please cite the
current publication. The new data recording and ECG
annotations on the existing records will be added to CACHET-
CADB periodically when they become available; details
of the subsequent release will be available at CACHET’s
website (45).

7. CODE AVAILABILITY

Visual inspection and editing of records can be done using
the UnisensViewer tool http://software.unisens.org/download/
UnisensViewer/UnisensViewer_Setup.exe. Python library
pyunisens (https://github.com/Unisens/pyunisens) can be used
for reading and editing the signal programmatically. We also

provide a basic code example and Jupyter Notebook in Python
for using the database https://github.com/cph-cachet/cachet-
ecg-db. The contextual data file context.xlsx can be loaded and
viewed using the panda library (https://pandas.pydata.org/); an
example code for the same can be found at https://github.com/
cph-cachet/cachet-ecg-db. All software is open-sourced under
an MIT license, and we welcome pull requests.
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