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a b s t r a c t 

Background: State-of-the-art automatic atrial fibrillation (AF) detection models trained on RR-interval 

(RRI) features generally produce high performance on standard benchmark electrocardiogram (ECG) AF 

datasets. These models, however, result in a significantly high false positive rates (FPRs) when applied on 

ECG data collected under free-living ambulatory conditions and in the presence of non-AF arrhythmias. 

Method: This paper proposes DeepAware , a novel hybrid model combining deep learning (DL) and 

context-aware heuristics (CAH), which reduces the FPR effectively and improves the AF detection per- 

formance on participant-operated ambulatory ECG from free-living conditions. It exploits the RRI and 

P-wave features, as well as the contextual features from the ambulatory ECG. 

Results: DeepAware is shown to be very generalizable and superior to the state-of-the-art models when 

applied on unseen benchmark ECG AF datasets. Most importantly, the model is able to detect AF effi- 

ciently when applied on participant-operated ambulatory ECG recordings from free-living conditions and 

has achieved a sensitivity (Se), specificity (Sp), and accuracy (Acc) of 97.94%, 98.39%, 98.06%, respectively. 

Results also demonstrate the effect of atrial activity analysis (via P-waves detection) and CAH in reducing 

the FPR over the RRI features-based AF detection model. 

Conclusions: The proposed DeepAware model can substantially reduce the physician’s workload of manu- 

ally reviewing the false positives (FPs) and facilitate long-term ambulatory monitoring for early detection 

of AF. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Atrial fibrillation (AF) is one of the most prevalent cardiac ar- 

hythmias, that is considered as a leading cause of stroke and other 

eart-related complications in elderly population [6,21] . Nearly 2.3 

illion people in the USA alone are affected by AF, and this num- 

er is likely to increase by 2.5 times by the year 2050 [21] . Early

iagnosis and anti-coagulation medication can help in preventing 

F complications [61] and ECG analysis is one of the most inexpen- 

ive and non-invasive ways for early detection of AF. However, due 

o its abrupt and paroxysmal nature, it is challenging to detect AF 
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uring infrequent and short-term in-hospital checkups. Therefore, 

here is a great need for enabling longitudinal ambulatory screen- 

ng and monitoring as a part of the patient’s everyday life outside 

he clinic. Moreover, since visual examination is the usual way for 

ardiologists to analyze ECG recordings, it is sometimes cumber- 

ome to analyze the huge amounts of data, which would be the 

esult of longitudinal ambulatory ECG recordings. Therefore, in or- 

er to realize the ambition of ambulatory cardiac monitoring, it is 

ssential to develop reliable methods for analyzing and interpret- 

ng ECG signals and to detect cardiac arrhythmias such as AF. 

Over the past two decades, several algorithms have been in- 

roduced, which can automatically detect AF from ECG record- 

ngs [14,59] . Most of these algorithms are based on classical ma- 

hine learning and feature engineering techniques (e.g., temporal 

ntervals, wavelet transform, etc.) [32,33,42,56,70] . Feature engi- 

eering is an essential step in these models to transform raw data 
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nto a suitable representation as inputs for the machine learning 

odel to distinguish between different cardiac arrhythmias. Even 

hough feature engineering-based algorithms perform very well 

n some cases, they face three main challenges: (1) they require 

and-crafted feature extraction by a domain expert, (2) they are 

usceptible to noise in ambulatory settings, and (3) they have rel- 

tively low generalization on new data [2,14,43,70] . 

In recent years, there have been several breakthroughs in the 

pplication of DL in areas such as computer vision, natural lan- 

uage processing, and health informatics [10,17,62,65,76,77] . DL has 

lso been widely explored to analyze ECG signals to detect AF 

n heart disease patients [51] . A number of end-to-end DL mod- 

ls have been introduced for AF detection, which basically by- 

ass the handcrafted feature engineering step needed by other 

achine learning methods [2,8,16,18,19,24,39,40,47,67,68,72,74] . For 

xample, Wang [68] has proposed a convolutional neural network 

CNN) and a modified Elman neural network (MENN) AF detec- 

ion model, which achieved an accuracy of 97.4% on the MIT-BIH 

F Database (AFDB) dataset. Similarly, Faust et al. [19] applied a 

ong-short term memory (LSTM) model for AF detection on heart 

ate features, which achieved 98.51% accuracy using 10-fold cross- 

alidation on the AFDB dataset. Petmezasa et al. [58] built a hybrid 

NN-LSTM model that utilizes focal loss when dealing with an im- 

alance training set. This model also performs well on the AFDB 

ataset with a high sensitivity and specificity of 97.87% and 99.29%, 

espectively. 

Despite the promising performance of the above-mentioned re- 

earch on the publicly available datasets, applying them for longi- 

udinal AF screening in ambulatory free-living conditions still re- 

ains an open challenge for several reasons [14,15] . 

Firstly, most of the DL models have been built and evaluated on 

ublic databases, which primarily are short-term recording done 

n a clinical setting, using high-end clinical-grade ECG recording 

evices, and which contain manually corrected and annotated R- 

eak labels [20,54] . The AF detection algorithms based on RRI fea- 

ures are limited by their assumption of receiving almost perfect R- 

eak detection [54] . However, in contrast to such ‘perfect’ clinical 

ecordings, ambulatory ECG recordings are often confounded with 

arious artifacts and noise that mimic AF [41] and is often recorded 

n smaller wearable ECG recording devices with much fewer chan- 

els. The presence of noise and low-quality signals makes the de- 

ection of R-peaks and P-waves very challenging, if not impossible 

n some cases. Consequently, this results in non-trivial false posi- 

ives and performance degradation for such models [16,71] . For in- 

tance, in a previous study, we have shown that in a model trained 

n RRI features, the FPR increased from 1.7% to 4.5% when vali- 

ating the model on an ambulatory database, which only contains 

mbulatory normal sinus rhythm (NSR) data from healthy individ- 

als [2] . Moreover, AF episodes occurrences will be rare, especially 

n the low AF burden population, and noisy ambulatory recordings 

an often mimic such events. In another study, we have shown 

hat the same AF detection DL model trained on the AFDB dataset 

chieved excellent performance of around 98% accuracy [31] . How- 

ver, it resulted in a larger number of non-trivial false positives 

hen applied on patient-operated ambulatory single-channel ECG 

btained under free-living conditions. In the study, we found that 

early 62% of all the false positive cases correlated with the partic- 

pant’s ambulatory context under free-living conditions. In partic- 

lar, they were associated with three types of contexts: (1) change 

n activity, (2) change in body position, and (3) sudden movement 

cceleration. It has been shown that incorrect detection of AF in 

ongitudinal screening period could lead to over-diagnosis and pa- 

ient anxiety [9] . 

Secondly, to reduce the complexity and achieve real-time detec- 

ion, most of the AF classification models are primarily trained on 

he RRI-based features without atrial activity analysis. Such mod- 
2 
ls result in a higher FPR in the presence of non-AF arrhythmias 

uch as premature ventricular contractions (PVCs) and confound- 

ng noise in the ambulatory settings, which also exhibit irregular 

RI characteristics similar to AF [2,12,66] . In a recent study, Tuboly 

t al. [66] also highlighted this problem. They showed that in the 

resence of non-AF arrhythmias, the numbers of false-positive AF 

etections were significantly higher if relying only on RRI features. 

urthermore, Oster et al. [54] also pointed out that AF detection 

odels trained only on RRI (heart’s ventricular response) based 

eatures are bound to result in high FPR on ECG from free-living 

onditions [54] . Jalali et al. [26] have tried to address the prob- 

em of AF misclassification due to the presence of premature atrial 

omplexs (PACs) by using sensitivity and orthogonality constraints 

n a Residual Network’s cost function. They focused on detecting 

he irregularities before the AF onset that can indicate the onset 

f AF. Although this approach showed superior performance in the 

resence of PACs, the generality of such a model remains unex- 

lored, if it is used in ambulatory conditions with confounding 

oise and other artifacts. 

To reduce the FPR and to improve AF detection on ambulatory 

CG recordings with the presence of confounding non-AF arrhyth- 

ias, this paper proposes the DeepAware model. DeepAware is a 

ybrid multi-fusion and end-to-end AF detection model. The model 

ombines two of our previous algorithms as sub-model [2,57] and 

ombines them with a new context-aware heuristics (CAH) that 

nalyzes and includes the patients’ ambulatory contextual data 

nto the model. The context-aware heuristics (CAH)-part of the 

odel specifically enhances the RRI featured based AF detection 

odel’s results under the free-living ambulatory conditions. The 

odel is trained using both atrial and ventricular activity types of 

eatures. 

This paper presents a validation study of the DeepAware model. 

irst, we evaluate the model’s performance when applied on sev- 

ral existing public datasets and it is shown that the proposed 

odel performs at par, or even better, than existing models. Sec- 

nd, the model’s capability of reducing the number of false pos- 

tive cases, both in the presence of many confounding non-AF ar- 

hythmias as well as under free-living ambulatory conditions, is in- 

estigated. DeepAware model shows promising results in automatic 

nalysis of longitudinal ambulatory AF screening under free-living 

onditions. The following are the main contributions of this work: 

1. Analysis of the AF detection performance with and without 

atrial activity features (p-wave detection). 

2. Combined deep learning model with context-aware heuristics 

on ECG from free-living ambulatory conditions that reduces the 

false-positive rate in RRIs based AF detection model. 

3. A highly generalizable model as demonstrated by its perfor- 

mance on 5 different ECG datasets, including two patient- 

operated datasets from free-living conditions. 

The remainder of this paper consists of 5 sections. 

ection 2 provides the methodology of the proposed algo- 

ithm. In Section 3 , the proposed DeepAware model is described 

n details. The results are presented and discussed in Section 4 . 

ection 5 presents the limitations and future work, followed by 

he conclusion in Section 6 . 

. Materials and methods 

.1. Databases 

In this study, six databases are used to train and vali- 

ate the performance of DeepAware . These include four Phys- 

oNet databases (MIT-BIH AF Database (AFDB) [44] , QT database 

QTDB) [34] , MIT-BIH Arrhythmia Database (MITDB) [45] , MIT-BIH 

ormal Sinus Rhythm Database (NSRDB) [22] ) and two in house 
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Table 1 

Technical specifications of databases: Ch: No. of ECG channels, Freq: Sampling frequency, NS: Number of subjects in the recording, TR: Total number of records. 

Database Ch Freq (Hz) TR Single Record Length Total Duration AF Duration in Hours (%) Unique Rhythms NS Contextual Data 

AFDB 2 250 23 10h 234.3h 93.40 (39.87%) 4 25 ✗ 

MITDB 2 360 48 0.5h 24.07h 2.16 (8.97%) 15 47 ✗ 

NSRDB 2 128 18 24h 437.5h 0 (0%) 1 18 ✗ 

CACHET-CADB 1 1024 1602 10sec 4.45h 2.07 (46.6%) 4 24 
√ 

CACHET-NSRDB 1 1024 10 24h 240 h 0 (0%) 1 10 
√ 

QTDB 2 250 105 15min 26.25h n/a n/a 105 ✗ 
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a

atabases (CACHET Contextualised Arrhythmia Database (CACHET- 

ADB) [30] and CACHET Normal Sinus Rhythm Database (CACHET- 

SRDB)). Technical specifications of these six databases are pro- 

ided in Table 1 . 

The QT database (QTDB) contains 105 recordings of 15 min- 

tes each with a sampling rate of 250 Hz, and the annotations in- 

lude onset, peak, and offset labels of P, QRS, T, and U waves [34] .

he AFDB includes 25 long-term ECG recordings of subjects with 

aroxysmal AF. Among them, two records (#00735 and #03665) 

ere omitted as there is no ECG signals file in the database. For 

he remaining 23 records, each recording is nearly 10 hours long 

nd has two channels of ECG collected at a sampling rate of 250 Hz 

22,44] . The MITDB is sampled at 360 Hz and comprises 48 ECG 

ecords of 30 minutes long from 47 subjects. Its annotations files 

nclude 15 different rhythms classes [22,45] . On the other hand, 

IT-BIH Normal Sinus Rhythm Database (NSRDB) [22] contains 18 

ong-term two channels ECG (sampled at 128 Hz) from healthy 

ubjects, which are mostly in NSR without any significant arrhyth- 

ias. 

The two in-house databases (CACHET Contextualised Arrhyth- 

ia Database (CACHET-CADB) and CACHET Normal Sinus Rhythm 

atabase (CACHET-NSRDB)) are collected as part of the mCardia’s 

easibility study [28,29] conducted in Denmark and India. Due to 

ts technical nature, this study is exempted from ethical approval 

oth by the Danish National Committee on Health Research Ethics 

File #H-19071015) and by the Institutional Review Board (IRB) of 

ahatma Gandhi University of Medical Sciences and Technology, 

aipur India. The single channel Movisens EcgMove4 ECG moni- 

or [48] is used for collecting both databases. In addition to the 

CG sensor (1024 Hz), the EcgMove4 device also contains a 3D ac- 

eleration sensor (64 Hz), rotation rate sensor (64 Hz), and pres- 

ure sensor (8 Hz). The participants are recruited during their out- 

atient arrhythmia clinic visits. Preference is given to the partici- 

ants who were either already diagnosed with AF or at a high risk 

f AF. It is also ensured that they have an active life and are not

ed-ridden or critically ill. The average age of the participants is 

9 years. Participants continuously wear the chest-mounted Ecg- 

ove4 device. The recording length in CACHET-CADB vary from a 

ingle day to over two weeks. The CACHET-NSRDB is collected from 

ealthy individuals using the same hardware and software setup as 

n CACHET-CADB. 

Thus, both the CACHET-CADB and CACHET-NSRDB contain par- 

icipant operated single-channel contextualised ECG obtained un- 

er free-living conditions. Beside the ECG recordings, the partici- 

ant’s ambulatory contextual information such as activities, body 

ositions, and movement accelerations are also recorded. Con- 

extual data is obtained by processing the raw data from the 

ccelerometer, rotation rate sensor, and pressure sensor of the 

hest-mounted ECG device for every 10 seconds interval using 

he Movisens DataAnalyzer tool [49,50] . These activities are aggre- 

ated every 10-seconds and contain activities such as lying, sit- 

ing/standing, cycling, jogging, and walking. A while-box decision 

ree is used to calculate these activities from the combination of 

eatures derived from the 3D accelerometer and the barometric air 

ressure sensor data [49] . In addition, body positions such as ly- 
3 
ng supine/left/right/prone, upright, sitting, and standing are de- 

ived using the inclination obtained from the raw acceleration sig- 

als [49] . 

There are 1602 manually annotated ECG records of 10 seconds 

ong from 24 subjects in the CACHET-CADB. Each record belongs 

o one of the four classes, namely ‘AF’, ‘NSR’, ‘noise’, and ‘oth- 

rs’. The manual annotations of these ECG records are done by 

wo cardiologists independently, and it only includes labels with 

00% inter-rater agreements between them. The CACHET-NSRDB 

ontains 10 long-term NSR ECG records from healthy individuals. 

ll the recordings in CACHET-NSRDB are almost over 24 hours 

ong. Please note that the hardware, contextual information collec- 

ion and processing steps remain the same in both CACHET-CADB 

nd CACHET-NSRDB. These two datasets are used in the context- 

ware heuristics ( Section 3.5 ) under free-living conditions as they 

rovide the participant’s ambulatory contexts information during 

he ECG recording periods. 

.2. Deep learning 

DL enables computational models to learn useful features di- 

ectly from the input data [37] . It has enhanced the state-of-the- 

rt algorithms in domains such as image and speech recognition, 

atural language processing, drug discovery, and genomics [37,65] . 

n recent years, DL has successfully been applied for the detection 

f AF and other types of arrhythmias [1,16,35] . 

.2.1. CNN layer 

CNN [38,53] have been proven very efficient in pattern recogni- 

ion tasks by exploiting both the spatial and temporal patterns in 

he data [37] . To achieve this, CNNs follow four key steps: 1) lo- 

al connections; 2) shared weights for convolution process; 3) cre- 

te large number of filters; and 4) reduce the network complexity 

s much as possible. Besides the input and output layers, a typi- 

al CNN structure consists of one or more connected convolutional 

ayers, pooling layers, ReLU, and normalization layers. Fig. 1 depicts 

 typical CNN structure. In 1D-CNNs for analyzing ECG signals, var- 

ous filters are generated by sliding a fixed window over the ECG 

ecord. The size of the window is known as the kernel size ( k size ).

he weights of these kernels and the overall bias is to be learned 

uring the training process. It should be noted that the weights of 

he kernel are fixed for each filter map [23] . 

.2.2. LSTM layer 

Recurrent Neural Networks (RNNs) are specially designed to 

fficiently capture dependencies in sequential information within 

ime-series data. However, it has been shown that learning long- 

erm dependencies are very challenging [3] . On the other hand, 

he problem of unstable gradient can be solved by LSTM networks 

special type of RNNs), which can handle long-term dependen- 

ies [25] . As shown in Fig. 2 , a LSTM block has three main parts:

) input gate ( i t ), 2) forget gate ( f t ), and 3) output gate ( o t ). For-

et and input gates control the flow of information removal and 

ddition to the memory block as follows: 

f t = σ (u 

T 
f a t + w 

T 
f h t−1 + b t ) , (1) 
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Fig. 1. Typical CNN structure. 

Fig. 2. LSTM memory block. 
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 t = σ (u 

T 
i a t + w 

T 
i h t−1 + b t ) , (2) 

here a t is the output from the previous layer and is the input to 

he LSTM block at time step t , and h t−1 is the output of the LSTM

lock at time t − 1 . The trainable parameters of the LSTM block are

 f , u f , w i , u i , b f , and b i , which are weight vectors and bias terms.

he memory of a LSTM block, c t , is updated as follows: 

 t = f t c t−1 + i t ̃  c t , (3) 

here, ˜ c t = tanh (b c + u 

T 
c a t + w 

T 
c h t−1 ) . Consequently, the output of

he LSTM block is generated by: 

 t = o t tanh (c t ) , (4) 

here o t = σ (w 

T 
o a t + u 

T 
o h t−1 + b o ) . Here, u o and w o are the weight

ectors and b o is the bias of the output gate. This means that the

STM is capable of keeping or forgetting the existing memory effi- 

iently [11] . 

Bidirectional L STM (BiL STM) is a variant of LSTM, which un- 

ike LSTM can process the sequential time-series in both forward 

nd backward directions with two separate hidden layers. BiL- 

TM have been found very useful in several ECG classification al- 

orithms [2,75] . The DeepAware algorithm proposed in this study 

ombines two DL models from our earlier studies [2,57] . The first 

odel (denoted as the RR-Net in Fig. 3 ) is a combination of CNN

nd BiLSTM layers, which takes the RRIs as inputs [2,63] . The sec- 

nd model, named as the DENS-ECG [57] in Fig. 3 , is a combination
4

f CNN and BiLSTM layers, which is used for the P-wave detection 

rom ECG. As shown in Fig. 3 , there are three layers of CNN fol-

owed by one BiLSTM layer. DENS-ECG takes raw ECG signals and 

utputs the number of detected P-waves. The output of these two 

odels is combined with the context-aware heuristic model to de- 

ect the AF rhythms. 

. DeepAware architecture 

Fig. 3 illustrates the flowchart of the proposed DeepAware al- 

orithm. It comprises of six main components: (1) ECG data pre- 

rocessing, (2) segmentation, (3) RR-Net, (4) DENS-ECG, (5) the 

ontext-aware heuristic model, and (6) the AF decision box. In this 

ection, all these six components are described in detail. 

.1. Data preparation and pre-processing 

As shown in Fig. 3 , data preparation and pre-processing is 

he first step. The first channel of the ECG records of PhysioNet 

atasets has been used and all the six datasets ( Table 1 ) are re-

ampled to 250 Hz. It should be noted that only a single chan- 

el ECG of the PhysioNet dataset was used because two of our in- 

ouse datasets, CACHET-CADB and CACHET-NSRDB (see Table 1 ), 

ave only a single channel. Also, the first channel (channel 1) 

ut of the two channels in the PhysioNet datasets was used as 

t gave us slightly better performance in the initial experiments. 

he baseline wanders ( < 0.5Hz) and high-frequency noises ( > 40Hz) 

re removed using a band-pass (0.5–40 Hz) filter. The ECG signals 

re then smoothed by a Savitsky-Golay filter [60] . The Savitsky- 

olay filter effectively smoothens the signal and increases preci- 

ion without distorting the signal tendency (which helps in im- 

roving P-wave detection in the ECG). It should be noted that, in 

ome databases like AFDB, MIT-BIH Arrhythmia Database (MITDB), 

nd NSRDB, the R-peak locations are already available within the 

atabase, whereas, for CACHET-CADB and CACHET-NSRDB, the Pan- 

ompkins algorithm [55] is used for finding the R-peaks loca- 

ions. Since the CACHET-NSRDB contains continuous ambulatory 

CG data and therefore high levels of noise, a cross-correlation 

auto-correlation as they are single channel) based noise detec- 

or is applied prior to the Pan-Tompkins algorithm. The ECG sin- 

les are segmented in the sliding windows of 10-second, and the 

indows with the cross-correlation value < 0.65 are rejected as 

oise and timestamped. This correlation cutoff value is chosen 

hrough repeated experimentation to ensure that we do not re- 

ect the “good signal” in the preprocessing step, even if it means 
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Fig. 3. The architecture of the proposed DeepAware model consists of six sub-components: (1) ECG data preprocessing, (2) segmentation, (3) the RR-Net, which take inputs 

of the RR interval series, (4) the DENS-ECG , which takes the raw ECG inputs and gives P-wave count, (5) and a CAH model, which takes user context in a case of ambulatory 

ECG to check if any change in user’s context is detected, and (6) AF decision box for final binary output. 
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llowing some level of noise to pass. In this process, nearly 6% of 

he CACHET-NSRDB’s 10-second segments were labelled as noise 

nd rejected. To check the Pan-Tompkins algorithm’s accuracy for 

-peaks detection on the CACHET-CADB and CACHET-NSRDB, we 

isually inspected some (nearly 0.01%) random ECG samples of its 

utput on these databases. No samples were rejected in this pro- 

ess. It should be mentioned that the user’s ambulatory context 

ata (i.e., activity, body position, movement acceleration) in the 

ACHET-CADB and CACHET-NSRDB is already available for every 10 

econds of intervals and is used without any further processing. 

.2. Segmentation 

The RRIs and the filtered ECGs are segmented into a window 

ength of 30 RRIs. The sliding window has an overlap of 10 RRIs. 

he segmented windows are provided as inputs to the RR-Net 

odel. Please note that we have also experimented with various 

indow lengths (i.e., 10, 15, 20, 25, 30, 35, 40) and overlapping 

or the RR-Net sub-module. Similar to Andersen et al. [2] , the 30 

RIs window with an overlap of 10 RRIs gave us the best results 

n AFDB and MITDB. Therefore, for the final experiment, the input 

indow length of 30 RRIs is chosen. The corresponding ECG seg- 

ents, which has the same size as 30 RRIs, is fed simultaneously 

s inputs to the DENS-ECG model. As shown in Fig. 3 , this ECG is

urther lumped into fix windows of 4 seconds length before it is 

assed to the input layer of DENS-ECG. 

Similarly, the CACHET-CADB and CACHET-NSRDB databases, 

hich include the information about the user’s context are also 

egmented into time-duration equal to that of 30 RRIs. The 10- 

econds segments are combined before the RRI calculation in 

ACHET-CADB, and thereafter the segmentation and windowing 

rocess is performed. 

.3. RR-Net 

Irregular RRIs is considered as one of the strong indications of 

F. The RR-Net model is a combination of two convolutional layer 

ollowed by a BiLSTM layer [2] . The convolutional layers extract 

he features from the RRIs, which are used by the BiLSTM layer 

fterwards. The first convolutional layer uses a kernel of size 5 
5 
 K size = 5 ) and outputs 60 features. The input sequences are zero- 

added to preserve the temporal dimension. The second convolu- 

ion layer has a K size of 3 and generates more abstract features. 

ere again, zero-padding is applied to preserve the temporal di- 

ension. As depicted in Fig. 3 , a max pooling layer is applied af- 

er the two convolutional layers, which has a kernel size ( P size ) of

 with strides of two. This layer results in reducing the tempo- 

al dimension of the inputs by half, which is an essential step for 

ringing down the complexity before the BiLSTM layer. The out- 

ut of the pooling layer is fed into the BiLSTM layer consisting 

 units = 100 hidden units. The output of the BiLSTM is fed into the 

lassification layer with a sigmoid activation. The output can be 

onsidered as the posterior probability of the degree of irregular- 

ty for the i th RRIs (input sequence). These probabilities are finally 

onverted to a binary output of the RR-Net model as follows: 

R-Net (i ) = 

{
1 , if p(y i = ir regular | x i , RR-Net ) ≥ 0 . 5 , 

0 , otherwise , 
(5) 

here RR-Net (i ) is the binary output of the i th RRI segment 

n which 1 represents AF and 0 represents Non-AF. p(y i = 

r regular | x i , RR-Net ) is the probability output of the sigmoid func- 

ion of the RR-Net for the i th RRI segment. It should be noted that 

he probability threshold is set to 0.5. 

.4. DENS-ECG model 

The DENS-ECG model is a combination of three convolutional 

ayers and a dropout layer followed by two BiLSTM layers [57] . It 

akes 4 seconds long windows of raw ECG segments as inputs to 

he first 1D convolution layer to delineate the ECG signals. The 1D 

onvolutional layers extract abstract features from ECG segments. 

he two BiLSTM layers are used to process the extracted features 

y the previous 1D convolutional layers. The three convolutional 

ayers use a kernel size of 3 and the number of filters (feature 

aps) for the three successive layers are 32, 64, and 128, respec- 

ively. In addition, zero padding is applied to maintain the same 

imension in the input and convolutional layers. For example, the 

utput of the third convolutional layer is 128 feature maps, which 

re then used as inputs for the first BiLSTM layer. The correspond- 

ng number of hidden units ( n ) are 250 and 125 for the two
units 
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iLSTM layers, respectively. Finally, The output of the second BiL- 

TM layer is fed into a dense layer, which generate posterior prob- 

bilities for the P-, QRS, T-, and No-wave segments of the ECG sig- 

als. As presented in Fig. 3 , the number of P-waves detected by 

ENS-ECG model is provided to the decision box. It is worth not- 

ng that the dropout layer after the third convolutional layer helps 

n preventing the over-fitting problem during the training phase of 

he model. The dropout probability is set to 0.2, which means that 

0% of the units is set to zero at each training step. The absence of

-waves for the i th ECG segment is computed as follows: 

ENS-ECG (i ) = 

{
1 , If P c ≤ 15 for 31 R peaks (30 RRIs) , 
0 , otherwise , 

(6) 

here DENS-ECG (i ) is the predicted P-wave for the i th RRIs seg- 

ent and P c is the number of P-waves detected by the DENS-ECG 

odel for the i th ECG segment as the threshold is set to 15. 

.5. Context-aware heuristics 

The context-aware heuristics (CAH) model is based on our pre- 

ious work [31] in which we analyzed the relationship between 

he FPR and user’s context on an AF detection model trained on 

RI features. The analysis of false-positive cases using contextual 

ata concluded that the vast majority ( ∼78%) of short ( < 50 Sec-

nds) FP segments were associated with three main contexts: 1) 

hange of activity; 2) change in body position (especially during 

aying/sleep); and 3) sudden movement acceleration. 

The CAH takes activity, body position, and movement accelera- 

ion as input and evaluates if there is a change in the user’s con- 

ext during a specific 30 RRIs segment or its preceding segments. 

s shown in Eqn. (7) , the CAH model assigns a binary output to

etect whether a context change (i.e. change in activity, change in 

ody position or sudden movement acceleration) is detected dur- 

ng the current or previous RRI input windows. Any identified con- 

ext changes resulting in a non-AF episode detection for the corre- 

ponding RRIs segment are specified as follows: 

AH (i ) = 

{
0 , if context change detected , 

1 , otherwise , 
(7) 

here CAH (i ) is the prediction for the i th RRIs segment. 

.6. The decision box 

As depicted in Fig. 3 , the outputs of these three models (RR- 

et, DENS-ECG, and Context-Aware Heuristics) are combined at the 

ecision box. This is performed as follows: 

 

 (i ) = 

{
RR-Net (i ) ∧ DENS-ECG (i ) , If CAH unavailable , 
RR-Net (i ) ∧ DENS-ECG (i ) ∧ CAH (i ) , otherwise , 

(8) 

here ̂ D (i ) is the final binary classification for the i th input se- 

uence. The operator ∧ is the logical “and”, which combines the 

utput of sub-modules (RR-Net(i), DENS-ECG(i), and CAH(i)). 

.7. Model training 

The AFDB and QTDB datasets are used for training the RR- 

et and DENS-ECG sub-modules, respectively. The DENSE-ECG is 

rained using stratified 5-fold cross validation technique [57] . Sim- 

larly, the RR-Net is trained on AFDB using 10-fold cross valida- 

ion techniques [5] and the data is split segment-wise. The RR-Net 

ub-module is trained using the Stochastic Gradient Descent (SGD) 

ith Nesterov accelerated gradient [52] , whereas an Adam opti- 

ization algorithm [27] is used in the DENS-ECG model. In both 

R-Net and DENS-ECG, the hyper-parameters are fine-tuned using 
6 
 random search technique [4] . The number of trainable parame- 

ers in DENS-ECG and RR-Net are 1,416,044 and 159,841, respec- 

ively. 

It should be noted that the CAH sub-module is tested/evaluated 

nly on CACHET-CADB and CACHET-NSRDB. It takes the activity, 

ody position, and movement acceleration as input and keeps 

rack of any changes in these three contexts in both the cur- 

ent or previous input widows. As mentioned in Sections 3.1 and 

.2 , the continuous activity, body position, and movement accel- 

ration are already preprocessed and available in both CACHET- 

ADB and CACHET-NSRDB. All the individual sub-modules of Deep- 

ware ( Fig. 3 ) are built in python 3.7 using the Tensorflow 2.4.1

ramework. The entire training process is done on a MacBook Pro- 

unning MacOS 10.15.7 with 16 GB RAM, Dual-Core Intel Core i7 

rocessor and an Intel Iris Plus Graphics 650 1536 MB graphics 

ard. 

.8. Statistical analysis 

The FPR outputs of the proposed DeepAware model and its vari- 

nts (i.e., RR-Net ∧ CAH, and RR-Net ∧ DENS-ECG) are compared 

ith RR-Net model on the test datasets using a paired-samples t - 

est for statistical significance. The paired sample t -test is a sta- 

istical method employed to find if the mean difference between 

wo sets of observations is zero. The null hypothesis for the paired- 

amples t -test is that the means of the FPR in the two models are

he same. Comparisons with p-values < 0.05 are considered statis- 

ically significant. 

. Results and discussion 

The RR-Net and DENS-ECG submodules were first individually 

rained and tested using cross-validation on AFDB and QTDB, re- 

pectively. Then, the best performing models from the cross val- 

dation process (i.e. fold 2 for RR-Net and fold 1 for DENS-ECG) 

ere selected. Finally, the best performing models were evaluated 

n the MITDB, NSRDB, CACHET-CADB, and CACHET-NSRDB, which 

re unseen datasets to the models. 

The MITDB dataset contains 14 types of non-AF arrhythmias 

nd the performance of the model on this dataset indicate its gen- 

ralizability in the presence of PVCs and other non-AF arrhythmias. 

n the other hand, both the NSRDB and CACHET-NSRDB datasets 

nly contain normal sinus rhythms, which are used to evaluate the 

erformance of the model and its expected FPR on healthy sub- 

ects. In addition, the CACHET-NSRDB and CACHET-CADB datasets 

ontain the user’s contextual information during ambulatory ECG 

ecordings under free-living conditions. These two datasets are 

pecifically used in the context-aware heuristics which keeps track 

f any changes in the user’s ambulatory context. The metrics used 

or evaluating the performance of DeepAware and the obtained re- 

ults on each dataset are described in the following sections. 

.1. Model evaluation metrics 

To report the performance of our model, we apply the stan- 

ard metrics of a confusion matrix, namely, the average accuracy 

Acc), sensitivity (Se), specificity (Sp), and FPR, which are defined 

n Eqs. (9) –(12) , respectively. In a confusion matrix (see Table 3 ),

ach row matrix represents the instances in an actual class while 

ach column represents the instances in the predicted class. 

cc = 

T P + T N 

T P + T N + F P + F N 

. (9) 

e = 

T P 

T P + F N 

. (10) 
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Table 2 

Comparison of Deep Aware algorithm with other state-of-the-art models on AFDB, MITDB, and NSRDB datasets. All the results are in percentage. Ch: Number of ECG channels, 

MFSWT: Modified Frequency Slice Wavelet Transform, MCNN: Multi-Scale CNN, HAN: Hierarchical Attention Network, MENN: Modified Elman Neural Network, IHRS: Instant 

Heart Rate Sequence, RCN: Recurrence Complex Network, FFS: F-wave Frequency Spectrum. Note that the most of the published articles on AF detection reported their 

performances on only AFDB, and their generalizability on MITDB and NSRDB are not reported or non-comparable (as some have combined these datasets). The ’-’ in the 

table below implies that comparisons are not available in the published articles. 

Algorithm Methods Features Ch AFDB MITDB NSRDB 

Se Sp Acc FPR Se Sp Acc FPR Sp FPR 

[13] CNN, BLSTM Heartbeat Sequences, RRI 1 99.93 97.03 96.59 - - - - - - - 

[73] CNN MFSWT 1 74.96 86.41 81.07 - - - - - - - 

[71] CNN SWT, STFT 1 98.79 97.87 98.63 - - - - - - - 

[36] CNN RRI, FFS 1 97.4 96.2 97.3 - - - - - - - 

[69] CNN, RCN Raw ECG 2 94.28 94.91 94.59 - - - - - - - 

[74] MCNN IHRS 2 98.22 98.11 98.18 - - - - - - - 

[46] BiRNN, HAN Raw ECG 2 99.08 98.54 98.81 - - - - - - - 

[68] CNN, MENN Raw ECG 2 97.9 97.1 97.4 - - - - - - - 

[2] CNN, BiLSTM RRI 2 98.17 96.29 97.1 3.71 98.96 86.04 87.4 13.96 95.01 4.99 

DeepAware CNN, BiLSTM Raw ECG, RRI, Context 1 98.27 98.84 98.62 1.16 93.05 91.67 91.82 8.33 98.47 1.53 

Table 3 

Confusion matrix. 

Predicted positive Predicted negative 

Actual positive True positive (TP) False negative (FN) 

Actual negative False positive (FP) True negative (TN) 
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T N 

T N + F P 
. (11) 

 P R = 

F P 

F P + T N 

. (12) 

.2. The performance of DeepAware on public datasets and its 

omparison with the literature. 

A direct comparison of the performance deep learning mod- 

ls for AF detection in the literature is challenging due to fac- 

ors such as different types of data acquisition processes and de- 

ices used, kinds of ECG features used, differences in training, 

nd training/testing/validation data splitting (inter-patient or intra- 

atient) [40] . Despite these experimental differences among stud- 

es, Table 2 attempts to compare the performance of the proposed 

eepAware model with other state-of-the-art models on the AFDB, 

ITDB, and NSRDB datasets. Fig. 4 a and 4 b also show the con-

usion matrices of the proposed DeepAware model on AFDB and 

ITDB datasets, respectively. The DeepAware model clearly outper- 

orms the state-of-the-art algorithms on AFDB and it is general- 

zed enough to perform well on unseen datasets such as MITDB 
Fig. 4. Confusion matrix of: (a) AFDB and (b) 

7 
nd NSRDB. It achieved a sensitivity, specificity, and accuracy of 

8.27%, 98.84%, and 98.62%, respectively, on AFDB dataset using a 

0-fold cross-validation. 

The proposed model also achieved a sensitivity, specificity and 

ccuracy of 93.05%, 91.67%, and 91.82% on MITDB dataset, respec- 

ively. Compared to the results presented in Andersen et al. [2] on 

he MITDB dataset, DeepAware improves the specificity and accu- 

acy by 5.63% and 4.42%, respectively, at the cost of 5.91% reduc- 

ion in sensitivity. It should be mentioned that the performance 

f the DeepAware model on the MITDB dataset indicates its ro- 

ustness in the presence of PVC/VPC beats and non-AF arrhyth- 

ias. The ectopic beats and non-AF arrhythmia resemble the AF 

n terms of irregularity in the RR intervals, thereby causing more 

Ps in AF detection models [7,64,66] . For example, in Andersen 

t al. [2] (c.f., Table 2 ), despite high specificity on the AFDB dataset, 

he model’s specificity on the MITDB, which has 14 other types of 

on-AF arrhythmias, has reduced drastically to 86.04%. 

Furthermore, DeepAware seems to generalized well and per- 

orms better on the NSRDB dataset compared to other state-of-the- 

rt models. As it can be seen in Table 2 , the DeepAware model im-

roved the specificity reported in Andersen et al. [2] by 3.57%. 

.3. The performance of deepaware on contextualised ECG datasets 

The context-aware heuristics are applied on the CACHET-CADB 

nd CACHET-NSRDB, both of which contain contextual data from 

he ambulatory ECG recordings under free-living conditions. As 

hown in Table 4 , the proposed DeepAware model has achieved a 

ensitivity, specificity, and accuracy of 97.94%, 98.39%, 98.06% on 
MITDB. The numbers are in percentage. 
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Table 4 

Performance on CACHET-CADB. The RR-Net is a sub-module ( Fig. 3 ) trained on just 

RRI-features. The comparison is to highlight the improvements made by DeepAware 

as compared to just relying on RRI features. 

Measure CACHET-CADB 

RR-Net RR-Net ∧ CAH RR-Net ∧ DENS-ECG DeepAware 

Se (%) 99.63 99.44 97.94 97.94 

Sp (%) 90.32 94.64 98.39 98.39 

Acc (%) 97.22 98.19 98.06 98.06 

FPR (%) 09.68 5.38 01.61 01.61 

Fig. 5. Confusion matrix of CACHET-CADB. All numbers are in percentage. 

t

s

C

D

f  

g

m

t

a

h

o

C

r  

t

b

c

o

F

c

4

P

t

o

a

v

t

D

i

u

g  

4

a

8

b

t

c

o

e

f

t

t

t

o

p

t

t

a

t

4

f

i

t

c

d

t

c

h

o

h

R

o

(

b

C

c

t

R

0

o

o

f

E  

R

fi

t

s

s

o  

l

A

n

E

9

E

r

i

t

s

P

p

m

c

he CACHET-CADB dataset, respectively. Fig. 5 shows the confu- 

ion matrix of the DeepAware model when applied on the CACHET- 

ADB dataset. Similarly, Table 5 reports the performance of the 

eepAware model on the CACHET-NSRDB dataset. The average FPR 

or all the records in Table 5 is 1.76%. As shown in Table 5 , in

eneral, the proposed DeepAware model outperforms the RR-Net 

odel on the CACHET-NSRDB dataset. 

Additionally, as shown in Tables 4 and 5 a comparison be- 

ween the performance of RR-Net and DeepAware on CACHET-CADB 

nd CACHET-NSRDB confirms the positive effect of the context- 

euristics and DENSE-ECG to lower the FPR on participants- 

perated ECG under free-living conditions. We can see that on the 

ACHET-CADB dataset, DeepAware has improved the specificity and 

educed the FPR by around 8% at the cost of a 1.69% reduction in

he sensitivity. Similarly, on CACHET-NSRDB, the average FPR has 

een reduced by 7.81%. Furthermore, since CACHET-NSRDB only 

ontains subjects having normal sinus rhythms, the performance 

f DeepAware on CACHET-NSRDB is a good indication of expected 

PR in healthy and low AF prevalence subjects under free-living 

onditions. 

.4. AF Detection with and without atrial activity analysis 

Atrial activity analysis is done by checking the existence of a 

 wave as the P-wave in ECG represents atrial depolarization. In 

he absence of a P-Wave detection, AF detection models relying 

n features of only RRIs cannot distinguish between AF and other 

rrhythmias with irregular RRI (e.g., sinus arrhythmia, premature 

entricular contraction) [66] . Tables 4–6 show a comparison be- 

ween the performances of RR-Net and DeepAware (as RR-Net ∧ 

ENS-ECG) on all the four test datasets. These results show the 

mpact of including atrial activity analysis (i.e., P-wave detection 

sing the DENS-ECG model) on the FPR in the AF detection al- 

orithm. In Table 6 , the FPR on MITDB and NSRDB is reduced by

.57% and 2.94%, respectively. Similarly, on CACHET-CADB ( Table 4 ) 

nd CACHET-NSRDB ( Table 5 ), DeepAware has improved the FPR by 

% and an average of 7.3%, respectively. The paired-samples t -test 
8 
etween the output of RR-Net and DeepAware for FPR on all these 

est datasets has p-value = 0.017, implying the statistically signifi- 

ant reduction in FPR by DeepAware, which is due to the addition 

f atrial activity (P-wave) analysis. 

These results are consistent with the findings by Tuboly 

t al. [66] , which also showed that taking atrial activity analysis 

eatures into account can significantly reduce the FPR as compared 

o just RRI features based AF detection models. It should be noted 

hat respiratory sinus arrhythmia, which is a natural response of 

he healthy heart, can be misclassified as AF without the analysis 

f atrial activity. This false diagnosis usually occurs in the young 

opulation with a low prevalence of AF [66] . It is also important 

o highlight that existing literature on deep-learning-based AF de- 

ection has limited coverage of examining the impact of non-AF 

rrhythmias (i.g, sinus arrhythmia) on FPR and specificity of AF de- 

ection algorithms. 

.5. Applying context-aware heuristics on RRI-based model 

Fig. 6 shows a typical scenario of an ECG signal captured under 

ree-living ambulatory conditions. The irregularity in RRI, which is 

nduced by a change in the user’s ambulatory contexts, may lead 

o an AF diagnosis. Such RRI irregularities caused by changes in the 

ontext are either the heart’s natural response to change or can be 

ue to motion artifacts. The RRI irregularity induced by a change in 

he context is usually short (30–60 seconds) [31] . Therefore, it be- 

omes difficult for RRIs based models (such as RR-Net sub-model 

ere) to identify whether the irregularity in RRIs is due to AF 

r the sudden change in ambulatory contexts. The context-aware 

euristics (CAH) in DeepAware model helps to identify whether the 

RI irregularity detected by RR-Net is, in fact, due to heart disease 

r it is because of the change in the user’s ambulatory contexts. 

The impact of combining the RR-Net with context heuristics 

i.e., RR-Net ∧ CAH) in reducing the FPR under free-living am- 

ulatory conditions can be observed in both Tables 4 and 5 . For 

ACHET-CADB, the RR-Net ∧ CAH reduces the FPR by nearly 4.3% 

ompred to RR-Net model, whereas for CACHET-NSRDB, it reduces 

he FPR by 4.6% on average. The paired-samples t -test between 

R-Net and RR-Net ∧ CAH on CACHET-NSRDB achieves p-value of 

.0 0 03, which shows a statistically significant reduction in the FPR 

ver RR-Net. 

It can be seen that using CAH along with RR-Net ∧ DENS-ECG 

n CACHET-CADB ( Table 4 ) has no significant effect since the per- 

ormance of RR-Net ∧ DENS-ECG and DeepAware (RR-Net ∧ DENS- 

CG ∧ CAH) are the same. It is due to the fact that although the

R-Net detects the RRIs irregularity on context changes and classi- 

es it as AF (which CAH tries to prevent), the detected P-waves in 

he signal by DENS-ECG has already guaranteed that it is not clas- 

ified as AF. In addition, it is very likely that CACHET-CADB, as a 

mall dataset, does not contain the cases where the effectiveness 

f CAH can be seen. The results on CACHET-NSRDB ( Table 5 ) high-

ight this point as the output of RR-Net ∧ DENS-ECG and Deep- 

ware (RR-Net ∧ DENS-ECG ∧ CAH) are different. It should be also 

oted that in Table 5 , the FPR differences between RR-Net ∧ DENS- 

CG and DeepAware are minor for a few records (e.g., record no 4, 

). However, the paired-samples t -test between RR-Net ∧ DENS- 

CG and DeepAware (RR-Net ∧ DENS-ECG ∧ CAH) for all the ten 

ecords has a p-value = 0.01. 

These results indicate that CAH can be especially more effective 

n reducing FPR in models that rely only on RRI features for AF de- 

ection. But CAH is less effective when a P-wave detection model, 

uch as DENS-ECG, is sequentially applied before it. Although the 

-wave detection model helps reducing FPR on CACHET-CADB, the 

roposed context context-aware heuristics (CAH) can be specially 

ore useful in the presence of multi-class arrhythmias and more 

omplicated ECG morphologies where P-wave detection is chal- 



D. Kumar, A. Peimankar, K. Sharma et al. Computer Methods and Programs in Biomedicine 221 (2022) 106899 

Table 5 

Performance on CACHET-NSRDB. The RR-Net is a sub-module ( Fig. 3 ) trained on just RRI-features. The comparison is to highlight the 

improvements achieved by DeepAware as compared to just relying on RRI features. Each record consists of over 24 hours long contex- 

tualised ECG under free living conditions from healthy individuals. Input No.: Number of (30x1) input windows. 

Record Input No. R-Peaks RR-Net RR-Net ∧ CAH RR-Net ∧ DENS-ECG DeepAware 

Sp FPR Sp FPR Sp FPR Sp FPR 

1 5714 114,319 89.10 10.90 93.73 6.27 97.22 2.78 98.41 1.59 

2 5906 118,156 88.52 11.48 93.89 6.11 94.18 5.82 95.55 4.45 

3 3998 80,037 89.37 10.63 95.37 4.63 99.30 0.70 99.39 0.61 

4 3535 70,733 91.85 08.15 97.17 2.83 99.77 0.23 99.80 0.20 

5 1429 28,634 97.06 02.94 98.10 1.90 98.32 1.68 99.02 0.98 

6 4123 82,565 82.77 17.23 90.49 9.51 97.79 2.21 98.16 1.84 

7 5388 108,046 95.36 04.64 96.25 3.75 96.73 3.27 96.82 3.18 

8 5959 119,276 80.87 19.13 89.26 10.74 96.02 3.98 96.29 3.71 

9 4600 92,173 94.04 05.96 97.54 2.46 99.41 0.59 99.54 0.46 

10 5017 100,396 95.26 04.74 98.33 1.67 98.82 1.18 99.36 0.64 

Fig. 6. An example of irregular RRI caused by changes in user’s ambulatory context, which resembles an AF episode. The figure shown the single-lead ECG signal (top), 

accelerometer data (middle), and angular rate (bottom). 

Table 6 

Classification performance of RR-Net and DeepAware on the MITDB and NSRDB 

datasets. Note that the RR-Net is a sub-module ( Fig. 3 ) trained on just RRI-features. 

The comparison is to illustrate the improvements made by DeepAware as compared 

to just relying on RRI features. 

Measure MITDB NSRDB 

RR-Net DeepAware RR-Net DeepAware 

Se [%] 97.74 93.06 - - 

Sp [%] 87.10 91.67 95.53 98.47 

Acc [%] 88.22 91.82 - - 

FPR [%] 12.90 08.33 04.47 01.53 
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enging. Overall, it should be noted that compared to RR-Net, im- 

rovements in all three combinations, namely, RR-Net ∧ CAH, RR- 

et ∧ DENS-ECG, and DeepAware (RR-Net ∧ DENS-ECG ∧ CAH) are 

tatistically significant. 

. Limitations and future work 

The presented DeepAware model has three main limitations 

hat require further improvements. First, compared to RRI-based 

pproaches such as the RR-Net model, the proposed DeepAware 

odel is computationally expensive. The RR-Net can classify 24 

ours of ECG in less than 1 minute, whereas it takes more than 

0 minutes for DeepAware to analyze the same amount of data 

n a non-GPU computing environment. Therefore, it may not be 

traightforward to deploy this model in resource-constrained wear- 

ble devices. So, the DeepAware model will be more suitable to be 

sed in a cloud computing environment. Secondly, following the 

imitation of the DENS-ECG model in detecting inverted P-waves, 

he DeepAware model may encounter more FPs in the presence of 

uch ECG morphology with inverted P-waves. To overcome this, 

he DENS-ECG model should be trained on a dataset with higher 

umber of inverted P-waves morphology, which is currently miss- 
9 
ng in QTDB dataset [34] . Thirdly, it should also be noted that since

he minimum input window length in DeepAware is 30 RRIs, and 

he minimum P-wave count in a window is kept at 15; therefore 

he smaller AF segments (e.g., 4–5 seconds) might go undetected. 

astly, although DeepAware helps reducing the FPR and improv- 

ng the accuracy, its impact on sensitivity ( Table 4 ) under free- 

iving conditions is still a concern that needs further investigation 

n larger datasets with multi-class arrhythmias. Also, the effec- 

iveness of CAH in the presence of multi-class arrhythmias might 

hange. 

In the future work, we plan to extend the CACHET-CADB anno- 

ations, evaluate the DeepAware on a diverse dataset with multi- 

lass arrhythmias and work on its interpretability. Besides the 

euristics approach, we will also explore employing the ambula- 

ory contexts as direct input features to the DL models. 

. Conclusion 

This article presented DeepAware , which is a hybrid end-to-end 

trial fibrillation detection algorithm that combines deep learn- 

ng with context-aware heuristics. The model takes three differ- 

nt inputs: (i) RRIs, (ii) raw ECG signals, and (iii) participant’s 

mbulatory context in order to classify AF and non-AF rhythms. 

nlike most state-of-the-art models, DeepAware has been evalu- 

ted on five different datasets, four of which are unseen to the 

odel during the training phase. We found that DeepAware is 

ery generalizable and achieve better AF detection performance 

n public datasets compared to state-of-the-art models. Particu- 

arly, the DeepAware model performed better when applied on am- 

ulatory ECG collected under free-living conditions. We have also 

emonstrated that relying only on RRI features for AF detection 

s problematic, which leads to a high FPR, especially in the pres- 

nce of confounding arrhythmias (i.e., atrial flutter, PVCs, atrial si- 

us arrhythmias), and ambulatory motion artifacts from contextual 

hange. The obtained results demonstrate that contextual data col- 
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ection could be an important factor in improving automatic AF 

etection in RRI feature-based models under free-living ambula- 

ory conditions. In addition, the DeepAware model can significantly 

educe the workload required for manual verification of false pos- 

tives in such longitudinal ambulatory monitoring. 
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