
The Mini-Grid Framework: Application

Programming Support for Ad hoc Volunteer

Grids

Neelanarayanan Venkataraman

Software Development Group
IT University of Copenhagen

Rued Langgaards Vej 7, DK-2300, Copenhagen S

November 5, 2012

Abstract

To harvest idle, unused computational resources in networked environments, re-
searchers have proposed different architectures for desktop grid infrastructure.
However, most of the existing research work focus on centralized approach. In
this thesis, we present the development and deployment of one such infrastruc-
ture, called the Mini-Grid Framework for resource management in ad hoc grids
using market-based scheduling and context-based resource and application mod-
eling. The framework proposes peer-to-peer architecture that supports several
futures: ease of deployment, decentralized task distribution, small scale ad hoc
grid formation, and symmetric resource. Furthermore, users can model and
specify non-performance based parameters that influence resource allocation.

We evaluated the framework through simulation experiments at the IT Uni-
versity of Copenhagen (ITU), as well as a pilot deployment at the Interdis-
ciplinary Nanoscience Center (iNano), Aarhus University. For the simulation
experiments we used an application that calculates prime numbers between a
given range, and another application that searches for a key in a large data
set. In the simulation experiments, we studied the technical performance and
overhead of the Mini-Grid Framework and compared its performance with other
relevant systems. For the pilot deployment, we have integrated a parallelized
version of the Basic Local Alignment Search Tool (BLAST) algorithm and the
RNA secondary structure prediction algorithm developed by iNano research
center with the Mini-Grid Framework. These algorithms have been developed
on top of our framework through an integration of the framework with the CLC
Bio Workbench, a software suite for bioinformatics algorithms. The pilot de-
ployment studied the resource participation, the deployment efforts needed, and
the performance of the framework in a real grid environment.

The main contribution of this thesis are: i) modeling entities such as re-
sources and applications using their context, ii) the context-based auction strat-
egy for dynamic task distribution, iii) scheduling through application specific
quality parameters, iv) the definition of an extensible API for ad hoc grid forma-
tion and v) enabling symmetric resource participation. The Mini-Grid frame-
work has been designed and developed as proof-of-concept. The Mini-Grid
framework has been evaluated using LAB deployment at ITU, and has been
deployed at iNano research center using real-life application.

Contents

I Introduction 1

1 Introduction 2
1.1 Problem Description . 4
1.2 Research Questions . 6
1.3 Research Methodology . 6
1.4 Contributions . 8
1.5 Thesis Outline . 9

2 Related Work 11
2.1 Introduction . 13
2.2 Overview of Desktop Grid Systems 15

2.2.1 BOINC . 15
2.2.2 DG-ADAJ . 17
2.2.3 SZTAKI Local Desktop Grid 17
2.2.4 distributed.net . 17
2.2.5 XtremWeb . 18
2.2.6 Alchemi . 18
2.2.7 Bayanihan . 19
2.2.8 Condor . 19
2.2.9 Entropia . 20
2.2.10 QADPZ . 20
2.2.11 Javelin . 22
2.2.12 Charlotte . 23
2.2.13 CPM . 24
2.2.14 POPCORN . 24
2.2.15 The Spawn System . 25
2.2.16 OurGrid . 25

2.3 Classification of Desktop Grids 26
2.3.1 Centralized Desktop Grids 26
2.3.2 Distributed Desktop Grid System 29
2.3.3 Computational Grids based on JXTA Technology 29
2.3.4 Jini for Grid Computing 31

2.4 Discussion . 32
2.4.1 Desktop Grid Architecture 32

i

CONTENTS ii

2.4.2 Desktop Grid Adoption 33
2.4.3 Grid Application Development 33
2.4.4 Quality of Service . 33
2.4.5 Scheduling Policy . 34
2.4.6 Limitations of Jini and JXTA 35
2.4.7 Research Gap . 35

2.5 Infrastructure Awareness System 36
2.6 Summary . 36

II The Mini-Grid Framework 37

3 The Mini-Grid Framework 38
3.1 Motivations and Design Objectives 38
3.2 Design Objectives . 39
3.3 Conceptual Architecture of the Mini-Grid Framework 40

3.3.1 Concepts . 40
3.3.2 Conceptual Architecture 43

3.4 Task Scheduling Model . 44
3.4.1 Resource Discovery and Selection 45
3.4.2 Auction Mechanisms . 46
3.4.3 Task Distribution Protocol 48

3.5 Module Architecture View . 50
3.5.1 Resource Consumer - Module View 51
3.5.2 Resource provider - Module view 52

3.6 Execution Architecture View . 53
3.6.1 Task Submission . 53
3.6.2 Bid Submission . 54
3.6.3 Winning / Loosing the Auction 55
3.6.4 Remote Task Execution 56
3.6.5 Providing Results . 57

3.7 Summary . 57

4 Context-Awareness for Quality of Service 59
4.1 Context-Awareness for Task and Resource Modeling 61

4.1.1 Context Definition and Classification 61
4.1.2 Context Modeling Techniques 62
4.1.3 Context Modeling Using Ontology 63

4.2 Ontology Design . 64
4.2.1 Motivation Scenarios . 65
4.2.2 Competence Questions . 65
4.2.3 Object Oriented Data Model 69

4.3 Context Modeling . 71
4.3.1 Resource Modeling . 71
4.3.2 Task Modeling . 71
4.3.3 QoS Modeling . 72

CONTENTS iii

4.3.4 Evaluation . 75
4.4 Context-awareness Sub-system 75

4.4.1 Conceptual layers . 76
4.4.2 Context Management System - Modular View 77
4.4.3 Context Management System - Dynamic View. 79

4.5 Summary . 80

5 Programming API 81
5.1 Sample Application . 81

5.1.1 Grid Enabling Sample Application 83
5.1.2 Distributing Tasks in the Mini-Grid Environment 86
5.1.3 Providing Results . 87
5.1.4 Participating in Mini-Grid - Resource Provider 87

5.2 Defining Context . 88
5.2.1 Defining resource context 89
5.2.2 Defining task context . 90

5.3 Framework Extension . 90
5.3.1 Defining a Context Monitor 91
5.3.2 Defining a Context Interpreter 92
5.3.3 Defining query template 93
5.3.4 Defining Bid . 94
5.3.5 User Defined Bidder . 95

5.4 Mini-Grid Enabling Application Toolkit 96
5.4.1 Grid Enabling Algorithm 96
5.4.2 User Interface Changes 96

5.5 Summary . 99

III Evaluation and Discussion 100

6 Experimental Evaluation 101
6.1 Experimental Setup . 101

6.1.1 Application . 101
6.1.2 Testbed . 102

6.2 Average Completion Time . 102
6.3 Overhead . 103

6.3.1 The Auction Overhead . 104
6.3.2 The data transfer overhead 105
6.3.3 The Context Processing Overhead 107

6.4 Speed-up . 107
6.5 Discussions . 109

6.5.1 Mini-Grid vs Globus . 109
6.5.2 Mini-Grid vs Entropia . 111
6.5.3 GridFTP vs TCP . 111
6.5.4 Semantic Vs Keyword Based Matchmaking 111
6.5.5 Conclusion . 112

CONTENTS iv

6.6 PPfold Lab Deployment . 112
6.6.1 Application . 112
6.6.2 Testbed . 113
6.6.3 Distributing PPfold in Mini-Grid 113
6.6.4 Theoretical Speed-up . 114
6.6.5 Experimental Results . 116

6.7 Summary . 117

7 Simulation 120
7.1 The architecture of the simulator 120
7.2 Desktop Grid Configurations . 121
7.3 Workloads . 122
7.4 Validation of Simulation Results 123
7.5 Results and Discussion . 123

7.5.1 Impact of Resource Failures on Scheduling 123
7.5.2 Impact of Multiple Resource Consumers 126

7.6 Summary . 127

8 Real-World Usage and Deployment at a Biology Lab 128
8.1 CLC Bio Workbench and Framework Integration 129
8.2 Real-World Applications . 129

8.2.1 The BLAST Algorithm 130
8.2.2 PPfold Algorithm . 130
8.2.3 CLC Bio Workbench and Application Integration 131

8.3 Plugin Installation . 132
8.4 Deployment Challenges . 132

8.4.1 Deployment Aim . 133
8.4.2 Deployment Process . 134

8.5 Deployment Execution . 134
8.5.1 Application Specific Setup 135
8.5.2 Application Deployment 135

8.6 Deployment . 139
8.6.1 Deployment Period . 139
8.6.2 Deployment Environment 140

8.7 Learning from the Field . 140
8.7.1 The First Deployment . 140
8.7.2 The Second Deployment 141

8.8 Results and Discussion . 142
8.8.1 Dynamic Resource Participation 142
8.8.2 Symmetric Resource Participation 143
8.8.3 Support for Heterogeneous Resource Participation 144
8.8.4 Ad hoc Mini-Grid Formation 144
8.8.5 Deployment Effort . 145

8.9 Summary . 151

CONTENTS v

IV Conclusion 152

9 Conclusion 153
9.1 Future Work . 156

V Appendices 158

Appendix A Mini-Grid Messaging System 159
A.1 Layers of Messaging System . 159
A.2 Messenger Component . 160
A.3 Transport Component . 160
A.4 Communication Component . 160

Appendix B The Mini-Grid Protocol 162
B.1 Mini-Grid Message Header . 163

B.1.1 Mini-Grid Message Payloads 163
B.1.2 BidSubmissionNotification 164
B.1.3 TaskWinnerNotification 164
B.1.4 TaskWinnerAcknowledgement 165
B.1.5 TaskCompletionNotification 165
B.1.6 TaskCompletionAcknowledgement 166
B.1.7 ExceptionNotification . 166
B.1.8 Message Sequence in Operations 166
B.1.9 Task Scheduling Operation 167
B.1.10 Task Execution Operation 167

Appendix C Installation of Globus - An Experience 169

Declaration

Section 6.6 in Chapter 6 include data from collaborative work, in which I per-
formed major part of the experimental work. In the controlled experiments, the
theoritical execution time calculations were performed by Sükösd Z and I have
used here for illustration.

Section 8.5 in Chapter 8 include graphical user interface developed by Morten
Vaerum. I have used here for illustration.

vi

Acknowledgment

Thanks to my supervisor, Prof. Jakob E. Bardram, for his expert guidance. I
would like to thank all my friends and colleagues. Following an alphabetical
oder, I would like to thank Andrzej Wasowski, Aurelien Tabard, Joe Kiniry,
Kasper sterbye, M. Ali Babar, Peter Sestoft, Rune Mller Jensen, Sofiane Gued-
dana, Sren Lauesen, Vibeke Erv and Yvonne Dittrich. I would like to thank
my friends Afsaneh Doryab, Alberto Delgado-Ortegon, Dario Pacino, Dermot
Cochran, Hannes Mehnert, Helge Pfeiffer, Josu Martinez, Kosta Pandazo, Jo-
han Bolmsten, Juan Ramos Hincapie, Kevin Tierney, Mads Frost, Mohammad
Amin Kuhail, Paolo Tell, Rosalba Giuffrida, Shangjin Xu and Sren Lippert.
Kind regards to all our colleagues from the FIRST research school, including the
administrative staff who have always been very helpful. Thanks to our industrial
partner, CLC Bio, for their collaboration, especially: Morten Vaerum, Thomas
Knudsen and Alex Andersen. Thanks to our research partner, Nanoscience Cen-
ter at Aarhus University, Ebbe Sloth Andersen, Zsuzsanna Sukosd and Jrgen
Kjems. My special thank to Tinus Abell. I would like to thank Adrian Friday,
Lancaster University for his support during my stay abroad. I would like to
thank the PhD administration, the finance department and the facility manage-
ment for their support. To the forgotten ones: if your name should have been
in the list, please blame my memory, not intentional.

vii

Part I

Introduction

1

Chapter 1

Introduction

Bioinformatics applications are computationally very intensive and require vast
amounts of processing power and memory requirements. For example, finding
genes in DNA sequences, predicting the structure and functions of new pro-
teins, clustering proteins into families, aligning similar proteins, and building
phylogenetic tree showing the evolutionary relationships are all computation-
ally intensive. Such kind of computational biology problems require design and
development of solutions that maximize performance and programmability. Us-
ing computational Grid infrastructure is an effective way to tackle the problem.
The computational Grid infrastructures are built using a set of processors that
are able to cooperate in solving computational problems. This cooperation is
achieved by splitting the computational load of the problem into parts, and
then combining the partial computations to obtain the result. Thus modeling
a bioinformatics application as a Bag-of-Task (BoT) application, where each
computational process (task) works at its own rhythm in an asynchronous fash-
ion with complete independence from other computational process, makes it
possible to use computational Grid infrastructure to meet their computational
demands.

A computational Grid has been defined as a hardware and software infras-
tructure that provides dependable, consistent, pervasive and inexpensive access
to high-end computational capabilities [Foster and Kesselman, 1999]. The com-
putational Grids explore mechanisms for access to computational resources and
quality of service beyond the best effort provided by the Internet protocol (IP).
Grid infrastructure supports computation and other collaborative activities that
spawn across multiple organizations. This new paradigm called grid computing
has resulted in the emergence of distributed computing measures wherein there
is development of a mechanism for allowing current collection of connected com-
puting systems to form large scale data as well as computing networks which
promote and ensure that distributed resources are shared and distributed in a
manner that involved heterogeneous applications ensuring that different appli-
cation domains which include science, industry, engineering and governmental
resources in order to solve large scale computing problems by making use of large

2

Chapter 1. Introduction 3

scale high capacity resources or enabling volunteer computing resources Jacob
[2003]; Jacob et al. [2003, 2005].

Generally speaking, grid computing platforms can be classified into two
main categories: classic high-end grids and volunteer computing grids [Kurdi
et al., 2008]. Classical grids provide access to large-scale, intra-and-inter in-
stitutional high capacity resources such as clusters or multiprocessors [Foster
and Kesselman, 1999; Foster, 2006]. On the other hand, volunteer comput-
ing is based on the idea of utilizing the CPU cycles of idle machines [Litzkow
et al., 1988; Anderson, 2004]. Classical grid computing platforms deploy the
Globus middleware [Foster, 2006] on distributed resources for delivering high-
performance computational power to restricted community of users (e.g., Ter-
aGrid - www.teragrid.org) with a specific goal. However, such grids require
dedicated hardware and software resources interconnected by high speed reli-
able network connections and follow a centralized approach – meta-schedulers
– for task distribution.

The BOINC infrastructure [Anderson, 2004], the most popular volunteer
computing platform, is composed of a central scheduling server and a number
of clients installed on the volunteer’s machines. The client component periodi-
cally contacts the server to report its availability and to request work. However,
BOINC requires a fixed and static set of data servers deployed centrally that
need to be maintained by each project team. Further, creating a volunteer com-
puting application involves the process of obtaining and retaining volunteers.

The volunteer computing infrastructure is different from the classical Grid
computing infrastructure in terms of the type and characteristics of resources,
and the type of sharing. These volunteer computing systems when compared
to traditional grid computing resources are found to show presence of highly
heterogeneous resources which are found to have architectural platforms and
varying CPU speeds, disk space, as well as type of software used Iamnitchi and
Foster [2000]. Another important aspect is the presence of dynamic resources
The resources of volunteer computing consists of mainly personal computers
(i.e., desktop), whereas the resources of classical Grid include high capacity
supercomputers, clusters, servers, storage device, etc. The resources of volun-
teer computing are non-dedicated, highly volatile, unreliable, faulty and highly
heterogeneous compared to the resources of the classical Grid. The volunteer
computing resources are administrated by individual users, whereas the Grid re-
sources are managed by professional system and network administrators. Nor-
mally, the volunteer computing applications consists of a set of independent
tasks and require no communication between the tasks. However, classical Grid
computing applications can include tasks that need to communicate between
them.

A major advantage of desktop grids over traditional grid systems is that
they are able to utilize non-dedicated machines. Besides, the requirements for
providing resources to a desktop grids are very low compared to traditional
grid systems using a complex middleware. Even though the barrier may be low
for resource providers, deploying a desktop grid server is a more challenging
task because a central server creates a central point of failure and a potential

Chapter 1. Introduction 4

bottleneck, while replicating servers require more effects Marosi et al. [2007].
In volunteer computing grids a number of users are promoted to share their
resources to solve a common goal however they are not given the access to make
use of these resources to any problems they might have.

Most of the existing approaches to grid computing is, however, very cen-
tralized both technically and in use. For example, classical grids using Globus
follow a centralized approach for task distribution and the alternative volunteer
computing uses variants of a master/slave architecture for task distribution.
Furthermore, volunteer computing is highly asymmetric: volunteers supply com-
puting resource but cannot demand computing resource. Practically, individual
users cannot use volunteer computing to meet growing needs for computational
resource in his routine computer use (i.e., volunteer computing is intended for
global computing). Finally, installing, configuring and customizing such solu-
tions require high technical knowledge Thain and Livny [2001]; Foster et al.
[2001].

1.1 Problem Description

Let us consider the typical environment of the computer set-up in a biological
research-based institution. Usually, Biologists working with laboratory-based
and theoretical molecular biological research have usually access to one or two
clusters and have to share their computation time with others. At the same
time, these biologists work in labs or institutions, which have a large number of
desktops and laptops. Those machines are usually under-utilized and are only
available to a single user. Organizing such desktop machines as a distributed
system for computations or other kinds of resource sharing is highly desirable.
For example, a group scientists or researchers can contribute their desktop ma-
chines when idle for a common objective. In this example, every participant
want to participate for a limited amount time, normally until the participant
has some interest in the collaboration. For such a group it may be infeasible
to build or participate in a classical grid infrastructure or volunteer comput-
ing infrastructure because of administrative overheads, cost, etc. Thus support
for formation of “ad hoc” grid infrastructure among participants of one-time
or short lived collaboration is required. Furthermore, such an infrastructure
is suitable to applications with low communication/computation ratio, such as
parallel search algorithms. Ad hoc grid is a distributed system with the aim
of harnessing unused computational resources inside an organization. It can be
considered as a temporary coalition of resources contributed by individuals to
achieve common objective of access to high computational environment. In an
ad hoc grid, every resource can spontaneously arise as a resource consumer or
a resource producer at any time when it needs a resource or it possesses an idle
resource.

However, existing models and infrastructures for desktop grid computing
do not support for such ad hoc collaboration among participants. Existing
desktop grid computing system follow either the client-server or unstructured

Chapter 1. Introduction 5

peer-to-peer architecture. Unstructured peer-to-peer approach use centralized
structure for connecting edge peers to super-peers. Thus most of the current
desktop system have some form of centralization in their architecture. Most of
the current desktop grid system focus on asymmetric resource utilization, i.e.,
volunteers supply capabilities of computational resources but do not consume
any. However, in a research collaboration users (i.e., volunteers) not only wish
to supply computational resources but also, if required, may wish to consume
other’s computational resources.

Furthermore, most of the current approaches are limited as they do not sup-
port application specific quality of service parameters during resource allocation.
Most of the current approaches to resource allocation in classical grid focus on
the quality attributes that maximize the performance of the application or re-
source, for example timeliness of task completion. However, applications also
have quality attributes based on security, reliability, location etc. For example,
a user may wish to execute his tasks on resources belonging to his group. He
can form an ad hoc grid using the available resources in his group. This ad
hoc grid need to support the requested quality of service parameter. Scheduling
policies such as First-Come-First-Served cannot serve this kind of requirement.
Quality of service mechanisms used in high performance grids involve off-line
human negotiation between resource providers and resource consumers, which
is not suitable for ad hoc peer-to-peer grids. In peer-to-peer grids - without a
centralized administrative infrastructure - the implementation of negotiation is
difficult. We need to device a mechanism that can model application specific
quality of service requirements.

Most existing policies that schedule jobs in desktop grid projects are based on
First-Come-First-Served (FCFS) or random assignments. FCFS are very easy to
implement in desktop grids. It assigns the first available job instance to the first
requesting worker. In random assignment job instances are selected randomly.
Such centralized scheduling policies have the disadvantage of poor scalability.
Further, such centralized approach lack support for application specific qual-
ity of service. Alternatively, distributed computational economy framework for
quality-of-service (QoS) driven resource allocation can be used. Such framework
provides mechanisms and tools that realize the goal of both resource provider
and resource consumer. Resource consumers need a utility model, represent-
ing their resource demand and preferences. And resource providers need an
expressive resource description mechanism. Ontology based resource descrip-
tion framework can be considered for defining the application requirements and
resource capabilities. Specifically, context information surrounding application
and resource can be used to model the application requirements and resource
capabilities.

Current volunteer grid architectures though support a wide range of appli-
cations with diversity related to scope and requirements they fail to support
sporadic collaborations in the absence of a central regulating authority which
presents the need for an ad hoc architecture which will promote structural inde-
pendence, technological independence and control independence for more than
a single administrator enabling promotion of better user collaboration Amin

Chapter 1. Introduction 6

et al. [2004]. When limited shared resources serve large number of request using
best-effort resource provisioning, the Grid performance degrades. Resource pro-
visioning in any grid infrastructures require mechanisms which take into account
the particular user constraints needed to satisfy resource demands. Hence, it
is necessary to explicitly, precisely, and unambiguously describe Grid resources
and specify various constraints over resource descriptions during resource re-
quest.

1.2 Research Questions

As explained in earlier section, current desktop systems, due to centralized
architecture do not promote ad hoc grid formation. Such ad hoc grid formation
should support ease of deployment, quality of service, and symmetric resource
participation. The research questions are:

• How can be ad hoc desktop grid formation supported?

• How we enable symmetric resource usage in a desktop grid environment?

• How can be resource provisioning happen in the absence of a centralized
scheduler in the peer-to-peer desktop grids?

• How can a resource provider (or resource consumer) can describe Grid re-
sources explicitly, precisely, and unambiguously during resource provision
(or resource request)?

• How can we model entities such as task and resources in a computational
Grid environment?

• How can we incorporate user constraints and preferences (i.e., support for
application specific quality of service parameters) into resource provision-
ing?

1.3 Research Methodology

Desktop grids can be used efficiently and conveniently on a smaller scale as
well. The easy deployment of desktop grids in small organizations can lead to a
grid system that spreads much faster than heavy-weight grid implementations.
Most of the current desktop grids are based on master/slave paradigm. In
such centralized approach, the master is the one who has the opportunity to
present independent tasks to a large number of slaves. On the other hand, if
such desktop grids can share the resources and their owners can use other’s
desktop resources, the many user concept of the traditional grid trend is also
realized. We build a light-weight extensible framework, called the Mini-Grid
Framework supporting the formation of peer-to-peer desktop grids. Compared
to the traditional approaches, the Mini-Grid Framework supports:

Chapter 1. Introduction 7

• Ease of deployment: The Mini-Grid environment can be setup with min-
imal configuration and installation effort,

• Symmetric resource usage: The users can contribute their resources to
the Mini-Grid environment as well as use the available resource in the
environment,

• Smaller scale grid formation: The Mini-Grid environment can be created
by combining the power of the computers at an institutional level or at
an organizational level,

• Decentralized task distribution: The Mini-Grid Framework adopts auction
strategies for dynamic resource discovery and selection.

• Resource and task modeling: We have used ontology based context model
to describe resource capabilities and to model resource requirements of an
application

• Application specific quality parameters: The Mini-Grid Framework sup-
ports specification of application specific quality parameters for schedul-
ing. We achieve this by modeling the application specific quality param-
eters as bids used in auction process.

The research methodology consists of two distinctive phases that aim to
design, develop and deploy and evaluate the Mini-Grid Framework. The first
phase consists of the following steps:

1. Survey of existing desktop grid system and identification of research gap

2. Architectural design of the Mini-Grid Framework supporting decentralized
task distribution by adopting auction-based scheduling

3. Defining an extensible API for the formation of ad hoc Mini-Grid envi-
ronment

4. Development of the Mini-Grid Framework

5. Perform experimental evaluation at ITU for evaluation of the framework
against efficiency and measuring the overhead

6. Integrate the developed framework with CLC Bio Workbench and real-
world application

7. Deployment at iNano research center for evaluation of the framework

8. final version 1.0 of the Mini-Grid Framework

The second phase consists of the following steps:

1. Architectural design of the Mini-Grid Framework supporting modeling of
resources and applications using their context information and modeling
of application specific quality parameters as bids

Chapter 1. Introduction 8

2. Development of the architectural design

3. Integrate the developed framework with CLC Bio Workbench and real-
world application

4. Perform control experiments at ITU for evaluation of the framework against
efficiency and measuring the overhead

5. Deployment at iNano research center for evaluation of the framework

6. Final version 2.0 of the Mini-Grid Framework

The pilot deployment at iNano research center evaluates the framework
against:

• Ease of deployment

• Support for dynamic resource participation

• Symmetrical resource sharing

• Support for heterogeneous resource participation

1.4 Contributions

This research investigates on the development and the deployment of the Mini-
Grid Framework for resource management in ad hoc grids using market based
scheduling and context based resources and application modeling. The author
of this thesis has contributed to the field of study as given below.

1. Data collection - Survey of existing desktop grid computing systems

2. Software produced

(a) Design of Conceptual Architecture of the framework

(b) Design of Module Architecture of the framework

(c) Design of Execution Architecture of the framework

(d) The Mini-Grid Framework Version 1.0

(e) The Mini-Grid Framework Version 2.0

(f) Building of simulation environment for the evaluation of the frame-
work under resource failures

3. Technical Reports

(a) Technical report on “ Design and Development of the Mini-Grid
Framework ”

(b) Tutorial for the Mini-Grid Framework

Chapter 1. Introduction 9

(c) Technical report on “ Mini-Grid message Field Definitions, General
Message Format and Message Sections ”

(d) Technical report on “ RNA secondary structure prediction on an ad-
hoc peer-to-peer network infrastructure ” (along with others)

4. Publications

(a) Jakob E. Bardram and Neelanarayanan Venkataraman: The Mini-
Grid Framework: Application Programming Support for Ad-Hoc,
Peer-to-Peer Volunteer Grids. GPC 2010: 69-80

(b) S. Kailash, P. Prasanna, V. Prabha, and Neelanarayanan V: Seman-
tic Resource Description for Grid. Asia International Conference on
Modelling and Simulation 2007: 112-115

1.5 Thesis Outline

The organization of the remainder of this thesis divides as follows:
Chapter 2 presents a survey of state-of-the-art desktop grid systems by using

a taxonomy based on resource provision, scalability, supported quality of service,
resource utilization and deployment effort.

Chapter 3 proposes the Mini-Grid Framework based on a peer-to-peer ar-
chitecture that manages a pool of resources; and owing the resources to the
infrastructure with applications having easy access to them.

Chapter 4 presents our approach to model computational capability of re-
source and computational capability requirement of tasks based on their con-
text information. We also present the resource selection process that involves
matching capability requirements to available resource capabilities using seman-
tic technology.

Chapter 5 presents the some insights in the use of the Mini-Grid Frame-
work in developing a sample mini-grid application, grid enabling an application
toolkit, and the possible extensions to the framework.

Chapter 6 presents the performance evaluation of the Mini-Grid Framework
by using lab experiments to determine the efficiency of the framework and the
overhead caused by the framework. The performance of the framework has been
compared with other systems.

Chapter 7 presents the performance evaluation of the Mini-Grid Framework
by using simulation experiments to determine the efficiency of the framework
in a volatile environment.

Chapter 8 presents the deployment study of real-world application on top of
the Mini-Gird Framework in a biology lab. The learning during the deployment
and the evaluation of the framework has been presented.

Finally in Chapter 9, we summarize the research contribution of this thesis
and pointers to further research. Currently, the framework supports minimal
support for failure handling. We have identified the need for support of proactive

Chapter 1. Introduction 10

failure handing mechanism, trust based security and efforts to scale Internet
wide computing platform.

Chapter 2

Related Work

A distributed system built on top of a network appears as a single entity by hid-
ing the existence of multiple autonomous computers and provides the user with
required service. There are several definitions for distributed systems from dif-
ferent view points. Coulouris defines a distributed system as “a system in which
hardware or software components located at networked computers communicate
and coordinate their actions only by message passing” Coulouris et al. [2005].
Tanenbaum defines it as “a collection of independent computers that appears to
its users as a single coherent system” Tanenbaum and van Steen [2007]. Thus
distributed systems consists of computer systems that contain multiple proces-
sors connected by a communication network.

There are various types of distributed systems, such as Clusters, Grids, Peer-
to-Peer networks, and so on. Cluster refers to a type of parallel or distributed
processing system, which consists of a collection of interconnected stand-alone
computers working together as a single, integrated computing resource Baker
and Buyya [1999].Cluster computing provides a cost-effective parallel comput-
ing platform as a network of nodes (for example, PCs or workstations or SMPs)
with memory, I/O facilities and operating system, providing a comparable per-
formance to those expensive, specifically designed parallel super computers at
a fraction of the cost. Often, clusters have special network/switch with its own
communication protocol for fast communication among its nodes. The cluster
middleware offers an illusion of single system image. Programming environment
includes message passing libraries, debuggers, and profilers. Message passing li-
braries libraries allow efficient parallel programs to be written for distributed
memory systems. The most popular message-passing systems are PVM (Paral-
lel Virtual Machine)1 from Oak Ridge National Laboratory, and MPI (Message
Passing Interface) defined by MPI Forum2.

The growth of the Internet, along with the availability of powerful computers
and high-speed networks at low-cost commodity components have enabled the
clustering of a wide variety of geographically distributed resources, such as su-

1www.csm.ornl.gov/pvm
2www.mpi-forum.org

11

Chapter 2. Related Work 12

percomputers, storage systems, data resources, instruments and special devices,
and services, which can be used as a unified resource. Furthermore, they have
enabled seamless access to and interaction among these distributed resources,
services, application and data. The new paradigm that has evolved is popularly
termed as “Grid” computing. Ideally, a grid should provide full-scale integra-
tion of heterogeneous computing resources of any type. However, real world grid
implementations are more specialized and generally focus on the integration of
certain types of resources. As a result, we have different types of grids: compu-
tational grid, data grid and service grid Krauter et al. [2002]. Computational
grid focus on integration of computational resources (for example, High Perfor-
mance Clusters). Data grid focus on integration of data storage resources (for
example, Network Attached Storage device). The European DataGrid project
focus on the development of middleware service to enable distributed analysis
of physics data from CERN3 Gagliardi et al. [2002]. Service grid provides a
service that cannot be achieved through one single computer. In such grids,
several different resources exist each providing a specific function that needs to
be aggregated in order to collectively perform the desired service. For example,
we can have a service obtained its functionality by integrating and connecting
databases from two separate VOs in order to output their correlation Taylor
and Harrison [2009].

Similar to Grid computing, peer-to-peer (P2P) computing is a relatively new
computing discipline in the realm of distributed computing. Grid computing has
many similarities to P2P computing. The difference between grid computing
and P2P computing is in the design point. Grid computing systems tend to be
designed to operate well for the case in which there are small number of very
powerful locations, whereas P2P computing system tend to be designed for a
very large number of weaker machine Verma [2004].

At present, computational grids can be broadly classified into two types.
The first type, the “classical” computational Grid system provide rich feature-
sets (e.g., resource discovery service, multi-user authentication, etc.) and tend
to concern themselves primarily with providing access to large-scale powerful
computational resources. The second general class of computational grids is the
Desktop grid. Desktop grid systems aggregate the idle CPU cycles of desktop
resources from individuals or from within organizations or from multiple organi-
zations. The desktop grid system provide high computational capability at low
cost and this motivates its use. However, there are several distinct differences
between them in terms resource participation, resource sharing nature, applica-
tion support, service quality, deployment effort required etc. Building a desktop
system has to consider resource’s heterogeneity, non-dedication, volatility, fail-
ures, security, etc. Therefore, it is important to comprehend current research
approaches in desktop grid system development to identify research gaps.

This research aim to develop a software platform that allows aggregation of
resources and provision of resources to grid applications. Hence, a taxonomy
has been provided focusing from resource and application perspectives. Then,

3www.cern.ch

Chapter 2. Related Work 13

the proposed taxonomy has been mapped to few existing desktop grid systems.

2.1 Introduction

While the concept of a “computing utility” providing “continuous operation
analogous to power and telephone” can be traced back to the Multics Project in
the 1960s Corbató and Vyssotsky [1965]. The term the “Grid” has emerged in
the mid 1990s to denote a proposed computing infrastructure which focuses on
large-scale resource sharing, innovative applications, and high-performance ori-
entation Foster et al. [2001]. The grid concept provides virtual organization en-
vironment for resource sharing and problem solving across multiple institution.
The sharing involves a direct access to computing resources, storage devices, net-
work resources, software, scientific instruments and other resources subjected to
highly controlled sharing rules. The sharing rules define clearly what is shared,
who is allowed to share, and the sharing conditions. A set of individuals and
or/institutions defined by such sharing rules forms a virtual organization Foster
et al. [2001]. Researchers and corporations have developed different types of
grid computing systems to support resource pooling or sharing. Typically, such
grid computing systems can be classified into computational and data grids. In
Krauter et al. [2002], a taxonomy for grid systems is presented, which proposes
a three types of grid systems. As stated earlier, they are computational grids,
data grids and service grids.

Now, let us focus on computational grids that optimizes execution time of
applications that require greater number of computing processing cycles. The
“Computational Grid” refers to the vision of a hardware and software infrastruc-
ture providing dependable, consistent, fast, and inexpensive access to high-end
computational capabilities Foster and Kesselman [1999]. Generally speaking,
such grid computing platforms can be classified into two main categories; clas-
sic high-end grids and volunteer or desktop grids Kurdi et al. [2008]. Classical
grids provide access to large-scale, intra-and-inter institutional high capacity re-
sources such as clusters or multiprocessors Foster and Kesselman [1999]; Foster
[2006]. For example, Globus Foster [2006] and Legion Chapin et al. [1999] pro-
vide a software infrastructure that enables applications to handle distributed
heterogeneous computing resources, normally dedicated, in multiple adminis-
trative domains. TeraGrid4, build on the Globus Toolkit is one such example.
However, installing, configuring, and customizing Globus middleware requires
a highly skilled support team, such as the London e-Science Centre5 or the
Enabling Grids for E-science project6. Participating in grid projects involves
time consuming networking and training processes. The application developer
must possess a knowledge of both the middleware being used and the underlying
computational hardware. Using this information, task dependent libraries and
binaries can be produced. These are typically managed by the user, who also

4www.teragrid.org
5www.lesc.imperial.ac.uk
6www.eu-egee.org

Chapter 2. Related Work 14

has to possess some knowledge of the target architecture. This makes the pro-
cess of application deployment both time consuming and error prone Cafferkey
et al. [2007]. Globus based grid computing infrastructure requires third party
resource brokers or meta-schedulers for task distribution. Meta-scheduler, a soft-
ware scheduling system, allows a designated node to act as an active gateway
for other passive nodes, for example GridWay7. Thus effort towards develop-
ment, integration, testing and packaging of many components are substantial.
For these reasons, the deployment and operational cost of such systems are
substantial, which prevents its adoption and direct use by non-technical users.
For example, NSF Middleware Initiative (NMI) program8 has invested roughly
$50M for development of various components. TeraGrid cyber infrastructure
facility has allocated approximately 25% of the staff to common integration
functions and 75% of the staff to resource provider facility functions Catlett
et al. [2006].

Consider a situation where the participants are offering different resources
to collaborate on a common objective. In this scenario, every participant wants
to participate for a certain limited amount of time, normally till the partici-
pant has some utility interest in the participation. Administrative overheads
erupting from classical grid participation make it impractical for such transient
communities to undergo a formal grid establishment process.

Volunteer or Desktop Grids, in contrast, is designed to distribute compu-
tational tasks between desktop computers owned by individuals at the edge of
Internet or idle desktop computers in an institution. Volunteer Grid computing
systems allow formation of parallel computing networks by enabling ordinary In-
ternet users to share their computer’s idle processing power Litzkow et al. [1988];
Anderson [2004]. Projects based on volunteer computing system provide com-
putational infrastructures for complex computational intensive research prob-
lems that range from searching for extraterrestrial intelligence (SETI@home)
to exploring new HIV/AIDS treatments (fightAIDS@home). Such systems re-
quire setting up a centralized control system responsible for managing the con-
tributed clients, who in turn periodically request work from a central server.
Volunteer computing is highly asymmetric; it is a ‘master-slave’ architecture in
which volunteers supply computing resource but do not submit any work to be
done. Public outreach and incentive structures (like high-score competitions)
play a significant role in attracting volunteers. In volunteer computing, users
require system administration and database expertise to create and operate
projects Maurer [2005].

Historically, the Condor project Litzkow et al. [1988] pioneered using the
idle time of organizational workstations to do parallel computing. Increasing
computational power and communication bandwidth of desktop computers are
helping to make distributed computing a more practical idea. By using existing
desktop computers from a local network, the cost of such an approach is low
compared with parallel supercomputers and dedicated clusters. The main dif-

7www.gridway.org
8www.nsf-middleware.org

Chapter 2. Related Work 15

ference in the usage of institutional desktop grids relatively to volunteer ones
lies in the dimension of the application that can be tackled. In fact, while vol-
unteer grid computing projects usually embrace large applications made up of a
huge number of tasks, institutional desktop grids, which are much more limited
in resources, are more suited for modestly-sized applications.

Peer-to-peer platforms provide an operating system independent middleware
layer, which allows sharing of resources in a peer-to-peer fashion. Various proto-
cols for supporting P2P service discovery (e.g. Gridnut Talia and Trunfio [2004]
and GridSearch Koh et al. [2006]) and P2P resource discovery Pham et al. [2006]
has been proposed. Grid computing focus on infrastructure. On the other hand,
peer-to-peer computing focus mainly on scalability and not infrastructure. How-
ever, a convergence between peer-to-peer and Grid computing has been foreseen
in literature Foster and Iamnitchi [2003]; Trunfio et al. [2007].

2.2 Overview of Desktop Grid Systems

In this section we present some of the well known grid systems but with special
focus to desktop grid systems. While this list is not exhaustive, but merely
representative from this research point of view. The survey includes desktop
grid systems that have been demonstrated with proof of concept application
or working prototype or have been widely used or deployed in real environ-
ment. The survey excludes research work that reports theoretical model with
no implementation and evaluation are excluded from the study.

2.2.1 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) Anderson
[2004]; Anderson et al. [2006] is a software platform for distributed computation
using idle cycles from volunteered computing resources. BOINC is composed of
a central scheduling server and a number of clients installed on the volunteers’
machines. The client periodically contacts the server to report its availability
and gets workload. BOINC is mainly based on voluntary participants connected
through Internet.

Although projects using BOINC are diverse in their scientific nature, in
general they are data analysis applications composed of independent tasks that
can be executed in parallel. Each project must prepare its data and executable
code to work with the BOINC libraries and client/server infrastructure. Also
they need to set up and maintain their own individual servers and databases
to manage the project’s data distribution and result aggregation. Though each
project requires individual server setup and maintenance, BOINC users can
participate in multiple projects through single client interface.

The BOINC server consists of seven different daemon programs, some of
which are provided by BOINC and others need to be implemented individually
for each project Buck [2005]. The feeder, and transitioner, are components pro-
vided by BOINC. The BOINC server maintains a queue of work units that need

Chapter 2. Related Work 16

to be sent to the clients. The feeder retrieves newly generated work units from
the database to fill the queue. The transitioner controls the state transitions of
work units and results throughout their lifecycles. The lifecycle of a work unit
begins when it is generated by the work generator and is added to the database.
The work generator daemon need to be developed by the application. The work
units can then go through several state transitions as they are distributed to
one or more clients for execution. If a client has received a work unit and has
not returned the results within a predetermined amount of time, then the work
unit is said to have timedout or expired. The transitioner detects work units
that have timed out and redistributes them to different clients. The lifecycle
of a work unit ends when enough valid results for that work unit have been
collected and a single result called the canonical result is chosen for that work
unit. Similar to work unit, the result can also undergo several state transitions.
All results that are invalid or not selected to be the canonical result are deleted.

Database purge and file deleter daemons provided by BOINC. The file deleter
and the database purge daemons remove files and work units that are no longer
needed to keep the database size at constant size. The validator daemon at-
tempts to determine which results are valid by comparing results from several
different clients. The assimilator daemon processes valid results, which usually
mean storing them to a separate database for later analysis.

The BOINC architecture is highly modular and scalable. If the project server
becomes inundated with client requests, additional servers can be added to the
project with daemons running on all the servers each handling only a fraction
of the total incoming requests. With a sufficient number of project servers, the
only bottleneck in the system is the MySQL9 server Anderson et al. [2005].

BOINC, a powerful and robust system for public resource computing has
significant limitations. The BOINC client has been ported to several platforms,
but the BOIN server can only be executed on Linux-based operating systems.
Hence, researchers or application developer need to have expertise in Linus sys-
tem administration and database expertise Maurer [2005]. Furthermore, project
creators must have a large knowledge of C++ or Fortran programming Silva
et al. [2008]. Compared to the high complexity of BOINC system, there is
very little documentation available about how to create a BOINC project. This
lack of documentation is the largest barrier that researchers face when creating
BOINC project Baldassari [2006].

Projects must have a large visibility in order to attract enough cycle donors
(i.e., volunteers) Silva et al. [2008]. Resource providers are concerned with
the potential harm inflicted by Internet sharing systems, especially when the
installation or use of the system requires administrator (or root) privileges Pan
et al. [2006].

9www.mysql.com

Chapter 2. Related Work 17

2.2.2 DG-ADAJ

DG-ADAJ (Desktop Grid - Adaptive Distributed Application in Java) Olejnik
et al. [2006] is a middleware platform, facilitating Single System Image (SSI),
to enable efficient execution of heterogeneous applications with irregular and
unpredictable execution control in desktop grids.

DG-ADAJ is designed and implemented above the JavaParty and Java/RMI
platforms. DG-ADAJ automatically derives graphs from the compiled bytecode
of a multi-threaded Java application that account for data and control depen-
dencies within the application. Then, a scheduling heuristic is applied to place
mutually exclusive execution paths extracted from the graphs among the nodes
of the desktop grid system.

DG-ADAJ does not include methods for resource brokering. Before schedul-
ing any computational jobs resources need to be found/selected manually by
the user. ADAJ applications had to be written utilizing the JavaParty, so the
application had to be tightly coupled with the platform.

2.2.3 SZTAKI Local Desktop Grid

SZTAKI Local Desktop Grid Balaton et al. [2007] is built on BIONC technology
but significantly extends the client concept of BOINC in order to enable the
creation of hierarchical desktop grids within a large organization or community.

The hierarchical Desktop Grid allows a set of projects to be connected to
form a directed acyclic graph. Task is distributed among the edges of the
directed graph. By doing this, SZTAKI can reduce load on the primary BOINC
server by using the second and third-level BOINC servers. But, each level
of BOINC servers still has the same characteristics of the original BOINC,
for which performance is not guaranteed. Communication and data transfer
between the client and the desktop grid system is performed via HTTPS.

SZTAKI LDG focuses on making the installation and central administration
of the local desktop infrastructure easier by providing tools to help the creation
and administration of projects and the management of applications.

SZTAKI LDG supports DC-API for easy implementation and deployment
of distributed applications on local desktop grid environment.

2.2.4 distributed.net

A very similar effort to BIONC is distributed.net Distributed.net. However,
the focus of the distributed.net project is on very few specialized computing
challenges. Furthermore, the project releases only binary code of the clients
and hence impossible to adapt in other projects. The project that attracted the
most participant was an attempt to decipher encrypted messages. However, the
volunteers were provided with cash prizes.

Chapter 2. Related Work 18

2.2.5 XtremWeb

XtremWeb Fedak et al. [2001], a research project from University of Paris-Sud,
France aims to serve as a substrate for large scale distributed computing. Similar
to BOINC, XtremWeb is based on the principle of cycle stealing.

XtremWeb supports the centralized setup of servers and PCs as workers.
However, it can be used to build a peer-to-peer system with centralized control,
where any worker node can become a client that submits jobs. It implements
three distinct entities: the coordinator, the workers and the clients to create a
XtremWeb network. Clients can be used by any user to submit tasks to the
XtremWeb network. They submit the task to the coordinator and permits the
end user to retrieve results. The workers installed on volunteer hosts execute
the task.

Tasks are scheduled to workers according to their demand (i.e., pull model) in
FIFO (First In First Out) order Petiton et al. [2006]. All actions and connections
are initiated by workers. The coordinator registers every worker connection.
The communication between coordinator and workers are encrypted for network
security. The workers downloads the executable software and all other related
components (e.g., the input files, the command line arguments for the executable
binary file, etc). Workers sends the result (the output files) to the coordinator.

During registration workers provide configuration information such as XtremWeb
worker version, operating system, CPU type, memory size, etc. XtremWeb coor-
dinator performs matching about CPU type, OS version and Java version Lody-
gensky et al. [2003]. Coarse grained, massively parallel and applications that
are not communication intensive are suited for deployment on XtremWeb Peti-
ton et al. [2006]. XtremWeb uses replication and checkpointing for fault toler-
ance Djilali et al. [2004].

XtremWeb-CH Abdennadher and Boesch [2007] is an upgraded version of
XtremWeb with major improvements in communication routines and improved
support for parallel distributed application.

2.2.6 Alchemi

Alchemi Luther et al. [2005] is an open source project from Melbourne Univer-
sity developed in C# for Microsoft .NET framework. It allows flexible appli-
cation composition by supporting an object-oriented application programming
model with a multithreading paradigm. Grid application consists of several grid
threads that can be executed in parallel. Although tightly coupled with .NET
platform, Alchemi can run on other platforms using Web services. Alchemi is
based on the master-worker parallel programming paradigm.

Alchemi grid consists of three components: manager, executor, and owner.
The manager manages grid application execution and thread execution. Execu-
tors sign up with manager. Owner submits grid threads to manager who adds
them into to a thread pool. Then the manager schedules threads for execution
on available executors. Executors after completion of execution of the threads
submit the results to the manager. Later, the owner can retrieve the results

Chapter 2. Related Work 19

from the manager.
Aneka Chu et al. [2007], an improved version of Alchemi allows the creation

of enterprise Grid environments. It provides facilities for advance reservation of
computing nodes and supports flexible scheduling of applications.

2.2.7 Bayanihan

Bayanihan Sarmenta and Hirano [1999] is a web-based volunteer computing
framework that allows users to volunteer their resources.

Bayanihan system consists of client and server. A client executes Java applet
on a web browser. It has a worker engine that executes computation or a watcher
engine that shows results and statistics. A server consists of HTTP server, work
manager, watch manager and data pool. The HTTP server serves out Java class
file. The work manager distributes tasks and collects result. Bayanihan basically
uses eager scheduling, in which a volunteer asks its server for a new task as soon
as it finishes execution of current task. Eager scheduling works by assigning
distributed tasks to hosts until every task has been scheduled at least once. At
this point, redundancy is introduced by rescheduling any task that has not yet
completed. This process continues until every task completes. The client uses
remote method invocation technique called HORB Satoshi [1997] on the server
to get a task.

The applications are mainly compute-intensive and independent. In ad-
dition, Bayanihan supports applications running in Bulk Synchronous Paral-
lel (BSP) mode, which provides message-passing and remote memory primi-
tives Sarmenta and Hirano [1999].

2.2.8 Condor

Condor Tannenbaum et al. [2001] developed at the University of Wisconsin-
Madison scavenge and manage wasted CPU power from otherwise idle desktop
workstation across an entire organization.

Workstations are dynamically placed in a resource pool whenever they be-
come idle and get removed from the resource pool when they become busy.
Condor can have multiple resource pool and each resource pool follows a flat
resource organization. Condor collector listens for resource availability adver-
tisements and acts as a resource information store. A Condor resource agent
runs on each machine periodically advertising its availability and capability to
the collector. Condor provides job management mechanism, scheduling pol-
icy, priority scheme, resource monitoring and resource management. Condor is
comprised of a server and large number of volunteers. A central manager in the
server is responsible for matchmaking, scheduling and information management
about task and resources.

Condor provides ClassAd Raman et al. [1998] in order to describe character-
istics and requirements of both tasks and resources. It also provides a match-
maker for matching resource requests (tasks) with resource offers (i.e., available
resources). Condor provides Directed Acyclic Graph Manager (DAGMan) DAG

Chapter 2. Related Work 20

for executing dependable tasks. Condor enables preemptive-resume scheduling
on dedicated compute cluster resources. It can preempt a low-priority task in
order to immediately start a high-priority task.

Condor-G Frey et al. [2002] is the technological combination of the Globus
and the Condor projects, which aims to enable the utilization of large collection
of resources spanning across multiple administrative domains. Globus contri-
bution composes of the use of protocols for secure inter-domain communication
and standardized access to a variety of remote batch systems. Condor con-
tributes with the user concerns of job submission, job allocation, error recovery
and creation of user friendly environment.

2.2.9 Entropia

Entropia Chien et al. [2004] facilitates a Windows desktop grid system by ag-
gregating the desktop resources on the enterprise network.

The Entropia system architecture consists of three layers: physical node
management, resource scheduling and job management layer. The physical
node management layer provides basic communication, security, local resource
management and application control. The resource scheduling layer provides re-
source matching, scheduling of work to client machines and fault tolerance. The
job management layer provides management facilities for handling large num-
ber of computations and data files. A user can interact directly with resource
scheduling layer by means of API or can use the management functionalities pro-
vided by job management layer. The applications are mainly compute intensive
and independent.

Entropia virtual machine (EVM) runs on each desktop client and is respon-
sible for starting the execution of the subjob, monitoring and enforcing the un-
obtrusive execution of the subjob, and mediating the subjobs interaction with
the operating system to provide security for the desktop client and the subjob
being run. The EVM communicates with the resource scheduler to get new
task (subjobs), and communicates subjob files and their results via the physical
mode management layer.

The resource scheduler assigns subjobs to available clients according to the
client’s attributes such as memory capacity, OS type, etc. The Entropia system
uses a multi-level priority queue for task assignment.

The applications are mainly compute intensive,independent and involve less
data transfer between server and clients Chien [2003].

2.2.10 QADPZ

QADPZ (Quite Advanced Distributed Parallel Zystem) Vladoiu and Constan-
tinescu [2008] is an open source desktop grid computing system. The users of
the system can transmit computing tasks to these computers for execution in
the form of dynamic library, an executable program or any program that can
be interpreted, for example Java, Perl, etc. Messages between the components

Chapter 2. Related Work 21

of the system are in XML format and can optionally be encrypted for security
reasons.

A QADPZ consists of three types of one master, many slaves and multiple
clients delegating job to the master.

• Master - A process running on the master computer responsible for jobs,
tasks, and slaves accounting. The slaves talk to the master when they
join or leave the system, or receive or finish tasks; the clients talk to the
master when they start or control user jobs or tasks.

• Slave - A process running on the volunteer computer as a daemon or Win
NT service. The slave communicates with the master and starts the slave
user process. Without the slave running the slave computer cannot take
part in collaborative computing.

• Client - A process running on a client computer. It communicates with
the master to start and control jobs and tasks of a specific user, may also
communicate directly with slaves and is responsible for scheduling the
tasks of user jobs as required by particular user application.

• Slave computer - One of many computers where the distributed collabora-
tive computation takes place, for example: a UNIX server, a workstation,
a computer in a student PC Lab, etc.

• Client computer - Any computer that the user uses to start his application.
A client computer may be a notebook connected to the network using a
dial-up connection, a computer in the office, lab, etc.

All slaves participating in the system run a slave program that accepts the
tasks to be computed. The master program keeps track of the status of the
slave computers. The master registers the status of the slaves, i.e., idle or busy
computing a QADPAZ task or disabled because a user has logged out. When a
user wishes to use the system, he prepares a user application consisting of two
parts: A slave user program, i.e., the code that will effect the desired computing
after being distributed to the slaves, and the client that generates jobs to be
completed.

The user can choose the QADPZ standard client, which allows him to set up
and submit a job. The job description is saved into an XML-formatted project
file and can be manually edited by more advanced users. Alternately, a user
may want to write his or her own client application to have full control over the
submission of tasks. It is possible to directly write a slave library to speed up
the execution. In that case, the slave service or daemon will not start a new
process with the downloaded executable but a dynamic shared library will be
loaded by the slave process.

QADPZ is implemented in C++ and uses MPI as its communication pro-
tocol. The client and the slaves talk to each other by the use of a shared disk
space, which is certainly a performance bottleneck and requires costly synchro-
nization Fuad [2007].

Chapter 2. Related Work 22

All the components need to be installed manually and have their own con-
figuration files requiring manual configuration. The system has been used in
the area of large-scale scientific visualization, evolutionary computation, and
simulation of complex neural network models.

2.2.11 Javelin

Javelin, a Java-based infrastructure for global computing with a goal to har-
ness the Internet’s vast, growing, computational capacity for ultra-large, coarse-
grained parallel applications. The work that started with SuperWeb has been
continued with new versions named Javelin++, Javelin 2.0, Javelin 3.0, CX,
JANET and currently JICOS, each with improvements in performance, scala-
bility, computation and programming model. Javelin Christiansen et al. [1997];
Neary et al. [1999b, 2000] is a Java based infrastructure. Applications run as
Java applet in Javelin version or screen saver in Javelin++ version Neary et al.
[1999a].

Javelin consists of three entities: broker, client and host. A broker is a
system-wide Java application that functions as a repository for the Java applet
programs, and matches the client tasks with hosts. A client submits a task to
the broker through a Web browser by generating an HTTP POST-request, and
periodically polls the broker for the results. Hosts are Web browsers, generally
running on idle machines, that repeatedly contact the broker for tasks to per-
form, download the applet code, execute it to completion, and return the results
to the broker. The communication between any two applets is routed through
the broker Christiansen et al. [1997]. The Javelin is hindered by Java applet
security model. Hence, Javelin 2.0 abandoned the applet-based programming
framework and added support for problems that could be formulated as branch
and bound computations. However, the essential architecture remained almost
same.

In Javelin, the work stealing is performed by a host, and eager scheduling
is performed by a client. Applications are mainly compute-intensive and inde-
pendent. Currently, Javelin supports branch and bound computations. Javelin
achieves scalability and fault-tolerance by its network of brokers architecture
and by integrating distributed deterministic work stealing with a distributed
deterministic eager scheduling algorithms. The main advantage of this archi-
tecture are:

• URL based computation model permits the worker hosts to perform the
necessary computation off line and later reconnect to the Internet to return
the results from the computation.

• Administrative overheads involved in preparing worker nodes (during de-
ployment) is minimized by ubiquity of Web browsers.

However, centralized match making process and task repository by broker
limits Javelin. Further, it assumes the user’s a priori knowledge of the broker’s
URL address. Eager scheduling leads to excessive data traffic and presence of
multiple copies of the same task.

Chapter 2. Related Work 23

2.2.12 Charlotte

Charlotte Baratloo et al. [1999] developed at New York University is a web-
based volunteer computing framework and implemented using Java. Charlotte
supports Java-based distributed shared memory over the Java Virtual Machine
and parallelism. The key feature of the shared memory architecture is that
it requires no support from the compiler or the operating system, as it is the
case with most shared memory architectures. The implementation of distributed
shared memory is at data level. Every basic data type in Java has a correspond-
ing Charlotte data type. Charlotte maintains data consistency by using the
atomic update protocol allowing concurrent reads but exclusive write/updates.

Charlotte, based on Calypso’s programming model to provide parallel rou-
tines and shared memory abstraction on distributed machines. The main enti-
ties in Charlotte program are a manager (i.e., a master task) executing serial
steps and one or more workers executing parallel steps called routines. A rou-
tine is analogous to a standard Java thread, except for its ability to execute
remotely. A distributed shared name-space provides shared variables among
routines. The manager process creates an entry in well-known Web page. Vol-
unteer users load and execute the worker processes as Java applets embedded
into web pages pointed by pointing their browsers to this page. A direct socket
connection provides the manager-worker communication.

Initially, it uses eager scheduling and then redundant assignment of tasks
to multiple clients to handle client failures and slow clients. Multiple execu-
tions of a task can result in incorrect program state. Charlotte uses two-phase
idempotent execution (TIES) to ensure idempotent memory semantics in the
presence of multiple executions. TIES ensures guarantees correct execution of
shared memory by reading data from the master and writing it locally in the
worker’s memory space. Upon completion of a worker the dirty data is written
back to the master who invalidates all successive writes, thus maintaining only
one copy of the resulting data Batheja and Parashar [2001]. Further, in order to
mask latencies associated with the process of assigning tasks to machine by em-
ploying dynamic granularity management. Granularity management technique
(bunching) assigns a set of task to a single machine at once. The size of bunch
is computed dynamically based on the number of remaining task and number
of available machines.

Charlotte makes use of existing Internet infrastructure such as HTTP servers
and web browsers for running applets. As with Javelin project, Charlotte is also
hindered by Java applet security model. Charlotte programs must conform to
the parallel routine program structure and must be implemented as a Java ap-
plet. This approach is not very transparent or flexible because programmers
must adhere to both the applet API and Charlotte’s parallel routine struc-
ture Baratloo et al. [1997]. Charlotte does not address the question of how a
Web browser, i.e., the worker, finds the work. Earlier version requires man-
ual input of the URL location. However, current version uses a registry and
lookup service provided by KnittingFactory Baratloo et al. [1997]. The primary
function of the manager is not only scheduling and distributing works but also

Chapter 2. Related Work 24

responsible for communication of workers as well as applet-to-applet communi-
cation. Hence, the manager could be a bottleneck. Further, Charlotte requires
that a manager run on a host with HTTP server. If multiple applications are
run by single machine, then multiple managers are needed to run on this ma-
chine. Hence, it would introduce additional overhead and leads to performance
problem.

2.2.13 CPM

Compute Power Market (CPM) Buyya and Vazhkudai [2001] is a market-based
middleware system for global computing on personal computing devices con-
nected to the Internet. It applies economic concepts to resource management
and scheduling across Internet-wide volunteer computing.

It consists of a market, resource consumers and resource providers. The
market consists of a market resource broker and market resource agent. The
market resource broker is component of resource consumer and the market re-
source agent is a component of resource provider. It maintains information
about resource providers and resource consumer – a kind of registry. The re-
source consumer buys computing power using the market resource broker. The
market resource broker finds suitable resource based on the information provided
by the market. It is responsible for negotiating cost with resource providers and
task distribution to resource providers. The resource provider sells computa-
tional power using market resource agent. The market resource agents updates
resource information and deploys and execute tasks. The resource broker selects
the resource based on deadline or budget.

CPM takes the advantage of real markets in the human society. However, the
centralized market servers introduce limitations, such as single point of failure
and limited scalability. Furthermore, the centralized market server requires
additional organizations for regular maintenance Xiao et al. [2005].

2.2.14 POPCORN

POPCORN Nisan et al. [1998] is a Web-based global computing system for
scheduling Java-based parallel applications. POPCORN uses market model for
matching sellers and buyers.

It consists of a market, buyers and sellers. The sellers provide their resources
to a buyer by using Java enabled browser. The market has the popcoin, a
currency used by buyer to buy resources. The seller can earn the popcoin for
selling its resources. The market is responsible for performing matching between
buyers and sellers, transferring task and result between them and for account
management.

POPCORN uses several market models for scheduling. The Popcorn sys-
tem implements three different kinds of auction mechanisms: Vickrey auctions,
first-price double auctions, and k-price double auctions. Popcorn has a central
repository by means of a Web platform for information aggregation. However,
this platform may become a communication bottleneck.

Chapter 2. Related Work 25

The applications are mainly compute-intensive and independent.

2.2.15 The Spawn System

Waldspurger Waldspurger et al. [1992] et al. proposes a distributed system that
uses market mechanism for allocating computational resources called Spawn.

The Spawn system organizes participating resources as trees. A leaf re-
source can join randomly selected auction among the available auctions. The
managers of each leaf serve as funding sponsors for their children. In case an
agreement is reached after the auction process, a resource manager controls the
communication with and monitoring of the supplied resources.

The Spawn system supports tree-based applications in which partial results
are computed on different levels of the tree and are subsequently sent to a leaf
on a higher level of the tree. On each leaf, a manager combines and aggregates
the results received from its children. Subsequently, this manager reports the
aggregated results to its higher leaf on the tree.

The Spawn system uses market models for scheduling. The managers of each
leaf serve as funding sponsors for their children. This funding is used to pur-
chase CPU resources for subtasks associated with each leaf. These resources are
purchased by participating in Vickrey auctions which are instantiated by each
node that offers idle CPU slice. In Vickrey auction uses sealed-bid that means
bidding agents cannot access information about other agent’s bid. Further, the
winner pays the amount offered by the next highest competitive bidder. The
auction instance and the pricing information are advertised to the neighbors of
each node. Out of all available auctions, a requesting leaf randomly joins one
particular auction. In case an agreement is reached after the auction process,
a resource manager controls the communication with and monitoring of the
supplied resources.

The authors through simulation of prototypical implementation show that
Vickery auctions leads to economically efficient outcomes. In addition it has
lesser communication costs compared to an iterative auction. However, as the
information is only propagated to neighbors, new information is disseminated
with delays. Besides, the seller-initiated auction is suitable only for heavily
loaded systems. In lightly loaded system, the buyer-initiated auction is proved
to outperform the seller-initiated auction Eager et al. [1986].

2.2.16 OurGrid

OurGrid system Andrade et al. [2005]; Cirne et al. [2006] is an open, free-to-
join, cooperative grid in which labs donate their idle computational resources
in exchange for accessing other labs’ idle resources when needed.

OurGrid is based on a peer-to-peer network, where each labs in the Grid
correspond to a peer in the system. OurGrid has three main components: the
OurGrid peer, the MyGrid broker and the SWAN security service. The MyGrid
broker is responsible for providing the user with high-level abstractions for re-
source and computational task. The SWAN security service guarantees secure

Chapter 2. Related Work 26

resource access. Each peer in represents a lab. Each peer has direct access to a
set of resource. Each resource has an interface called GridMachine that provides
access to the resource.

The OurGrid system mainly focuses on compute intensive and independent
tasks. The OurGrid system provides resource matching and heuristic scheduling.
The OurGrid architecture implements the idea of symmetric resource partici-
pation.

2.3 Classification of Desktop Grids

In this section, we present the various classification of desktop grids. There
are several taxonomy of Desktop Grids. Baker et al. present the state of
the art of Grid computing and emerging Grid computing projects. They hi-
erarchically categorize Grid systems as integrated Grid systems, core middle-
ware, user-level middleware, and applications/application driven efforts Baker
et al. [2002]. Krauter et al. proposes a taxonomy of Grid focusing on resource
management. Their taxonomy classifies the architectural approaches from the
design space Krauter et al. [2002]. Venugopal et al. proposes a taxonomy of
Data Grids based on organization, data transport, data replication and schedul-
ing. Sarmenta classifies volunteer computing into application-based and web-
based Venugopal et al. [2006]. Chien et al. classifies Desktop Grid into Internet
scalable Grid and Enterprise Grid Chien et al. [2004]. Gilles Fedak et al. provide
a taxonomy of Desktop and Service Grids based on distribution of computation
units, scalability, type of resource contribution, and organization Fedak et al.
[2008]. SungJin Choi et al. presents the taxonomy of Desktop Grid systems and
mapping of taxonomy to the existing Desktop Grid systems Choi et al. [2007].
However, their taxonomy is focused on scheduling in Desktop Grid systems. We
provide a taxonomy and mapping that is more generic and inclusive in nature.
The objective of this taxonomy are to:

• Categorize based on attributes related to system architecture, resource
provision, and grid deployment effort.

• Provide mapping of main desktop grid system according to the taxonomy.

2.3.1 Centralized Desktop Grids

Desktop grid system can be categorized into centralized and decentralized desk-
top grids. Centralized desktop grid system consists of three logical components:
client, workers and server. Client allows platform users to interact with the
platform by submitting jobs and retrieving results. Worker is a component
running on the volunteer’s desktop computer which is responsible for executing
jobs. Server, a coordination service connects clients and workers.The server re-
ceives jobs submissions from clients and distributes them to workers according
to the scheduling policy. Servers also manage fault tolerance by detecting worker
crash or disconnection. If needed tasks are restarted on other available workers.

Chapter 2. Related Work 27

Workers on completion of task execution return the results to the server. Finally,
the server verifies the correctness of the results and stores them for the client
to download them. Typical examples are BOINC, XtremWeb, Entropia etc.
Properties of centralized desktop grid has been presented in Table 2.1 and 2.2.

The desktop grid system can be classified based on deployment and resource
location into local and global desktop grids. Local desktop grid, also known as
Enterprise desktop grid, consists of desktop PC hosted within a corporation or
University interconnected by Local Area Networks (LAN). Several companies
such as Entropia and University projects such as Condor, SZTAKI local desktop
grid, etc., have targeted these LANs as a platform for supporting desktop grid
applications. Such grid environments have better connectivity and have rela-
tively less volatility and heterogeneity than global desktop grids. Local desktop
grids connect resources from the same administrative domains, normally by us-
ing local-area networking technologies and poses low security risks. Internet
desktop grids connects resources from different administrative domains, nor-
mally by using wide-area networking technologies. They aggregate resources
provided by end-user Internet volunteer. Global grids are characterized by
anonymous resource providers, poor quality of network connections, being be-
hind firewalls, having dynamic addressing techniques (DHCP) and poses high
security risks. Desktop grids based on BOINC such as SETI@HOME, Ein-
stein@HOME, etc. falls under global desktop grids.

In order to maximize the potential work pool and minimize setup time, a
volunteer computing system must be accessible to as many people as possible.
Desktop grid system can be categorized into Web-based and middleware-based
desktop grid computing according to the accessibility platform running on vol-
unteers. In the web-based desktop grid systems, clients write their parallel
application in Java and post them as Applet on the Web. Then, volunteers
can join by pointing to the web page using their browsers. The Applet gets
downloaded and runs on the volunteer’s desktops. Typical examples are Char-
lotte, Bayanihan, Javelin and so on. In the middleware-based desktop grid
computing systems, volunteers need to install and run a specific middleware
that provides the services and functionalities to execute parallel applications on
their machine. The middleware fetches tasks from a server and executed them
on volunteer desktops, when the CPU is idle. Typical examples are BOINC,
XtremWeb, Entropia, and so on.

In desktop grid environment, large number of people will want to share their
resources. In addition, a higher number of application will be deployed. There-
fore, special attention should be given to ease of deployment of new application
and preparation of the execution environment. In Laszewski et al. [2002], von
Laszewski et. al. identify three deployment strategies: thick, thin and slender
deployment based on the hosting environment. In thick deployment, an ad-
ministrator uses a software enabling service, for example Grid Packaging Tool
(GPT) GPT to install the Grid software on a resource participating in the
Grid. In thin deployment, end user uses a Web browser to access Grid service
in a transparent fashion, for example Charlotte, Bayanihan, Javelin, etc. In
slender deployment, slender clients are developed in an advanced programming

Chapter 2. Related Work 28

DG System Platform Scheduling Policy Deployment Effort

BOINC Middleware-based Simple Thick deployment

Entropia Middleware-based Simple Thick deployment

distributed.net Middleware-based Not available Not available

XtremWeb Middleware-based Simple Thick deployment

DG-ADJ Middleware-based Deterministic Thick deployment

POPCORN Middleware-based Economic Thick deployment

Spawn Middleware-based Economic Thick deployment

Bayanihan Web-based Simple Thin deployment

QADPZ Web-based Simple Thick deployment

Javelin Web-based Deterministic Thin deployment

Charlotte Web-based Simple Thin deployment

Table 2.1: Centralized Global Desktop Grid System

language such as Java and made available from a Web-based portal. Initially,
end user can install these slender clients on their resources to participate in the
Grid. Additionally, slender deployment provides an automatic framework for
updating the component if a new one is placed on the Web server.

Scheduling policy matches tasks with resources by determining the appro-
priate tasks or resources. It can be classified into three categories: simple,
model-based and heuristics-based Choi et al. [2006]. In simple approach, tasks
or resources are selected by using First Come First Served (FCFS) or ran-
domly. This scheduling policy is appropriate for high throughput computing re-
quirement and commonly implemented by major desktop grid middleware like
BOINC, Condor, XtremWeb, etc. The model-based approach is categorized
into deterministic, economy, and probabilistic models. The deterministic model
is based on structure or topology such as queue, stack, tree or ring. Tasks or
resources are deterministically selected according to the properties of structure
or topology. For example, in a tree topology, tasks are allocated from parent
nodes to child nodes. In deterministic scheduling models, a set of jobs has to
be processed by a set of machines and certain performance measures have to be
optimized. In the economy model, scheduling decision is based on market econ-
omy. In the probabilistic model, resources are selected in probabilistic manners
such as Markov, machine learning or genetic algorithms. In the heuristic-based
approach, tasks or resources are selected by ranking, matching, and exclusion
methods on the basis of performance, capability, weight, etc.

Chapter 2. Related Work 29

DG System Platform Scheduling Policy Deployment Effort

Condor Middleware-based Simple Thick deployment

SZTAKI LDG Middleware-based Simple Thick deployment

Table 2.2: Centralized Local Desktop Grid System

DG System Platform Scheduling Policy Deployment Effort

CPM Middleware-based Economic Thick deployment

OurGrid Middleware-based Deterministic Thick deployment

Table 2.3: Distributed Global Desktop Grid System

2.3.2 Distributed Desktop Grid System

A distributed desktop or peer-to-peer Grids constructs a computational overlay
networks using tree, graph or distributed hash table. In the absence of a server,
volunteers need to maintain partial information about other volunteers in the
grid environment. Scheduling is performed at each volunteer depending on the
computational overlay network. Volunteers exchange their information between
other volunteers. The volunteers self-organize themselves into a computational
overlay network based on a criteria such as resource capability or timezone. A
client can submit a set of independent computational tasks to known volunteer.
The known volunteer distributes tasks based on scheduling mechanism. Each
volunteer executed the computational task and returns the result to parent
volunteer (in the tree). Finally, the parent volunteer returns the result to the
client. Distributed desktop grids have been presented in Table 2.3.

Typical examples are Compute Power Market (CPM), OurGrid, etc. Other
P2P Desktop Grid platforms such as the Organic Grid Chakravarti et al. [2005],
Messor Montresor et al. [2003], Paradropper Zhong et al. [2003], and the one
developed by Kim et.al. Kim et al. [2007]. These platforms are still under de-
velopment and do not have any applications implemented on top of it. Further,
they have not been deployed and evaluated. Hence they do not provide a solid
substrate enabling the deployment, use, and management of a production level
desktop grid environment Anglano et al. [2010]. As stated earlier, we have
excluded such projects from the survey.

2.3.3 Computational Grids based on JXTA Technology

The JXTA platform defines a set of protocols designed to address the common
functionality required to allow any networked device to communicate and col-

Chapter 2. Related Work 30

laborate mutually as peers, independent of the operating system, development
language, and network transport employed by each peer.

Several projects have focused on the use of JXTA as a substrate for grid
services. The P2P-MPI project, the Jalapeno project, the JNGI project, the
JXTA-Grid project, the OurGrid project, the P3-Personal Power Plant project,
the Triana project, the Xeerkat project, the NaradaBrokering project, and Code-
farm Galapagos are listed in the JXTA web-site (as on 2008). However, none of
these projects are being actively developed Antoniu et al. [2005].

Out of this 10 projects, 8 are FOSS projects. Currently, the P2P MPI
project, the OurGrid project, the Triana project and the XeerKat project have
switched to other platforms. The Jalapeno project, the JNGI project and the P3
project stopped their development around 2005-2006. The JXTA-Grid project
is not yet in production Ferrante [2008].

JNGI uses software developed by Project JXTA to communicate in peer-to-
peer fashion. Peer groups are used as fundamental building block of the system.
The system consists of monitor groups, worker groups, and task dispatcher
groups. The monitor group handles peers joining the system and redirects
them to worker groups if they are to become workers. The system can have
multiple monitor groups in a hierarchical manner. During task submission the
submitter queries the root monitor group for an available worker group which
will accept its tasks. The root monitor group decides the sub-group to which the
request should be forwarded to. The request would finally reach a worker group.
The worker group consists of workers performing the computations. Once the
request arrives at a worker group, a task dispatcher in the task dispatcher group
of that worker group will send a reply to the submitter. The task dispatcher
group distributes individual tasks to workers. The task dispatcher group consists
of a number of task dispatchers, each serving a number of workers. If a task
dispatcher disappears, the other task dispatchers will invite a worker to become a
task dispatcher and join the task dispatcher group. Task dispatchers periodically
exchange their latest results and thus results are not lost even if a task dispatcher
becomes unavailable. The submitter polls the task dispatcher about the status
and results of previously submitted tasks.

The Jalapeno system consists of manager peers, worker peers and task sub-
mitter peers. Each host can play one or more of these roles. Initially every host
starts a worker peer that starts to search for available manager peers. When
a manager is found, the worker tries to connect to it. Manager can have only
a limited number of connected workers and rejects any worker when this limit
has been reached. Accepted workers will join the worker group created by the
manager and start executing tasks. If a worker is unable to connect to a man-
ager within certain time, it will start a new manager peer on the local host
and connect to it. The first host becomes a manager after some time and start
to accept worker peers. When a manager becomes unavailable its workers will
either find another manager or become managers themselves. Workers with a
worker group can communicate with other workers or the manager. The task
submitter submits a collection of tasks to a randomly chosen manager. The
manager splits the bundle into a set of smaller bundles. The manager keeps a

Chapter 2. Related Work 31

limited set of bundles from which tasks are extracted and handed to the con-
nected workers. The rest of the bundles are forwarded to a number of other,
randomly chosen, managers which repeat the process. Bundles which are not
forwarded are returned to the task submitter. When a worker finishes a task it
will return the result to its manager which in turn will forward the result to the
task submitter.

In P3 system, peers form their own base peer group that is a subgroup
of always existing JXTAs base group. A peer can run host daemon to share
resources and/or controller tool to access resources shared by the others. To
distribute a job to resource providers, a user first creates a distinct peer group
for the job, job group, with the controller tool. After joining the group itself,
controller publishes an advertisement of his job within the group. It includes
a description of the job. Peers running a host daemon discover the advertise-
ments of job groups made by controllers. According to their policy, they decide
whether they want to join a job group and contribute to processing the job. If a
host decide to join, it discover and obtain a Java Archive (JAR) from the con-
troller. The archive contains compiled Java application code.P3 has an object
passing library, by which an application can unicast or broadcast Java objects,
and receive them synchronously or asynchronously. P3 provides two parallel
programming libraries a master-worker library and a message passing library
for application developers. The master-worker library supports master-worker
style parallel processing and the message passing library supports MPI pro-
gramming. If a worker leaves a job group, a workunit delivered to the worker
but not completed is delivered to another worker.

2.3.4 Jini for Grid Computing

Jini Waldo [2000], a Java-based infrastructure developed by Sun Microsystems
provides a distributed programming model that includes dynamic lookup and
discovery, support for distributed events, transactions, resource leasing and a
security model. A number of research groups have considered Jini in the realiza-
tion of their Grid middleware Juhasz et al. [2002b,a]; Huang [2003]; Hampshire
and Blair [2003]; Teo and Wang [2004]; Furmento et al. [2004]; Kent et al. [2008].

Jini is built on top of RMI, which introduces performance constraints Hawick
and James [2000]; de Roure et al. [2003]. Further Jini is primarily concerned
with communication between devices and hence file system access and processor
scheduling need to be implemented de Roure et al. [2003]. ALiCE (Adaptive and
scaLable internet-based Computing Engine) Teo and Wang [2004], a technology
for developing and deploying general-purpose grid applications implemented in
Java, Java Jini Waldo [2000] and JavaSpaces10. The ALiCE system consists
of a core middleware layer that manages the Grid fabric. It hosts compute,
data and security, monitoring and account services. The core layer includes an
Object Network Transport Architecture (ONTA) component that deals with the
transportation of objects and associated code across the Grid fabric. The core

10http://river.apache.org/doc/specs/html/js-spec.html

Chapter 2. Related Work 32

layer uses Jini technology to support the dynamic discovery of resources within
the Grid fabric. For object movement and communications within the Grid, a
Jini based tuple space implementation called JavaSpaces is used.

JGrid Hampshire and Blair [2003], based on Jini aim at exploiting Jini’s sup-
port for dynamic self healing systems. To virtualize a local computing resource,
Compute Services are introduced that manage job execution on the local JVM.
These Compute Services can be hierarchically grouped using Compute Service
Managers. Resource brokers schedule jobs onto these Compute Service Man-
agers and Compute Services on a client’s behalf. JGrid supports a number of
application models including batch style execution using a Sun Grid Engine
backend, Message Passing Interface (MPI). JGrid has extended Jini’s discovery
infrastructure to cope wide with wide area discovery.

2.4 Discussion

We have presented a taxonomy for desktop grid systems. The taxonomy fo-
cuses on resource provision, scalability, organization, resource participation, re-
source utilization, task dependency, task generation pattern, supported quality-
of-service, and deployment effort. We also survey some of the desktop grid
system and map them using the taxonomy. On the basis of taxonomy and map-
ping, we present the current state of research in desktop grid systems. Then we
identify the possible research gaps.

2.4.1 Desktop Grid Architecture

Desktop grid system provide high computational power at low cost by reusing
existing infrastructure of resources in an organization. However, most of the
existing desktop grid systems are built around centralized client-server archi-
tecture Fedak [2010]. This design could potentially face issues with scalability
and single point of failure Fedak [2010]; Choi et al. [2007]. In volunteer desktop
Grid systems, central task scheduler would become a potential bottleneck when
scheduling large number of tasks Chakravarti et al. [2005].

In contrast to existing Grid paradigms, models based on peer-to-peer archi-
tecture offers an appealing alternative Liu and Antonopoulos [2010]. Most of
the current research on peer-to-peer architecture do adapt centralized approach
in one form or other. For example, JXTA can be considered as hybrid peer-to-
peer system as it has the concept of super peers. Jini uses lookup service to
broker communication between the client and service and this approach appears
to be a centralized model.

For the announcement of new auction instances, their states and current
market prices, Popcorn installs a central repository by means of a Web plat-
form. As a disadvantage of this central information aggregation the Web plat-
form becomes a communication bottleneck Schnizler [2007]. In Spawn, market
information is propagated only to neighbors and new information is dissemi-
nated with delays. This imperfect knowledge could result in performance trade

Chapter 2. Related Work 33

offs Schnizler [2007].

2.4.2 Desktop Grid Adoption

Volunteer desktop Grid systems, in general, employ “many resource providers -
few users” model, meaning that any user can join and offer resources, but only
a selected few users can make use of those resources. Hence, volunteer desk-
top computing is highly asymmetric Rezmerita et al. [2007] in which volunteers
contribute computing resources but do not consume any. Thus the asymmet-
ric nature of desktop Grid systems acts as one of the primary impediment to
widespread adoption by users. From our survey, we could see that CPM and
OurGrid alone support symmetric resource participation. CPM is based on mar-
ket economy model and OurGird is based on P2P architecture model. Hence,
we adopt distributed computational economy framework for quality-of-service
(QoS) driven resource allocation. Such framework provides mechanisms and
tools that realize the goal of both resource provider and resource consumer.
Resource consumers need a utility model, representing their resource demand
and preferences. And resource providers need an expressive resource description
mechanism.

2.4.3 Grid Application Development

Currently, most of the grid applications are implemented with the help of com-
puter scientists. Providing MPI-like grid application programming language is
not sufficient, as many scientists are not familiar with parallel programming
language Jin [2005].

One of the major resource for researchers is existing application toolkits.
However, many existing applications are developed for desktop computers. Hence,
grid enabling existing application with minimal efforts could be useful to the
researchers.

Grid computing not only have technical challenges but also have deployment
and management of grid environment challenge.

2.4.4 Quality of Service

Desktop computing systems, for example Entropia and P2P systems, for ex-
ample Gnutella provide high levels of quality of service for specialized service.
But are too specific for generalized use; e.g., it would be difficult to see how
the Gnutella protocol11 could be useful for anything but searching for files or
data content. A Grid should be able to provide non-trivial quality of service,
for example, this is measured by performance, service, or data availability or
data transfer. QoS is not just about aggregation of capabilities of participating
resources in the Grid. QoS is application specific and it depends on the needs of
the application. For example, in a physics experiment, the QoS may be specified

11http://rfc-gnutella.sourceforge.net/

Chapter 2. Related Work 34

DG System Model Description

Spawn Vickrey auction The Spawn system provides a market
mechanism for trading CPU times in
a network of workstations. Tree-based
concurrent programs are sub-divided
into nodes. Each node holds vickrey
auction independently to acquire re-
sources.

POPCORN Auction Each buyer (resource consumer) sub-
mits bid and the winner is determined
through one of the three auction proto-
col implemented: Vickery, Double and
Clearing House.

CPM Various models CPM supports various market model
such as commodity market, contract-
net/tendering and auction.

Table 2.4: Summary of Market based Systems

in terms of throughput, but in other experiments, the QoS may be specified in
terms of reliability of file transfers or data content. From our survey, we could
see that only Compute Power Market (CPM) provides quality of service using
differentiated price service.

2.4.5 Scheduling Policy

First-Come-First-Served (FCFS) is the classical eager scheduling algorithm for
bag-of-tasks applications, where a task is simply delivered to the first worker
that requests it. This scheduling policy is particularly appropriate when high
throughput computing is sought and thus it is commonly implemented by ma-
jor desktop grid middleware like BOINC, Condor and XtremWeb. However,
FCFS is normally inefficient if applied unchanged in environments where fast
turnaround times are sought, especially if the number of tasks and resources
are in the same order of magnitude, as it is often the case for local user’s bag-
of-tasks Kondo et al. [2004]. As an alternate distributed scheduling mechanism
such as market-based scheduling can be considered. The evaluation results of
computational and data grid environments demonstrate the effectiveness of eco-
nomic models in meeting user’s QoS requirements Abdelkader et al. [2009].

Chapter 2. Related Work 35

2.4.6 Limitations of Jini and JXTA

As both Jini and JXTA have Java based implementations, the features of the
Java language for dealing with OS and hardware heterogeneity are inherited by
both frameworks. Jini prescribes the use of leases when distributing resources
across the network. The leasing model as a whole contributes to the develop-
ment of autonomous self healing services that are able to recover from crashes
and clear stale information without administrator intervention. The framework
extends the Java event model in a natural way, incorporating measures that
enable the developer to react to the intricacies of delivering events across a,
possibly unreliable, network. Although Jini does not mandate the use of RMI
for proxy to service communication, RMI is mandatory when interacting with
the Jini event and transaction models. To interact with the reference implemen-
tation of the Jini lookup service and to renew leases, RMI is also required since
the lookup service and lease objects are represented by a RMI proxy Vanmeche-
len [2003]. Java RMI is acceptable when transferring small or medium sized
chunks of data over hig-speed data links but being slower than TCP. Another
issue is the performance degradation imposed by the HTTP tunneling tech-
nique Vanmechelen [2003]. JXTA project lacks in the documentation, hence
design and implementation decisions are not documented. Often, it requires
inspection of the implementations source code to determine the different steps
and policies used throughout the implementation of the JXTA protocols Van-
mechelen [2003]. JXTA does have a good set of tools that allow using resources
available in the network. However while working with this platform many mis-
takes can be noticed. The documentation for many important elements hardly
exists. The tools for XML processing, used mainly with advertisements, are
difficult to utilize. Despite of supposed popularity of JXTA there are still no
professional products based on it. Implementation of JXTA protocols still has
many undocumented elements mgr inż. Marcin Cieślak [2007].

2.4.7 Research Gap

Research in desktop grid system focus on two areas: desktop grid application
development and desktop grid system development. Research on desktop grid
application development focus on scheduling, resource management, communi-
cation, security, scalability, fault tolerance, trust, and architectural model.

The grid application development research focus on developing new appli-
cations suitable for desktop grid systems. However, writing and testing grid
applications over highly heterogeneous and distributed resources are complex
and challenging. Hence, the desktop grid system should support ease of appli-
cation development and integration.

The strength and weakness of current approaches to desktop grid system
development can be summarized as follows:

• Most of the current desktop grid system follow client-server or centralized
peer-to-peer architecture. These approaches are easy to implement and

Chapter 2. Related Work 36

have high throughput. However, they are not scalable, have a single point
of failure, and server component become a bottleneck.

• Distributed desktop grid system based on market approach has been pro-
posed. However, use of multiple markets for resource sharing has not been
explored.

• Most of the current desktop grid system focus on asymmetric resource
utilization. However, support for symmetric resource utilization could
motivate users to contribute their resources to the desktop grid initiative.

• Currently desktop grid system do not support quality of service based on
non-trivial parameters.

• Current market-based resource management approaches in desktop grid
computing focus on price-based mechanisms to allocate resources. In
price-based mechanisms, the price represents supply/demand condition
of resources in an economic market. Instead of price, a utility function
can be used to represent these condition. However, this aspect has not
been given adequate attention.

• Currently either thin or thick deployment technologies have been widely
used. However, slender deployment fosters adoption of Gird by scientific
community.

• Porting existing desktop application or development of new grid applica-
tion should be possible with minimal efforts.

Apart from these issues, resource failure and lack of trust among participants
are also important challenges to be addressed.

2.5 Infrastructure Awareness System

The success of a volunteer computing infrastructure depends on the contribu-
tion of the users. We have used awareness techniques developed by Juan et.
al., Hincapié-Ramos et al. [2011] has been used to recruit contributors during
deployment. The details of techniques and their impact on resource participa-
tion has been reported in Hincapié-Ramos et al. [2011].

2.6 Summary

In this chapter, we have surveyed different desktop grid systems currently avail-
able. We have analyzed the existing desktop grid system and identified the
research gap.

Part II

The Mini-Grid Framework

37

Chapter 3

The Mini-Grid Framework

In this chapter, we present the first part of this thesis contribution, which is the
programming API and runtime infrastructure for formation of ad-hoc “mini-
grids” in a local area network. The main goal of the proposed infrastructure,
based on a peer-to-peer architecture, is to manage a pool of resources; and owing
to the infrastructure with applications having easy access to them.

3.1 Motivations and Design Objectives

The use of computers for data analysis and visualization of results are currently
playing a fundamental role in the working methodology of many research groups.
As a consequence, having access to high-performance computing has become
essential for many applications. Many solutions have been proposed to use
the widespread availability of desktop computers to address the computational
requirements of a common class of applications, named embarrassingly parallel,
or bag-of-tasks (BoT) applications. These are parallel applications that can
be decoupled into a large number of independent tasks that do not need to
communicative with each other.

In previous chapter, we presented the survey of existing desktop grid systems.
The survey reveals the following short comings of existing desktop grid systems.

• Classical grid systems follow either centralized or hierarchical architecture
and a regulated control for membership and access privileges. These grid
architectures assume a dedicated administrative authority for policy en-
forcement, monitoring and access control. The participants in such grid
share a synchronized and non-conflicting objective. There exists well de-
fined collaborations based on some predefined usage policies and access
privileges Choi and Buyya [2010].

• Current desktop grid systems follow either centralized client-server archi-
tecture or some form of centralization approach in peer-to-peer architec-
ture. However, systems with the centralized approach can suffer from

38

Chapter 3. The Mini-Grid Framework 39

high computational overhead and may result in overall system perfor-
mance degradation. Further, the centralized server or root node of the
hierarchical organization has the drawback of being a single point of fail-
ure. Current use of desktop grid computing is highly asymmetric, i.e.,
volunteers supply computational capabilities but do not consume compu-
tational capabilities.

• Current desktop grid systems do not support application specific quality
parameters. For example, a certain application needs to be finished before
a fixed deadline, another application does not want its task distributed to
nodes at specific location, etc. However, current approaches in resource
allocation focus on quality attributes related system centric policies such
as time and cost. The role of market driven strategies has been identified
by Jia Yu and Rajkumar Buyya for application specific quality of service
metric Yu and Buyya [2005].

• Currently, grid application development focus on development of new ap-
plications rather than porting existing application toolkits.

Thus most of the current approaches to grid computing is very centralized
both technically and in use. However, there are situation that requires a tran-
sient, short lived and one-time collaboration among participants. One example
of such a situation is the scenario where a group of researchers want to con-
tribute their computational resources for a common objective. In this example,
every participant want to participate for a limited amount time, normally un-
til the participant has some interest in the collaboration. For such a group it
may be infeasible to build or participate in a computational grid infrastructure
because of administrative overheads, cost, etc. In other words, existing grid
models do not support the “ad hoc” collaboration among participants. In such
environment, users may have energy-saving habits, such as setting computers
to hibernate mode when not in use or turning off during weekends, resulting in
intermittent resource availability.

3.2 Design Objectives

We build an extensible light-weight framework, called the Mini-Grid Framework
having auction-based task allocation incorporating application specific quality
parameters for resource selection, modeling resources and computational task
based on their context information, and supporting formation of peer-to-peer
grid infrastructure requiring minimal configuration and deployment efforts. The
design objectives of the Mini-Grid Framework can be summarized as:

• To support symmetric resource usage by adopting peer-to-peer architec-
ture.

• To address resource volatileness due to absence of centralized control by
having market-based scheduling.

Chapter 3. The Mini-Grid Framework 40

• To support application specific quality parameters for resource selection.

• To model capabilities offers of resource and capability requirements of grid
applications using their context.

• To extend functionality provided by the framework.

• To minimize efforts required for integration of the framework with existing
application toolkit and

• To minimize efforts required for deployment of grid application.

3.3 Conceptual Architecture of the Mini-Grid
Framework

The Mini-Grid Framework can be used to create a peer-to-peer computational
infrastructure for the execution of BoT applications. The framework leverages
from the fact that most computers are not fully used on a continuous basis as re-
searches alternate between application execution and performing experiments in
the lab. The Mini-Grid Framework proposes the model of contributory comput-
ing system, where the users provide their own resources to be used collectively.
The users of the system typically provide resources to the extent of their pos-
sibilities, as they wish to help the community. This will result in intermittent
resource availability, as users can decide whether to contribute or not at any
moment. Being provided by independent users, no homogeneity of resources can
be guaranteed. The process of deployment and application execution should be
made as easy and intituitive as possible. No complex administration must be
required.

This section presents a conceptual architecture of the Mini-Grid Framework.
First we introduce the fundamental concepts behind the framework design.
Then we present the conceptual framework based on the above fundamental
concepts and discuss the design space of the framework.

3.3.1 Concepts

In this section, we focus our attention on key concepts behind the Mini-Grid
framework, which will be expanded upon in the rest of the chapter. The infor-
mation contained in this section will provide a level of knowledge that will make
succeeding sections more meaningful.

Resource - any physical entity such as a laptop, desktop, server, cluster,
instruments, etc. that participates in the mini-grid environment. Resources
have an IP address and are connected to a computer network. Thus a given
resource can communicate with all other resource in Mini-Grid.

Client - a software entity that runs on a node participating in Mini-Grid.
The client can play two types of roles namely resource provider and resource
consumer. Resource providers have computational resources and are willing to

Chapter 3. The Mini-Grid Framework 41

share them. Resource consumers need computational resources to perform their
computational tasks. The client can play either roles and or both.

Resource consumer - a role played by a client interested in consuming
other’s resources. The components of resource consumer include Submitter,
Auctioneer, TaskBus, and MessengerComponent. These components are ex-
plained in detail in section 3.5.1.

Resource provider - a role played by a client interested in providing its
resources. The resource include computing power, storage space, network band-
width, etc. The components of the resource provider include Executor, Bidder,
TaskBus, TaskExecutor, and MessengerComponent. These components are ex-
plained in detail in section 3.5.2.

Monitored entity - an physical or conceptual object of interest in Grid
environment. The monitored entities can be divided into computational, net-
work, application and storage entities. For example, processor, disk, etc. are
computational entities. The monitored entity has a set of attributes whose value
represent its state and environment.

Context statement - a statement describing a feature or an attribute
of an monitored entity. For example, “current CPU utilization is 25%” is a
statement describing the current CPU load. Context statement can provide
either static or dynamic information about monitored entity. For example, clock
speed of a CPU, a static parameter that indicates the rate at which a CPU can
execute instructions, does not change until the CPU is replaced. On the other
hand, CPU utilization, a dynamic parameter that indicates the current load
condition, changes over time. Each context statement is expressed in terms of
Object-Attribute-Value triplets. Object corresponds to monitored entity and
the attribute corresponds to properties of the monitored entity. The value can
be a literal or another monitored entity.

Task - represents a unit of work in our framework such as file transfer or
execution of a function in an algorithm. Tasks are submitted by a client acting
as a resource consumer and are executed on clients acting as a resource provider.
Each task contains an executable along with required data and all information
required to execute the task in Mini-Grid, called TaskContext.

TaskBus - a distributed data structure that enables dynamic exchange of
tasks between resource provider and resource consumer. The TaskBus offers an
interface to the client to send and receive Tasks.

TaskContext - a data structure that contains all information required for
execution of a task in Mini-Grid such as computational and memory require-
ments, network bandwidth requirements, operating system requirements etc. It
can be considered as an alternative to Resource Specification Language (RSL) of
Globus RSL [2007] or Job Submission Description Language (JSDL) proposed
by the JSDL working group of the Global Grid Forum Anjomshoaa et al. [2007].

ResourceContext - a data structure that contains static (e.g. operating
system, cpu speed) and dynamic (e.g. number of tasks being executed, amount
of free memory) properties of a resource that enable selection of most adequate
resource satisfying application requirements. It can be considered equivalent to
GLUE schema Andreozzi et al. [2009] adopted by gLite middleware gLite or

Chapter 3. The Mini-Grid Framework 42

classAds adopted by Condor Raman et al. [2004].
MessengerComponent - the message communication channel that pro-

vides basic message transport service. Currently both reliable (UDP, IP mul-
ticast) and reliable (TCP, reliable unicast) messages are supported. The mes-
senger component offers an interface that can be used to send and/or receive
messages.

Sensors - heterogeneous and distributed sources from which context infor-
mation can be obtained. This context information can be raw and device-specific
format. Sensors can be classified as two types:

- Hardware sensors: represent hardware sensors capable of capturing physi-
cal data. For example an RFID scanner scanning an RFID-enabled phys-
ical object.

- Software sensors: represent software programs that collect data from soft-
ware components. For example, a SNMP agent - a software module in
a managed network device responsible for maintaining local management
informations and delivering that information.

However, currently the Mini-Grid Framework consist of software sensors
only.

Context monitors - software components that gathers context information
about a monitored entity from one or more sensors. For example, a “process
monitor” detects changes in CPU characteristics of a desktop computer. Con-
text monitors registers them self with a context interpreter and provide the
gathered context information as a set of context statements.

Context interpreter - software component that converts context informa-
tion in one format to another format. Context interpreters are used to achieve
physical data independence. Physical data independence indicates that the
physical storage structure used for storing context information could be changed
without necessitating a change in the conceptual schema used by context mon-
itors. The change is absorbed by conceptual/internal mapping.

Context base - a registry for storing context information about different
monitored entities. Context information are expressed as context statements.
Loosely speaking, a context statement describes an attribute variable of a man-
aged object. These statements are collected into context base. Structure of
context base can be defined by context models based on ontology.

Query interface - provides a query mechanism for context information by
consumers of context information. The query interface supports ready-made
mold or templates for providing context information in a typical situation.
Query template are domain oriented context structures. Given a template name,
the query interface, the query interface provides the necessary context of the sit-
uation represented by that template name. Query interface are used to achieve
logical data independence. Changes to the query representing the template,
such as addition or deletion of attributes, must be possible without having to
rewrite context consumers. In other words, the context consumers that refer to

Chapter 3. The Mini-Grid Framework 43

the template must work as before, after the query undergoes a logical reorgani-
zation.

3.3.2 Conceptual Architecture

Mini-Grid follows the general vision of a desktop grid computing system, turn-
ing a set of resources into a runtime environment for task distribution and
execution. The Mini-Grid Framework aggregates resources such as desktop
computers, laptop computers, clusters, etc., in a Local Area Network (LAN) for
building a desktop grid environment called the “Mini-Grid” environment.

A conceptual illustration of the Mini-Grid Framework is shown in Fig-
ure 3.1. The Mini-Grid Framework consists of four logical components: Resour-
ceProviders, ResourceConsumers, TaskBus and MessengerComponent. Each
resource participating in Mini-Grid has a software entity called “client”. On
the one hand, a client can be used by a resource to consume the computational
capabilities of other resources. On the other hand, it can also be used by a
resource to provide its computational capabilities to other resources. That is, a
client can play both “Resource Consumer” and “Resource Provider” roles. The
clients in Mini-Grid communicate with each other using the messenger compo-
nent. The computational tasks are exchanged between the clients using the task
bus.

Figure 3.1: A conceptual model of the Mini-Grid Architecture including the
TaksBus, MessengerComponent, ResourceConsumers and Resource Providers.

Each client participating in the Mini-Grid environment has three sub-systems
namely the task scheduling sub-system, the context awareness sub-system and
messaging sub-system. The task scheduling sub-system is responsible for han-
dling issues related to task submission, distribution and execution. The context
awareness sub-system is responsible for describing the context of tasks and for
collecting and providing context information of resources. The messaging sub-

Chapter 3. The Mini-Grid Framework 44

system is responsible for sending and receiving Mini-Grid messages according
to the Mini-Grid Messaging Protocol defined in Section B.

As a distributed computing platform, the framework allows Mini-Grid ap-
plication running on a client acting as resource consumer to submit tasks to
the infrastructure which will be executed on clients acting as resource provider.
Clients playing resource consumer role accepts tasks coming from Mini-Grid
applications, distributes the tasks to resource providers according to a schedul-
ing policy based on auction, transfers application code to executors, collects
and stores task results and delivers task results to Mini-Grid application upon
request. Client playing resource provider role listens for task announcements,
participates in auction process, executes allocated task and returns completed
task along with results.

3.4 Task Scheduling Model

The task scheduling model includes i) model that describes resource require-
ment, ii) model that describe available resource, iii) task distribution protocol,
and iv) model that describe quality of service requirements of the application. A
sequential application can be grid enabled by identifying the independent com-
putations that can be executed concurrently. One way is task decomposition,
in which the computations are a set of independent tasks that can be executed
in any order. Another way is data decomposition, in which the focus is on the
data rather than on the different operations applied to the data. The data is
partitioned into certain number of parts and the operation can be performed on
the different parts Mattson et al. [2004]. There are other patterns of computa-
tion do exist. However, these two decomposition are most common. The grid
enabled application consists of a collection of independent task with a quality
of service requirement. Certain task may require large amount of data to be
transfered to or from a remote node before or after the execution of the task
at the remote node. However, for better performance each task in the applica-
tion should have a higher computational complexity index, a ratio between the
execution time of the task to its data transfer time.

Each entity in Mini-Grid, for example grid enabled application, task and
resource may have a set of characteristics or properties or features or prop-
erties. Such information can be called context of the entity. Context models
can be used for storing and querying the context information associated with
an entity and the relationship among entities. For example, task context model
can describe the resource requirements (i.e., execution environment of the task).
Further, application context model can describe the quality of service require-
ments and resource context model can be used to describe the capabilities of a
resource. We discuss in detail about these context models in

Chapter 3. The Mini-Grid Framework 45

3.4.1 Resource Discovery and Selection

Generally, task distribution in volunteer computing environment involves a
“pull” or “push” model. In pull model, the workers (resource providers) re-
quest tasks from the master (resource consumer). On the other hand, in push
model the master (resource consumer) distributes tasks to arbitrary workers. In
the push model, the first task of the scheduler (on behalf of resource consumer)
is resource discovery, i.e,. to identify a list of available resources. Once the
list of possible resources is known, the second task is selecting those resource
that most suitable based on constraints imposed by the grid enabled application
or the user. Normally, a scheduling policy selects the suitable resources. The
scheduling policy determines how to select appropriate resources. It can be clas-
sified into three categories: simple, model-based, and heuristics-based Choi et al.
[2007]. In the simple approach, resources are selected by using First Come First
Served (FCFS) or randomly. Further, the model-based approach can be catego-
rized into deterministic, economy, and probabilistic models. The deterministic
model is based on structure or topology such as queue, stack, tree, or ring. Re-
sources are deterministically selected according to the properties of structure
or topology. For example, in a tree topology, tasks are allocated from parent
nodes to child nodes. In the economy model, scheduling decision is based on
market economy (i.e., price and budget). In the probabilistic model, resources
are selected in probabilistic manners (such as Markov model, machine learning
or genetic algorithm). In the heuristic-based approach resources are selected
by ranking, matching, and exclusion methods on the basis of performance, ca-
pability, weight, precedence, workload, availability, location, reputation/trust,
etc. The matching method chooses the most suitable resources in accordance to
evaluation function. The exclusion method excludes resource according to crite-
ria, and then chooses the most appropriate one among the survivors. Ranking,
matching and exclusion methods can be used together or separately. Workload,
availability, location/timezone, reputation/trust, performance, capability and
weight are used as criteria for selecting resources Choi et al. [2007].

The use of market concepts for resource management is not new. Differ-
ent research projects Amir et al. [1998]; Lalis and Karipidis [2000]; Nisan et al.
[1998]; Sherwani et al. [2004]; Waldspurger et al. [1992] used market concepts for
resource management in computational clusters. Market-based resource alloca-
tion model which are based on trading and resource brokering policies between
resource providers and resource consumers have been proposed in Abramson
et al. [2001]; Wolski et al. [2001]; Buyya et al. [2002]; Gomoluch and Schroeder
[2003]; Lai et al. [2005]. The mechanism proposed in market-based grid resource
allocation include models such as: Auctions (based on outcome of a bidding pro-
cess), Commodity markets (resource providers specify the charges and resource
consumers pay according to the usage of resource), Tenders (based on contract-
ing mechanism - that governs the agreement between resource providers and
resource consumers), and Posted price (similar to commodity market except
that there are special offers from time to time to attract more users) Buyya
et al. [2002]. In addition to these economic models, different pricing schemes

Chapter 3. The Mini-Grid Framework 46

apply to the markets such as: Flat price model (fixed price for a period of
time), Competitive economic models (dynamic pricing scheme), Usage timing
(peak/off-peak - like telephone services), Prediction-based (based on the ability
to predict responses by competitors), Loyalty-based (special prices for regular
and loyal users), and Advanced contract based (contract established before re-
source use determines the price) Buyya et al. [2002]. Economic models have
been used in the context of resource allocation, although the important ques-
tion about which model is the most appropriate for supporting resource and
allocation in distributed environment is difficult to pinpoint.

Commodity markets rely on polling aggregate supply and demand repeat-
edly to calculate the equilibrium price and all allocations are performed at this
equilibrium price. As in Mini-Grids the resources are not dedicated and sup-
ply/demand of resources is very dynamic, the complexity of implementing such
centralized market which rely on the aggregate supply/ demand of resources
becomes infeasible. Therefore, we have selected auction models as the platform
for matchmaking of consumer and producer of resources in Mini-Grids. In the
following section, we study different auction models.

3.4.2 Auction Mechanisms

Auctions have long been suggested as a means to allocate resources in a dis-
tributed system whereby clients initiate an auction to find the best offer of re-
sources to execute a task Malone et al. [1988]. Auctions have been widely used
in solving real-world resource allocation problems and well designed auctions
achieve desired outcomes such as high allocative efficiency Klemperer [2002].
The basic philosophy behind auctions is that the highest bidder always gets the
resources, and the current price for a resource is determined by the bid prices.
In distributed computing systems using auction mechanism for resource alloca-
tion, resource providers auction their capabilities using a centralized auctioneer.
The consumers bid for resources at prices worth to them.

Auctions can be classified into single-sided or close auction and double-sided
auction or open according to whether the auction is static or dynamic. In
open auctions, bidders know the bid value of other bidders. In closed or sealed
auctions, the participant’s bids are not disclosed to others. The value placed
by the resource owners on the goods/service determines the pricing in auction
based economic models. The consumer whose valuation comes closest to that
of the resource owner determines the access to services Buyya et al. [2005]. In
these models, there is no global information available about the supply and
demand and buyers and sellers usually are not aware of the other’s bids or asks
and they decide on their local knowledge. An overview of the most popular
auction mechanisms is provided below.

In single-sided auction one trader initiates an auction and a number of
traders can make a bid. There are four main types of single-sided auction
protocol; the English, Dutch, Sealed-Bid, and the Vickrey auction protocol.
Resource consumers place their bid with auctioneer.

Chapter 3. The Mini-Grid Framework 47

• In the English auction, the auctioneer announces a price for the service
and increases that price incrementally as long as there are at least two
resource consumers interested. When the second last resource consumer
refuses to stay in the bidding process, the last resource consumer receives
the service provided by the resource provider. The winner has to pay
the price of second highest bid. The English auction follows a sequential
bidding in which buyers take turns publicly to submit increasing bids.
Buyers decide a private value depending on their requirements. A bidder
stops bidding when its private value is reached.

• In the Dutch auction, the auctioneer calls at a price and lowers this price
incrementally as long as no resource consumer is willing to accept it. Once
a resource consumer accepts the announced price, it wins the auction and
has to pay his bid. The rate of price reduction is up to auctioneer and
it has a reservation price below which not to go. Dutch auction may
terminate when the auctioneer reduces the price to reservation price and
still there is no buyer.

• In The First-Price Sealed-Bid auction, resource consumers submit one
single bid to the auctioneer without knowing other’s bids. The resource
consumer with the highest bid wins the auction and pays the amount of
the winning bid.

• The Vickrey or second-price auction is similar to the Sealed-Bid auction,
except that the winning resource provider pays the amount of the second
best bid. If there is no second-highest bidder, then the price of the com-
modity is the average of the commodity’s minimum selling price and the
consumer’s bid price.

All four auction protocols yield the same return in private value auctions
hence the selection of an auction protocol usually depends on messaging and
other implementation requirements Chard et al. [2010]. On the other hand,
double-sided auction creates competition on both sides by allowing resource
consumers and resource providers to compete with their group to obtain best
resource provider (in case of resource consumer) or resource consumer (in case
of resource provider) Chien et al. [2005]; Wieczorek et al. [2008]. There are two
types of double auctions, continuous double action (CDA) and periodic double
auction. Continuous Double Auction matches buyers and sellers immediately
on detection of compatible bids. In this type, bids and offers may be submitted
at anytime during the trading period. A periodic version of the double auction
instead collects bids over a specified period of time, then clears the market at the
expiration of the bidding interval Wurman et al. [1998]. Pricing policy adopted
by auctioneer can be classified into uniform-price policy and discriminatory
policy. In uniform policy, all exchanges occur at the same price determined
in auction clearing stage. Whereas in discriminatory policy, the prices are set
individually for each matched buyer-seller pair.

Chapter 3. The Mini-Grid Framework 48

For resource allocation in Mini-Grids, we need an auction mechanism that
supports simultaneous participation of resource providers/consumers, accom-
modate variations in resource availability, and can model resource requirements
to fulfill the constraints placed by resource providers/consumers. English and
Dutch auctions are sequential and are based on open-cry where each bid has to
be broadcasted to all participants. This becomes a considerable communication
overhead in the context of the Mini-Grid.

First-price auction, Vickery auction and Double auction are simultaneous
and closed bid auctions. Besides in lightly loaded system, the buyer-initiated
auction is proved to outperform the seller-initiated auction Eager et al. [1986].
We have modeled resource requirements of the application as offers and resource
capabilities of the resource providers as bids. The resource that best suits the
application requirement wins the auction. We have developed a distributed
computational economy model based on auctions for quality-of-service (QoS)
driven resource selection. The auction algorithm used for task distribution is
explained in next section.

3.4.3 Task Distribution Protocol

The Mini-Grid task distribution protocol is based on auctions. The Mini-Grid
Framework uses a ‘resource-push’ approach of auction-based dynamic resource
provision rather than the traditional ‘user-pull’ approach. In this ‘resource-push’
approach, the participating resource providers express their interest in executing
a computational task dynamically by participating in the bidding process and
thus eliminates the requirement of resource discovery mechanism.

The major steps in each phase of task distribution is detailed below. The
task distribution involves 3+4+2 steps. The first three steps involve resource
discovery, next four steps involve resource selection and task allocation, and the
final two steps involve execution management as detailed below.

1. A BoT application generates tasks with a Task Context description, and
submits them to the Resource Consumer.

2. The Resource Consumer announces each task to all Resource Providers
currently listening to announcements using Messenger Component.

3. On receiving the announcement, the Resource Providers verifies using its
local Resource Context to see, if it can submit a bid. If not, it ignores the
announcement.

4. The Resource Provider computes the bid based on the announced bidding
strategy and its local Resource Context.

5. The Resource Provider submits the computed bid. Once the “Time-to-
Bid” (TTB) – prescribed time by which a bid must be submitted for
consideration – period elapses, the Resource Consumer proceeds.

Chapter 3. The Mini-Grid Framework 49

6. The Resource Consumer evaluates the submitted bids and selects the op-
timal Resource Provider for execution of the task.

7. The Resource Consumer announces the winner. The winning Resource
Provider gets the task from the TaskBus and executes it. The winning
Resource Provider sends an acknowledgment to the winner notification.

8. On completion of the task execution, the Resource Provider sends a task
completion notification, and return the task including the result of the
execution to the Task Bus.

9. Once the Resource Consumer gets the notification that the task has been
executed, it collects the result from the Task Bus. The Resource Consumer
sends an acknowledgment to Resource Provider for task completion noti-
fication. The submitter informs the application that task execution has
been completed through Task Listener. The Task Listener retrieves the
completed task from the Submitter.

The pseudo-code for task allocation in the Resource Consumer is shown in
algorithm 1. The algorithm proceeds if there is at least one Resource Provider
interested in executing the task. If there is no Resource Provider, it times out
and informs the application that it cannot schedule the task in Mini-Grid.

Algorithm 1: Task allocation on the Resource Consumer.

Input: Submitted task.
Output: Winner notification.
begin

forall the submittedTask do
TaskContext taskContext = submittedTask.getTaskContext();
CALL auctioneer.createAuction(taskContext);
time←− 0;
while time > timeToBid do

submittedBids = CALL auctioneer.getSubmittedBids();
winningBid = Min(submittedBids);

end
CALL messengerComponent.send(winnerNotification);

end

end

The pseudo-code for determining client participation in Resource Provider
is shown in algorithm 2. The client invokes the algorithm on receiving a task
submission notification.

Since Mini-Grid is ad-hoc and extremely volatile, participating resources
can leave at any time. In order to handle cases where an executing resource (a
Resource Provider) fails or go off-line, a simple failure handling mechanism has

Chapter 3. The Mini-Grid Framework 50

Algorithm 2: Algorithm for determining client participation in auction.

Input: Task submission notification.
Input: Set of context statements detailing resource context.
Output: Boolean value representing client in Resource Provider

participation in bidding. TRUE when client can participate
and FALSE otherwise.

begin
forall the taskSubmissionNotification do

TaskContext taskContext = notification.getTaskContext();
ResourceContext resContext = ctxManager.getResourceContext();

Avail←− Set of ContextStatement in ResourceContext;
Req ←− Set of ContextStatement in TaskContext;

if ∀ContextStatement ∈ Req matches
ContextStatement ∈ Avail then

return true;
else

return false;
end

end

end

been implemented as part of the framework. Along with the task submission,
the application specifies a value for Time-to-Live (TTL) parameter. TTL is a
limit on the period of time. The resource consumer expects the resource provider
to complete the execution of the task before this time elapses. If the resource
provider does not send a task completion notification before the TTL elapses,
the resource consumer assumes that resource provider has left Mini-Grid. Then
the resource provider informs the application that it cannot schedule the task in
Mini-Grid. The application can run the task locally on the resource consumer
or reschedule the task in Mini-Grid.

The default auction strategy is a ‘First Price Sealed Bid Auction’ Klemperer
[2004] in which bidders are not aware of each others’ bid value and runs only
a single round. First-price sealed bid auctions has minimal communication
overhead and hence easy to implement. However other types of auction can be
used by extending the framework.

3.5 Module Architecture View

In this section, we describe in detail the software architecture of the Mini-Grid
Framework. We show what components are involved in the resource provider
and the resource consumer and how they interact.

Chapter 3. The Mini-Grid Framework 51

3.5.1 Resource Consumer - Module View

An UML diagram of the core concepts/classes in the client acting as a resource
consumer is shown in Figure 3.2. The core software component is the Sub-
mitter deployed on each resource consumer, implementing the functionality of
resource consumer. The submitter is responsible for resource (provider) discov-
ery, resource (provider) selection, task allocation and execution management.
Resource selection is an automatic process of finding resources capable of exe-
cuting a given task based on the capabilities of participating resources. In Mini-
Grid, we use auction based distributed task allocation mechanism explained in
detail in section 3.4.3. Resource selection is also an automatic process of find-
ing suitable resource by matching the capabilities of discovered resources to the
requirements of task. Task allocation and execution management involves trans-
ferring task to remote resource provider and management of its execution. The
resource consumer has the following sub-components: TaskBus, TaskListener,
MessengerComponent, BidEvaluator and Auctioneer as shown in the Figure 3.2.

Figure 3.2: Module view of resource consumer.

A Mini-Grid application submits a task to the submitter along with maxi-
mum life time of the task i.e., “Time-to-Live” (TTL). The task includes a Task
Context description, which includes minimally information about execution en-
vironment such as the target software and hardware required and a bidding
strategy. The bidding strategy specifies the type of bid to be submitted by the
resource provider in the auction process. The auctioneer uses Bid Evaluator to
determine the selection of best candidate among the available options and the
selected resource provider will be offered with the execution of the submitted
task. The submitter puts the task into the task bus and informs the auctioneer

Chapter 3. The Mini-Grid Framework 52

to call for bids. Interested clients acting as resource provider submit bids to auc-
tioneer based on the announced bidding strategy. Once the TTB expires, the
auctioneer determines the winner and notifies the same. Based on the current
network conditions, the framework determines TTB value. On the other hand,
the application can define the optional time-to-live value for each submitted
task. The submitter gets the executed task from the task bus. In case, the re-
mote resource provider completes the task execution, the submitter informs the
application through the task listener. The application can obtain the completed
task encapsulating the result from the submitter using task listener. After the
TTL expires the application can query submitter for an executed task.

In case the remote resource provider does not complete the execution of the
task within the TTL period, then the submitter tries to ping the remote resource
provider. If the ping attempt fails, then the submitter learns that the remote
resource has failed or has left Mini-Grid and hence informs the application
through task listener about the failure of task execution. The application can
either reschedule the task in Mini-Grid or run locally.

The submitter component uses the messenger component to send and receive
Mini-Grid messages detailed in Section B.

3.5.2 Resource provider - Module view

An UML diagram of the core concepts/classes in the client acting as a resource
provider is shown in Figure 3.3. The core software component is the Executor
deployed on each resource provider, implementing the functionality of resource
provider. The executor is responsible for participating in the task distribution
process and execution of task on the resource provider. The resource provider
has the following sub-components: Bidder, TaskBus, TaskExecutor, Messenger-
Component and ContextManager as shown in the Figure 3.3.

The executor component of the client receives a bid request from the auc-
tioneer. On receiving the bid request, the executor interacts with the context
manager module to get its resource context. Then the resource context verifies
if a task can be executed on this resource provider using the obtained context
information. The executor rejects or ignores the bid request if the task is not
suitable for execution. The bid request contains the bidding strategy used by
the auctioneer to decide the winner. Based on the bidding strategy, the executor
queries the context manager to get resource context information for calculating
the bid. The executor uses, the bidder to determine the bid for the advertised
task based on the requested task context and the resource context. The bidder
submits the bid to the auctioneer. The auctioneer informs the bidder, if it were
the winner in the bidding process. If the bidder is a winner then the bidder
informs the executor about winning the bid. The executor retrieves the task
from the taskbus and asks the task executor to schedule the task. Once the task
executor completes the execution, informs the executor. The executor retrieves
the result from the task executor and returns the executed task with results to
the taskbus.

Chapter 3. The Mini-Grid Framework 53

The Executor components uses the MessengerComponent to send and receive
Mini-Grid messages detailed in section B.

Figure 3.3: Module view of resource provider.

3.6 Execution Architecture View

The Mini-Grid runtime infrastructure consists of resources connected in a peer-
to-peer setup, each playing either resource provider or resource consumer or
both roles. Each resource has a configuration file having details of multicast
IP address and port numbers required for communication. In this section, we
discuss the execution architecture of the framework.

3.6.1 Task Submission

Mini-Grid applications use the Mini-Grid Framework for distributing their com-
putational tasks in Mini-Grid. The interaction diagram in figure 3.4 illustrates
the task submission at resource consumer. A client acting as a resource con-
sumer can submit one or more tasks for execution. The client calls submit

method in Submitter. The application need to specify the maximum life time
of the task (i.e. TTL); the task context information detailing the capability re-
quirements in terms of static and dynamic resource information; and a bidding
strategy that needs to be used for selecting the resource provider along with
the submitted task. The TTL determines the maximum amount of time that

Chapter 3. The Mini-Grid Framework 54

the submitter can wait for completion of task execution on a remote resource
provider. Before the TTL expires the submitter should notify the client the
status of the task. If the Task is completed then the results are available for
the client otherwise an exception occurs. The application need to handle the
exception. It can decide to resubmit the application once again for execution in
Mini-Grid or it can schedule locally.

The bidding strategy permits the application developer to model quality
of service (QoS) constraints as bids. For example, if the user is interested in
scheduling the tasks, generated by the application, on secured resources, then
he can define a bid called “SecureBid”. The secure bid can be described in
terms of security parameters, for example, availability of intrusion detection
system and firewall at the resource provider. The quantified numeric values of
these attributes can be used for selecting the best resource provider among the
available ones.

The Submitter puts the submittedTask into the TaskBus and instructs the
Auctioneer to conduct an auction to find the best resource suitable for exe-
cuting the submittedTask. The Auctioneer initiates the auction by asking
MessengerComponent to send a taskSubmissionNotification. The notifica-
tion travels in the TCP/IP network and reaches all the clients acting as re-
source provider and currently available. The MessengerComponent on remote
resource providers receives the notification. On receipt of the notification, the
MessengerComponent informs its Executor.

Figure 3.4: Interaction diagram for task submission.

3.6.2 Bid Submission

A client acting as a resource provider has a set of ContextMonitors, both
dynamic and static. These ContextMonitors describe the resource capabil-
ities in terms of static and dynamic resource information. For example, a
CPUContextMonitor can provide static information such as “CPU Clock Fre-
quency”, “CPU Model”, “L1 Cache”, “L2 Cache”. The CPUContextMonitor

can also provide dynamic information such as the average CPU load during the
last one, five and fifteen minute periods as “CPU Load (1 Min)”, “CPU Load

Chapter 3. The Mini-Grid Framework 55

(5 Min)”, and “CPU Load (15 Min)” respectively. The ContextMonitors regis-
ters them self with a ContextIntepreter along with the information about
Monitored Entity that they are monitoring. The information provided by
ContextMonitors are converted into ContextStatements by the ContextIntepreter
and are stored in a KnowledgeBase in a ContextManager. The ContextManager
has a query interface that can be used to query required context information.
The ContextMonitors provide static context information about the monitored
entity after their registration with the ContextIntepreter. The ContextMonitors
provide dynamic information either periodically or immediately once the con-
text of the monitored entity changes. For example, the “CPU Load (15 Min)”
information changes (i.e., gets updated) every 15 minutes. On the other hand,
queue length of the Executor gets updated when ever a task gets scheduled for
execution or a task completes its execution.

The interaction diagram in figure 3.5 illustrates bid submission at resource
provider. The MessengerComponent of a resource provider, on receiving a
taskSubmissonNotification informs the Executor. The Executor calls the
method isSameAs() of ResourceContext with the TaskContex advertised in the
notification. The ResourceContext queries the ContextManager to see if the
resource provider has sufficient capabilities requested. If the resource provider
has sufficient capabilities, then informs the Executor that it can participate in
the bidding process. The Executor then instructs the Bidder to find out the
Bid that need to be submitted. The Bidder based on the advertised bidding
strategy queries the ContextManager. The bid needs to be submitted before
the TTB expires.

The Submitter determines the value for TTB using congestion determi-
nation algorithm inspired by the TCP congestion control slow start approach
(RFC 5681) Allman et al. [2009]. The algorithm starts with a default minimum
threshold value for TTB and doubles every time when the submitter sees that
no bids are available for a given task announcement until it reaches a maximum
threshold value. Once it reaches the maximum threshold value, the submitter
halves the value every time when it sees bids for a given task announcement
until it reaches the minimum threshold value. Otherwise remains at the max-
imum threshold value. Thus the processor load at the client and the network
load determines the threshold value. Currently, the minimum threshold value
defaults to 150 milliseconds and the maximum threshold value defaults to 60000
milliseconds.

3.6.3 Winning / Loosing the Auction

The interaction diagram in figure 3.6 illustrates winning a auction process at re-
source consumer. The MessengerComponent of a resource consumer, on receiv-
ing a bidSubmissionNotification adds the submitted bid by calling addBid()

method of Auctioneer. The AuctionTimer notifies the auctioneer, once the
TTB expires. The Auctioneer calls evaluateBids() method of BidEvaluator
object. The BidEvaluator object implements the resource selection algorithm
to determine the winner. The default resource selection algorithm selects the

Chapter 3. The Mini-Grid Framework 56

Figure 3.5: Interaction diagram for did submission.

client that has submitted the lowest bid. In case of a tie, two submitted bids
having the lowest value, the winner is determined based on the submission time
of the bids. The application developer is free to incorporate any task alloca-
tion algorithm suitable for his application requirement. Thus task allocation
strategy can be application specific. Once the winner is decided the winning
client is notified by the AuctionListener by calling send() method of the
MessengerComponent with winner notification message as parameter. If the
winning client does not receive the winner notification, then it has lost the auc-
tion. The clients do not maintain any state information and hence they do not
wait for a winner notification and the messages are exchanged asynchronously.

Figure 3.6: Interaction diagram for determining winner.

3.6.4 Remote Task Execution

The interaction diagram in figure 3.7 illustrates remote task execution at a
winning resource provider. The MessengerComponent of the winning resource

Chapter 3. The Mini-Grid Framework 57

provider, on receiving a taskWinnerNotification informs the Executor. Then
it obtains the task from the TaskBus by calling the getTask() method and
schedules the task on the TaskExecutor. The TaskExecutor on completion
of task execution, informs the TaskListener. The TaskListener in turn in-
forms the Executor about completion of task execution by calling the method
processTaskCompletion(). The Executor gets the completed task from the
TaskExecutor and puts the completed task into the TaskBus. The completed
task contains the result of computation. Then the Executor instructs the
MessengerComponent to send a taskCompletionNotification.

Figure 3.7: Interaction diagram for remote task execution.

3.6.5 Providing Results

The interaction diagram in figure 3.8 illustrates handling task completion and
obtaining result at a resource consumer. The MessengerComponent of the re-
source consumer that submitted the task, informs the Submitter on receiving a
taskCompletionNotification. Then the Submitter obtains the task from the
TaskBus and informs the TaskListener about completion of task execution.
The TaskListener can then get the completed task along with results.

In case, the remote resource provider could not complete the execution of
the task, then the Submitter times out and informs the TaskListener about
failure of task execution.

3.7 Summary

In this chapter we have presented the programming API and runtime infras-
tructure for formation of ad hoc Mini-Grids in a local area network. We have
stated the motivation behind this work and the various design objectives for
the framework. We have highlighted the use of various market based resource
management approaches in the Grid. We have presented the need for modeling

Chapter 3. The Mini-Grid Framework 58

Figure 3.8: Interaction diagram for providing results.

computational tasks and resources. We have described in detail the software
architecture of the Mini-Grid Framework. We shown the components of the
resource provider and the resource consumer and how they interact. Currently,
the communication between resource provider and resource consumer happen
via serialized messages. However, it is quite easy to know what information is
exchanged between them. Hence, encryption technique should be used ensure
security but current implementation does not use any encryption technique.

Chapter 4

Context-Awareness for
Quality of Service

Quality of Service (QoS) support refers to the possibility of a resource provider
to offer a performance level on its computational capabilities that satisfies the
requirements of a resource consumer. Such offers can be provided as two types
of guarantees: strict guarantees, involving digital contracts and loose, best-
effort usage. Strict guarantees require the establishment of a formal agreement,
named Service Level Agreement (SLA) and Service Level Specification (SLS), a
set of attributes and values describing the profile requested performance level via
signaling and negotiation between resource providers and resource consumers.
In peer-to-peer grids - without a centralized administrative infrastructure - the
implementation of QoS negotiation is difficult.

Loose guarantees are delivered on a best-effort basis, and for this reason,
they do not require to prior establishment of a SLA and the consequent negoti-
ation. The provisioning of loose guarantees consists of the capability of resource
consumers to select service providers that provide a best-effort QoS profile that
meets the resource consumers. In this case, resource discovery and selection
depends on critical performance parameters over time.

The delivery of loose guarantees relies on three functional components.

• Availability of resource discovery mechanism that allow resource consumer
to select the most appropriate resource provider by comparing different
QoS profile of interest to resource consumer.

• Availability of gathered sensor data to resource consumers for making
effective decisions about suitability of available resources.

• Availability of sensors for the monitoring of the QoS performance profile
(SLS) of various Grid resources.

In Grid, resource provisioning can be implemented using either “resource-
push” or “resource-pull” model. In resource-push model, a “resource manager”

59

Context-Awareness for Quality of Service 60

or “scheduler” selects the best resource provider to run the tasks on behalf of
a resource consumer, for example, the condor match maker Frey et al. [2002].
On the other hand, in the resource-pull model, resource providers periodically
request the tasks from the resource manager or scheduler, for example, the
BOINC scheduling server Anderson [2004]. In the resource-push model, to make
appropriate decisions, schedulers need accurate information in real time about
resource providers of interest. This information can be made available using
either “information-push” or “information-pull” model. In the information-push
model, information is send periodically (adopted, for instance, by the Globus
Toolkit MDS Laszewski et al. [1997]). On the other hand in the information-pull
model, information is collected from resource providers on demand (adopted,
for instance, by the Legion resource management system Chapin et al. [1999]).
The information-push model may cause schedulers to use stale (i.e. inaccurate)
information.

Different types of resources can provide similar capabilities but with varying
degrees of quality of service. Hence, the resource capabilities are required to be
presented in such a way that resource providers can evaluate their capabilities
against the requested capabilities for task execution, and the resource consumers
can find optimal resources. A powerful discovery mechanism can be built if
resource’s capabilities and requirements are described explicitly, precisely, and
unambiguously.

In existing Grid infrastructures, the capabilities of Grid resources can be ob-
tained through Grid information services (such as the Monitoring and Discovery
Service von Laszewski et al. [1997]). Currently, attribute-based resource descrip-
tion is used in Grid middlewares, for example Condor uses symmetric description
language class advertisements (ClassAds) Raman et al. [2004]. However, these
resource description mechanisms have several short comings: lack of expressive-
ness, extensibility, and symmetric nature. Attribute-based resource description
mechanisms are symmetric, that is, both resource information providers and
resource information consumers need to agree on syntax and semantics of lan-
guage used for describing the resources. Thus they lack independence between
the resource provider and resource consumer for expressiveness. Flexibility in
the resource description framework is needed that allows to add new types of
resources on the fly. It is necessary to have a meta-language that allows encod-
ing relationship between existing resource types and new types of resource that
will be added in future. Resource requirements need richer query interfaces to
accurately describe what they want to discover.

Schedulers can obtain, at best, capability information such as the size of
main memory, number of CPU’s, and their nominal speed from information ser-
vice like MDS Tsouloupas and Dikaiakos [2006]. However, application-specific
characterization of Grid resources improves resource selection. In ad hoc grid
environments, like in Mini-Grid, it is important to have a mechanism that allows
the resource consumer to scope the resource selection based on the quality of
offer and consume the resource capability that best matches their application
requirements. Therefore, characterization of available resources for improving
the resource selection is needed. In this thesis, the use of context information

Context-Awareness for Quality of Service 61

for modeling the computational task and the resources is proposed.

4.1 Context-Awareness for Task and Resource
Modeling

The coordinated resource sharing supplies a “context” that can be used to de-
scribe resources and requests. The context information, any information that
can be used to characterize Grid entities, when modeled and managed intro-
duces context-awareness into the Grid Jean et al. [2004]. This introduction of
context-awareness into the Mini-Grid Framework enables provision of context-
aware quality of service to the Mini-Grid applications.

4.1.1 Context Definition and Classification

In his survey, Dey Dey [2001] presents alternative views on context and its def-
inition. Addressing the limitations of early definitions of context, Dey provided
the following general definition, which is perhaps now the most widely accepted:

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between the user and the
application, including the user and the applications themselves Dey
[2001]”.

This human computer interaction (HCI) centered definition clearly states
that context is always bound to an entity and that information describing the
situation of an entity is context. However, from our point of view, this defini-
tion has some significant shortcomings. Firstly, the context is not just data or
information about an entity but it also includes knowledge. That is associating
meaning with the data transforms the data into contextual information. This
contextual information can be converted into knowledge by applying interpre-
tation rules.

For instance, a term Unix can be defined in our context model as a class
of OS, then one can extend the term Unix to Linux, and Unix to IRIX. When
a task requires IRIX operating system as one of the parameters for execution
environment, and a particular resource provider has Unix operating system.
It could also become one of the potential candidate as a reasoner could infer
that IRIX is a subconcept of Unix. Having such domain knowledge with the
inherent relations between concepts can assist in resource matching process, so
that queries can be properly interpreted according to their meanings.

Secondly, the definition states that the context is relevant to the interaction
between the user and the application. However, the contexts exist independent
of the interaction between the user and the application. For example, the con-
text exists for a CPU of a computational resource independent of the user or
the application interaction with the computational resource.

Context-Awareness for Quality of Service 62

After Day, there have been multiple attempts to define context in the context-
awareness research community. At the same time, the research on context defi-
nition’s shifted focus from a user and his activities towards entities participating
in these activities. For instance, Wei et al. Xing et al. [2006], define context as
any information concerning user’s mobile device and its capabilities. da Costa et
al. da Costa et al. [2005] define context as a storage, network, power and memory
parameter of user’s devices. Chalmers Chalmers [2004] define context as infor-
mation relevant to the user along the time scale; the context which is “now”
and the “past” context. J. Strassner presents a more abstract and extensible
definition of the context as follows: “The Context of an Entity is the collection
of measured, and inferred knowledge that describe the state and environment in
which an Entity exists or has existed”. Strassner proposes an approach whereby
the context of any entity is modeled as a collection of data, information, and
knowledge resulting from gathering measurements of and reasoning about that
entity. J. Strassner definition overcomes the limitations of Dey’s definition and
hence we hence adopt it.

We have used temporal properties of the context information to classify
the context information(other types of context classification are also possi-
ble MA Razzaque [2005]). We classify context information as configured, mea-
sured, derived, and archived type. Configured context information is static and
is valid until the life of the entity. Archived context information refers to histor-
ical context information useful in reasoning and predicting. Measured context
information is more dynamic and their accuracy depends on the measurement
technique used. Derived context information is dynamic and their accuracy de-
pends on the base information from which it is derived. Table 4.1 summarizes
the various forms of context information and their features.

4.1.2 Context Modeling Techniques

Context modeling refers to structuring contextual information contained in the
system in an abstract form on the level of data structure as well as the se-
mantic level. There are several approaches that differ in complexity of syntax
and expressiveness to model context Strang and Linnhoff-Popien [2004]. The
most simple and widely used data structure for modeling contextual informa-
tion is key-value pairs. Key-value pairs Schilit et al. [1994] are easy to manage;
however, they do not support hierarchies/namespaces for separating identically
named keys used in different context components. Further, queries only based
on exact match are possible and they do not support sophisticated reasoning
technique in context retrieval Strang and Linnhoff-Popien [2004]. Markup lan-
guages, for example XML, are characterized by a hierarchical data structure
using a combination of tags with attributes and content. Context is modeled
as a set of schema. Context modeling based on markup languages Licia et al.
[2001] are highly expressive but often are proprietary or limited to a small
set of contextual aspects or both. Graphical context models are derived from
generic modeling methods such as UML Bauer [2003] and ORM Karen et al.
[2003]. However, they do not support validations and lack formality. Object-

Context-Awareness for Quality of Service 63

Type Source Nature Accuracy Example

Configured Manufacturer,
Administra-
tor, and
User

Static More accurate
but subjected
to human er-
rors

CPU
vendor in-
formation

Measured Benchmark
tools

Dynamic Depends on
tool

CPU load

Derived Inference
tools

Dynamic Depends on
used inference
technique

CPU usage
pattern

Archived Historical Static More accurate CPU uti-
lization

Table 4.1: Types of context information and their properties

oriented context model use object-oriented mechanisms such as encapsulation,
inheritance and re usability to represent contextual knowledge Cheverst et al.
[1999]. However, object-oriented models require low-level implementation agree-
ment between applications to ensure interoperability and are thus not suited for
knowledge sharing in open and dynamic environments Chen et al. [2004]. In a
logic-based model, the context is defined as set of facts, expressions, and rules.
Their level of formality is very high and they can be composed and distributed.

Ontologies are a powerful tool to specify concepts and the relationship be-
tween them. They provide a uniform way for specifying the context model
concepts, subconcepts, relations, properties and facts, altogether providing the
means for sharing of contextual knowledge and reuse. The contextual knowl-
edge can be interpreted and evaluated by using ontology reasoning. Ontology
reasoning allows software programs to compare contextual facts and infer new
context information from existing contextual facts. Thus, We have adopted an
ontology-based formal context model to address critical issues including formal
context representation, knowledge sharing, and logic-based context reasoning.

4.1.3 Context Modeling Using Ontology

In the context of knowledge management, ontology is referred as a specification
of a conceptualization Tim et al. [2001]. The ontologies are used to express the
more or less complete knowledge about concepts, and their attributes, as well as
their interrelationships. There exist several languages that are used to describe
ontologies in recent years. These languages should be capable of describing
concepts, attributes, and relations in a precise and traceable manner. Further,

Context-Awareness for Quality of Service 64

it should be capable of creating effective queries towards reasoning. OWL L.
and van Harmelen Frank [2004], which is part of the semantic web’s ontol-
ogy language based on XML and RDF/S McB [2004] has the above property.
Further, wide range of tools are available for creating and validating ontology
fragments developed in OWL. Also logical reasoning mechanisms can be used to
deduce high-level conceptual context from low-level raw context. Research on
ontology-based context models, which are able to share context information and
reason context by defining contexts using these ontology languages, have been
conducted Wang et al. [2004]; de Almeida Damiao Ribeiro et al. [2006]; Pessoa
et al. [2007]. Currently, a number of efforts have focused on ontology in Grid
context Brooke et al. [2004]; Tangmunarunkit et al. [2003]; Pinar et al. [2006].
Most ontologies proposed so far, are application-specific Grid environment, and
have been developed for special purposes, for example as in Earth Grid System
II Pouchard et al. [2003]. However, the definition of an upper-level domain on-
tology, Core Grid Ontology (CGO), for Grid-infrastructure-related information
has been presented in Xing et al. [2006].

Ontologies are asymmetrically extensible (i.e., resource providers and con-
sumers need not have to agree on certain terminology while extending the on-
tological concepts), resource providers can extend them without loosing the
semantic soundness. For instance, a term Unix can be defined in our context
model as a class of OS, then one can extend the term Unix to Linux and Linux to
ScientificLinux. A reasoner can infer that ScientificLinux is a specializa-
tion of Linux and Unix. In the Description Logics, the fundamental reasoning
of concept expression is a subsumption, which checks whether one concept is
a subset (or superset) of an other concept.

Ontologies provide structured and extensible vocabularies that demonstrate
the relationships between different terms allowing intelligent agents to flexibly
and unambiguously interpret their semantics. For example, a resource context
ontology might include the information that the terms Pentium and Celeron

are Intel Processors, that Intel is not AMD or SPARC, and that an Intel sys-
tem includes a Pentium or Celeron processor. This information allows the
term “Computer with Pentium or Celeron Processor” to be unambiguously in-
terpreted (e.g. by a resource consumer) as a specialization of Intel System.

In this thesis, we have adopted ontology-based semantic modeling of Grid re-
sources on the basis of context, similar to many existing initiatives such as Core
Grid Ontology. However, we have adapted scenario-based ontology development
and evaluated the adequacy of the resulting ontology.

4.2 Ontology Design

Any proposal for a new ontology or the extension of an existing ontology must
describe the motivating scenario, and the set of intended solutions to the prob-
lems presented in the scenario that arise in the applications. Then competency
questions are used for the evaluation of a new ontology or the extension of an
existing ontology M. and M. [1995]. Here, we present the Mini-Grid ontology by

Context-Awareness for Quality of Service 65

developing concrete concepts to model the computational task and the resources
in Mini-Grid.

The goal of this ontology is to present resource capabilities such that resource
providers can match them against the requested capability, and the resource
consumers can rank the resource providers in order to select the best candidate.
The scope of this ontology is limited to its use in Mini-Grid. The level of
granularity is directly related to the competency questions and terms identified.

Fundamental Grid domain concepts, vocabularies, and relationships have al-
ready been defined in Core Grid Ontology (CGO) and Grid Laboratory Uniform
Environment (GLUE) schema Andreozzi et al. [2009]. The ontology presented
here has been derived from the above generic domain ontologies. Only relevant
concepts from these generic domain ontology have been reused, for example,
“Processor” concept and more details specific to the Mini-Grid application have
been added such as “Security Tool” concept.

4.2.1 Motivation Scenarios

The motivating scenario is a detailed narrative about a situation in the domain
based on selected problems that need to be addressed. We have presented the
scenarios using the templates proposed in Graciela et al. [2006], similar to use
case templates in object-oriented methodology. The template describes: the
name of the scenario, actors who participate in the scenario, a brief scenario
description, and a list of possible terms related to the scenario. The motivation
scenarios tabulated in Table 4.2 show the optimization criteria and resource
requirements when the Mini-Grid users schedule their bioinformatics algorithm
in Mini-Grid. These scenarios have been identified by interviewing the users
and brain storming among project members.

4.2.2 Competence Questions

Competence questions derived from the motivation scenarios determines the
scope of the ontology. The competence questions can also be used to verify if
the ontology contains enough information to answer these questions. It also
determines the level of granularity required in the ontology. A concept in the
domain ontologies stated earlier is not included in this ontology if there is no
competency question that needs it. Thus, the competence questions determines
not only the concept included in this ontology but also the concepts that are
excluded. And the same rule applies to properties in the ontology.

The competence questions states the problems that arise from the scenarios.
Besides, scenario analysis contains a set of solution to these problems. Thus, the
scenarios lead to primary competence questions and analysis of scenario leads
to ancillary questions. In Table 4.3, we have presented a list of competence
questions that were driven by scenario analysis. Let us discuss each scenario
and possible solution to address the scenario. Response Time: In general
users wish to use time optimization in scheduling of task in Mini-Grid, that
is, the response time should be minimum. The response time depends on the

Context-Awareness for Quality of Service 66

S
ce

n
ar

io
A

ct
or

s
D

es
cr

ip
ti

o
n

T
er

m
s

T
im

e
op

ti
-

m
iz

at
io

n
M

in
i-

G
ri

d
ap

p
li

ca
ti

o
n

,
T
a
s
k
,

S
u
b
m
i
t
t
e
r
,
B
i
d
E
v
a
l
u
a
t
o
r
,

an
d

re
so

u
rc

e
p

ro
v
id

er
s

T
h

e
M

in
i-

G
ri

d
a
p

p
li

ca
ti

o
n

a
ct

in
g

o
n

b
eh

a
lf

o
f

a
u

se
r

su
b

m
it

s
a

h
ig

h
co

m
p

u
ta

ti
o
n

a
l
ta

sk
to

th
e
S
u
b
m
i
t
t
e
r
.

T
h

e
S
u
b
m
i
t
t
e
r

sc
h

ed
u

le
s

th
e

ta
sk

,
b

a
se

d
o
n

a
u

ct
io

n
p

ro
ce

ss
,

o
n

th
e

re
so

u
rc

e
th

a
t

is
su

it
a
b

le
to

ex
ec

u
te

th
e

jo
b

.
P

o
ss

ib
le

cr
it

er
ia

u
se

d
b
y

th
e
B
i
d
E
v
a
l
u
a
t
o
r

a
re

re
so

u
rc

e
av

a
il

a
b

il
it

y,
th

e
cu

rr
en

t
lo

ad
o
f

th
e

re
-

so
u

rc
e,

q
u
eu

e
le

n
g
th

s,
a
n

d
co

m
p

u
ta

ti
on

a
l

ca
p
a
ci

ty
o
f

th
e

re
so

u
rc

e.

A
va

il
a
b

il
it

y,
T

a
sk

q
u

eu
e,

Q
u

eu
e

le
n

g
th

,
C

o
m

p
u

ta
ti

o
n

a
l

ca
p

a
ci

ty
,

R
e-

so
u

rc
e

lo
a
d

S
ec

u
ri

ty
M

in
i-

G
ri

d
ap

p
li

ca
ti

on
,

T
a
s
k
,

S
u
b
m
i
t
t
e
r
,
B
i
d
E
v
a
l
u
a
t
o
r
,

an
d

re
so

u
rc

e
p

ro
v
id

er
s

T
h

e
M

in
i-

G
ri

d
a
p

p
li

ca
ti

o
n

a
ct

in
g

o
n

b
eh

a
lf

o
f

a
u

se
r

su
b

m
it

s
a

ta
sk

to
th

e
S
u
b
m
i
t
t
e
r

th
a
t

n
ee

d
to

ru
n

o
n

a
se

cu
re

d
re

so
u

rc
es

.
T

h
e
S
u
b
m
i
t
t
e
r

sc
h

ed
u

le
s

th
e

ta
sk

,
b

a
se

d
o
n

a
u

ct
io

n
p

ro
ce

ss
,

o
n

th
e

re
so

u
rc

e
th

a
t

is
su

it
a
b

le
to

ex
ec

u
te

th
e

jo
b

.
C

ri
te

ri
a

u
se

d
b
y

th
e
B
i
d
E
v
a
l
u
a
t
o
r

a
re

se
cu

ri
ty

m
ea

su
re

s
p

ro
v
id

ed
b
y

a
re

so
u

rc
e.

S
ec

u
ri

ty
m

ea
-

su
re

s

L
o
ca

ti
on

M
in

i-
G

ri
d

ap
p

li
ca

ti
on

,
T
a
s
k
,

S
u
b
m
i
t
t
e
r
,
B
i
d
E
v
a
l
u
a
t
o
r
,

an
d

re
so

u
rc

e
p

ro
v
id

er
s

T
h

e
M

in
i-

G
ri

d
a
p

p
li

ca
ti

o
n

a
ct

in
g

o
n

b
eh

a
lf

o
f

a
u

se
r

su
b

m
it

s
a

ta
sk

to
th

e
S
u
b
m
i
t
t
e
r

th
a
t

n
ee

d
s

to
ru

n
o
n

re
so

u
rc

es
lo

ca
te

d
in

a
p

a
rt

ic
u

la
r

lo
ca

ti
o
n

.
T

h
e

S
u
b
m
i
t
t
e
r

sc
h

ed
u

le
s

th
e

ta
sk

,
b

a
se

d
o
n

a
u

ct
io

n
p

ro
-

ce
ss

,
o
n

th
e

re
so

u
rc

e
th

a
t

is
su

it
a
b

le
to

ex
ec

u
te

th
e

jo
b

.
C

ri
te

ri
a

u
se

d
b
y

th
e
B
i
d
E
v
a
l
u
a
t
o
r

is
lo

ca
ti

o
n

o
f

a
re

so
u

rc
e.

L
o
ca

ti
o
n

S
ta

b
il

it
y

M
in

i-
G

ri
d

ap
p

li
ca

ti
on

,
T
a
s
k
,

S
u
b
m
i
t
t
e
r
,
B
i
d
E
v
a
l
u
a
t
o
r
,

an
d

re
so

u
rc

e
p

ro
v
id

er
s

T
h

e
M

in
i-

G
ri

d
a
p

p
li

ca
ti

o
n

a
ct

in
g

o
n

b
eh

a
lf

o
f

a
u

se
r

su
b

m
it

s
a

ta
sk

to
th

e
S
u
b
m
i
t
t
e
r

th
a
t

n
ee

d
to

ru
n

o
n

st
a
b

le
re

so
u

rc
es

.
T

h
e
S
u
b
m
i
t
t
e
r

sc
h

ed
u

le
s

th
e

ta
sk

,
b

a
se

d
o
n

a
u

ct
io

n
p

ro
ce

ss
,

o
n

th
e

re
so

u
rc

e
th

a
t

is
su

it
a
b

le
to

ex
ec

u
te

th
e

jo
b

.
C

ri
te

ri
a

u
se

d
b
y

th
e

B
i
d
E
v
a
l
u
a
t
o
r

is
th

e
st

a
b

il
it

y
o
f

a
re

so
u

rc
e.

S
ta

b
il

it
y

T
ab

le
4
.2

:
C

o
n
te

x
t

m
o
d

el
in

g
sc

en
a
ri

o
s

Context-Awareness for Quality of Service 67

Competence questions

What is the resource response time?

Ancillary questions

How many cores does the resource have?
What is the processing power of each CPU?
What is the current and recent processor utilization?
What is the current queue length of local resource
management system?
What is the current average task completion time?
What is the current average transfer time of per unit
data?

How secure is the resource?

Ancillary questions

What kind of security tools are available?
Is the resource secured from external / internal at-
tacks?
Can sensitive data be transferred securely?
What kind of security policies are practiced?

Is the resource stable?

Ancillary questions
What kind of resource it is?
What kind of network connection does it has?
Does the resource belong to individual or shared by
a group?
Where is the resource located?

Ancillary questions Is the resource located in “Room 4D06”?

Table 4.3: Competence questions

Context-Awareness for Quality of Service 68

Security risk P
K

I

IP
S

ec

S
S

L

F
ir

ew
a
ll

B
io

m
et

ri
c

A
u

th

S
S

H

ID
S

D
ig

it
a
l

ce
rt

ifi
ca

te
s

Credential theft X X X X
Unauth. admin access X X X X

Network credential theft X X X
Data theft X X X

Denial of service attack X X X

Table 4.4: Individual security approaches and their use in dealing with security
threats and risks

number of logical processors (or cores) a resource has, processor clock frequency,
current processor load, number of tasks being executed on the resource, number
of tasks waiting for execution, the time taken to transfer the task from resource
consumer to resource provider and so on. Thus we have a list of ancillary
questions that represent the solution domain.

Security: Various classes of security-related risks and threats need to be
considered before scheduling a task on remote resource providers. The common
risks or threats of concern to Mini-Grid users are: credential theft, data theft,
and denial of service attack.

• Credential theft describes the type of threat in which an entity gains
unauthorized access to the application, administration access and network
devices.

• Data theft describes the type of risk in which sensitive data or information
is accessible or modified by unauthorized entities.

• Denial of service attack refers to an attack in which the performance of
underlying network or system degrades.

In recent years, a wide variety of industry standards and technologies have
emerged to address the above said theft or attack. Current security approaches
include: security standard and policies, and library and tools. Standards and
policies are the international best practices and approaches proposed and fol-
lowed by industry that when applied would be able to minimize or prevent spe-
cific security risks. Examples include IPSec, a security standard, dealing with
IP network-level security using public-key cryptography. Libraries and tools
include the technologies that would be able to provide protection against secu-
rity risks. Examples include firewall or packet filter dealing with unauthorized
communication.

Context-Awareness for Quality of Service 69

Thus, a secure resource can be identified by quantifying the security mea-
sures implemented on the resource by its user. In Table 4.4, we have presented
individual security approaches and their ability to address the theft or attacks
identified earlier. Table 4.4 provides a list of security technology and standards
that can address one or more security risks. A tick mark (X) indicates that a
particular technology or standard is applicable to, or effective, in handling the
security risk. However, stated security technologies are by no means complete;
they serve as examples of current technologies and standards. The identified
security threats are specific to Mini-Grid and may need to include other types
of security threats based on experience.

A resource can be said secure, if it has a set of security approaches that can
address all the security theft or attacks. For example, if a resource (say R1)
implements PKI and IPSec and when a resource consumer selects this resource
for execution then it is secure because these two security technologies together
address all the identified security threats. If the resource addresses all the
security threats using a set of security technologies and in addition has additional
security measures, it is said to be more secure. For example, a resource (say R2)
implements security technologies PKI, IPSecm and SSL, then it is more secure
than resource R1.

Location: User may want to schedule tasks on resources that are physically
located at a particular place. For example, during interaction with users, one
user said he was interested in scheduling the application only on resources in
his lab.

Stability: By stability, the user means guaranteed long-term access to the
resource. In an ad hoc environment, it is not possible to guarantee such access
to the resource. However, one can indirectly infer the stability of a resource by
the device type and the type of network connectivity it has. Resources can be a
‘server machine” or “shared desktop computers” or “user laptop computers” or
“office desktop computers”. Network connectivity can be of two types: wired
and wireless. A device of type desktop computer and having wired network
connectivity can be assumed to be available in Mini-Grid for longer duration
than a device of type laptop and having a wireless network connectivity. Thus,
by knowing the type of device and network connectivity, one can judge the
availability of the resource.

4.2.3 Object Oriented Data Model

In this section, the core concepts of the proposed mini-gird ontology are pre-
sented. Though it has been designed to represent knowledge of Mini-Grid sys-
tem, it can be extended. Therefore, we have adopted the Web Ontology Lan-
guage OWL-DL L. and van Harmelen Frank [2004] to describe the terms and
classes in the Mini-Grid ontology. We first define a set of core classes and then
mention few sub-classes. After that, we define the relationships and constraints
among these classes (represented by links).

In Figure 4.1, the core concepts of the proposed ontology are presented in
the form of a UML class diagram. In the proposed context model, we view

Context-Awareness for Quality of Service 70

Concept / Class Description
Resource An entity providing a capability
Software One of the capabilities available in a resource
Middleware A software component for forming distributed

computing environment
Location The geographical location of resources
Security Mechanism Security policies and protocols implemented by a

resource
Network Connectivity Network connectivity that a resource has

Table 4.5: The core concepts / classes in the Mini-Grid context model.

Mini-Grid as a collection of entities and these entities are monitored to know
their context and hence we have monitored entity as the base class. The moni-
tored entities can be computational or storage devices. However, other types of
devices can also participate in Mini-Grid. Such devices can be sub classed from
MonitoredEntity. It has the attribute’s entityId, which is a unique identifier
that identifies the entity being monitored, and entityType, which is the type of
the entity being monitored.

Figure 4.1: An UML diagram of core ontology concepts.

In Table 4.5, the core concepts classes of the Mini-Grid context model are
presented. Out of these concepts, software and security mechanism needs more
explanation.

• Software: Refers to softwares that are currently installed in a resource. We
consider availability of a software as one of the capabilities of a resource.
Software can be Mini-Grid application, a user library, a security software
installed on the resource, and so on.

• Security Mechanism: Refers to security policies and protocols adopted
by a resource. Resources can adhere to a specific security policy that can
address a security risk or threat. Resources can implement certain security
protocols such as IPSec, Kerberos, and SSH. Ability to address a security
threat or risk can be considered as one of the capabilities of the resource.

Context-Awareness for Quality of Service 71

4.3 Context Modeling

Based on the scenarios detailed earlier and the competence questions, we have
identified two main abstractions: tasks and resources and a range of user prefer-
ences. In this section, we present the task and context modeling based on their
context. We also present how the framework performs matching the capability
requirements of the Mini-Grid application to the capabilities of the available
resource providers.

4.3.1 Resource Modeling

In Figure 4.2, we present the conceptual context model of the computing device
(i.e., resource providers). The computing device is based on the core monitored
entity Resource. It has various software entities including the Mini-Grid appli-
cation and the Mini-Grid middleware, network connectivity, and an execution
environment. The computing device can implement certain security protocols
and security policies, and is located in a particular physical location.

Figure 4.2: Concepts and relationships for resource.

In Figure 4.3, we present the conceptual context model of the computing en-
vironment. It uses Processor, Memory, DiskSpace, OperatingSystem, and
TaskExecutor concepts. The properties of these concepts are tabulated in Ta-
ble 4.6.

4.3.2 Task Modeling

In figure 4.4, we present the conceptual context model of the computational
task. A Mini-Grid application can contain one or more computational tasks. A

Context-Awareness for Quality of Service 72

Figure 4.3: Concepts and relationships for computing environment.

Concept Property Description

Processor

ClockSpeed CPU clock frequency
Load1Min 1-minute average processor load
Load5Min 5-minute average processor load
Load15Min 15-Minute average processor load

Memory

MaxPhysicalMemory Total physical memory
FreePhysicalMemory Unallocated physical memory
MaxVirtualMemory Size of configured virtual memory
FreeVirtualMemory Available virtual memory

DiskSpace
MaxSpace Size of configured disk space
AvailableSpace Available disk space

OperatingSystem
Name Name of the operating system
Version Operating system version

TaskExecutor QueueLength Number of tasks in the queue

Table 4.6: The properties of concepts in computing environment.

computational task has an execution environment, a computational complexity
index value, requires certain Mini-Grid middleware configurations, and uses
certain bidding strategy for scheduling.

4.3.3 QoS Modeling

QoS requirements of an application can be modeled as bids in the auction pro-
cess. For example, consider a scenario where the application wants to schedule
tasks on resource that can execute faster than others. In this case, the appli-
cation developer has to give a name to the strategy that need to be used, for
example SPEEDBID. During task announcement, the resource consumer would
announce that it would like to have the bidders bid using ‘ SpeedBid ’. Further,
the application developer has to define what speed bid means. Currently, look-
ing at our context model we have the information about CPU clock frequency,
current cpu load, and queue length at the Executor. Using these information
we formulate the speed bid. Using CPU clock speed and the name of the proces-

Context-Awareness for Quality of Service 73

Figure 4.4: Concepts and relationships for a task.

sor, we can find the average MIPS rating of the processor. The average MIPS
ratings for different processor have been published in different web-sites, for
example Wikipedi1 or we can use bench mark tools, for example Open Source
Open Benchmark (OCB)2 to determine this. The MIPS rating for a processor
is determined from a set of small programs known as the MIPS benchmark.
The ration of the geometric mean of the performance of these programs to that
for the same programs run on the VAX 11/780 provides the MIPS rating. The
VAX 11/780 is defined as a MIPS-1 machine, meaning that it is capable of ex-
ecuting one million instructions per second. If a processor is rated at 10 MIPS,
it supposedly performs the given benchmarks ten times after does than a VAX
11/780.

Now, we define a scoring function that ranks the resources based on average
MIPS rating, current cpu load and number of processors.

• CPU Speed (MIPS) - MIPS rating per CPU

• CPU Count (N) - Number of CPUs available

• Current Load (L) - The machine utilization information at the time of
scheduling. For example, if current cpu load is 10%, then this parameter
will have a value 0.1.

Rank = MIPS ×N × (1− L) (4.1)

In Mini-Grid, tasks can be queued at the remote executor for execution. The
above ranking function in Equation 4.1 does not incorporate this information.

1http://en.wikipedia.org/wiki/List of Intel microprocessors
2http://sourceforge.net/projects/opencpubench/

Context-Awareness for Quality of Service 74

Further, in Mini-Grid, the average completion time of an application is not
known at the time of scheduling. Hence, we follow a greedy approach that does
a simple ranking using the Equation 4.2.

Rank =
MIPS ×N × (1− L)

Q
(4.2)

where Q denotes the queue length at the Executor. The ranking function used is
simple but useful. However, more accurate ranking functions can be developed
using CPU load prediction techniques Zhang et al. [2008]. The bidder compo-
nent of the resource provider has to query its local context manager using a
query template to compute the bid. Hence, the application developer need to
define the query template name and its corresponding SPARQL query as shown
in below code snippet. On executing the query, the context manager returns
the value of the required parameters. Using these parameters, the bidder would
compute the bid that need to be submitted.

PREFIX mg: <http://minigrid/elements/1.0/#>

SELECT ?speed ?cpuload ?qlength

WHERE {

?node mg:deviceType mg:ComputationalDevice ;

mg:hasProcessor ?processor ;

?processor mg:cpuSpeed ?speed .

?processor mg:cpu15Minload ?cpuload .

?processor mg:hasTaskExecutor ?taskexecutor .

?taskexecutor mg:queueLength ?qlength .

}

On receiving the bid, the auctioneer using evaluateBids(), determines the best
bid. The evaluate bid method sorts the bids according to the Equation 4.2 and
determines the best bid. Bids can be sorted as they are comparable objects.

User may be concerned not only about trunaround time but also about
security issues. Some resource consumers may feel that it would be better to
schedule the task on resources that are secure. For example, a user can say “
How do I prevent my data leaving from the building? ”. This translates into
hoq to prevent data leaving from my network. A correctly configured firewall
can prevent unauthorized traffic from entering your network and keep data from
leaving your newtork. Finally, the user’s concern get translated into ensuring
that the resource has a firewall installed. Looking at the Table 4.4, one could
see that firewall has been identified as one of the security approach. As detailed
earlier, the application developer has to define a bid, its corresponding query,
and evaluation approach.

Context-Awareness for Quality of Service 75

4.3.4 Evaluation

In order to verify and validate the ontology regards to competency questions, we
used the Simple Protocol and RDF Query Language (SPARQL) Prud́hommeaux
and Seaborne [2008]. SPARQL is a syntactically SQL-like language for query-
ing RDF graphs via pattern matching. The language’s features include basic
conjunctive patterns, value filters, optional patterns, and pattern disjunction.
To implement these queries, we used the Jena Framework, which provides an
API for creating and manipulating the RDF model.

We present an example to illustrate how we have validated the ontology with
respect to competency questions. Let us assume that a user has defined speed
bid parameterized by the cpu clock frequency. His computational tasks require
a memory of 4GB, then he can issue the following SPARQL to find suitable
resource. We create the context model, and different instance using Jena API
and then issue the query to see if the output matches our manual inference.

PREFIX mg: <http://minigrid/elements/1.0/#>

SELECT ?speed

WHERE {

?node mg:deviceType mg:ComputationalDevice ;

mg:hasProcessor ?processor ;

mg:hasMemory ?memory .

?processor mg:cpuSpeed ?speed .

?memory mg:maxPhysicalMemory ?phyMemory .

FILTER (?phyMemory > 4096)

}

4.4 Context-awareness Sub-system

In the next section, we present the design of the context-awareness sub-system
inspired from the Java Context Awareness Framework (JCAF) Bardram [2005a,b,c].
JCAF is a Java-based service oriented runtime infrastructure and programming
API for creation of context-aware applications. The runtime infrastructure is an
environment of distributed services for acquiring context information (through
Context Monitors and Context Actuators) and which enables interested applica-
tion components to subscribe to relevant context events through an event-based
mechanism. Context transformers reside in a transformer repository and consti-
tute application-specific implementations of aggregators of context information.

The JCAF application programming interface enables modeling context of
entities as a set of context items encapsulating context information. Entities
can themselves be context items of other entities and thus maintains relations
among entities. However, JCAF uses RMI for communication between entities.

Context-Awareness for Quality of Service 76

In general, Java RMI has been designed for creating distributed client/server
application. The communication between services and clients as well as among
the clients themselves is based on Java RMI. Java RMI is acceptable when
transfering small or medium sized chunks of context data over hig-speed data
links but being slower than TCP. However, when transferring larger chunks of
data the RMI performance degrades Alisa [2010]. For comparison, RMI needs
5.1 ms to transfer 10 B of data versus 165.7 ms to transfer 50 KB Gümüskaya
et al. [2008]. Further, JCAF does not have a context reasoning mechanism.

We have adopted the idea of context acquisition using context monitors in
our framework. We have also adopted the event-based architecture of JCAF.
However, we have used reasoning technique to acquire knowledge from existing
context information. Further, we have ontology for context modeling and RDF
store for context management.

4.4.1 Conceptual layers

Implementing context management system using modular approach contributes
to the system being loosely coupled and ensures component reuse and extension,
without incurring unnecessary development time. The architecture of context
management system based on layered design approach is illustrated in Fig-
ure 4.5.

Figure 4.5: Conceptual layers of context management system

Sensor Layer: This layer consists of physical and/or logical sensors. They
provide context information in device-dependent raw format. Proprietary proto-
cols may be needed for interacting with sensors. Physical sensors are subjected
to failure and hence unreliable.

Monitor Layer: This layer acts as a wrapper to sensor layer. It may be
embedded into the sensors or can be a separate component. If implemented as a
separate component, then reliability is ensured. It also provides uniform access

Context-Awareness for Quality of Service 77

to context information.
Interpreter Layer: This layer consists of context interpreters. These in-

terpreters have the ability to convert context in one form into another. This
layer ensures physical data independence.

Context Management Layer: This layer provides management function-
alities. They provide interface to manage context information. Also, they pro-
vide means to define context models specific to an application. They can also
aggregate context information.

Query Layer: This layer provides access to context information by context
consumers, for example, resource provider. Context information can be obtained
by polling technique. This layers consists of query interface explained earlier
and ensures logical data independence.

4.4.2 Context Management System - Modular View

An UML diagram of the core concepts/classes in context management is shown
in Figure 4.6. The core software component is the ContextManager implement-
ing the functionality of a context management system. The ContextManager is
responsible for context retrieval and dissemination, structured storage of con-
text information, and acquiring and transforming the context information. The
ContextManager has the following sub-components: ContextMonitors, Contex-
tInterpreter, KnowledgeBase, and QueryInterface as shown in Figure 4.6.

Figure 4.6: Module view - Context management system

Context-Awareness for Quality of Service 78

ContextMonitors: The context information is mostly distributed over
different physical devices or embedded in the application environment. Thus,
sensors are the source of context information and a context monitor can re-
ceive all data in raw format and delivers the necessary information to context
interpreters. Context monitors and sensors can communicate using proprietary
protocol and data format. For example,as illustrated in Figure 4.7 a desktop
computer is monitored by a CPU context monitor to provide context information
about processor. The desktop computer – a monitored entity – has an SNMP
agent, a software sensor, which provides information such as softwares installed
and the processor details. The CPU context monitor and the SNMP agent can
communicate using the SNMP protocol J.D. et al. [1990]. Each context monitor
has a unique identifier.

Figure 4.7: An example context monitor

ContextInterpreters: A context monitor can register and unregister
them-self with a context interpreter. While registering with the context inter-
preter, they provide information about the entity they are monitoring. Each en-
tity observed by the context management system has a unique identifier. Apart
from the unique identifier, each entity can be identified to one of the entity
types. For example, a CPU context monitor can provide context information
such as current CPU load to an RDF context interpreter. In this case, the
CPU context monitor registers itself with the RDF context interpreter that it is
providing context information about processor. In this case, the monitored en-
tity would be “processor-01” and type of entity would be “Processor”. Context
monitors provide information as context statement. For example, to inform the
context interpreter that the processor has a speed of 2194 MHz, it uses the key-
value pair {“processor-speed”, “2194”}. The RDF context interpreter interprets
this information as a context statement with subject “processor-01”, predicate
“processor-speed”, and object “2194” as shown in the Figure 4.8. The context
consumer application needs to define mapping functions that can convert the
context information in raw format into a specific format. For example, in the
above case we need to provide the information that the key “processor-speed”
needs to be mapped to RDF property.

KnowledgeBase: The Knowledge base contains data store to store con-
text information about different monitored entities. The context-aware applica-
tion need to define a context model to describe a set of monitored objects. For
example, an ontology can be used to define the properties of a processor and an
RDF store to store the ontology and its instance.

The below code snippet shows processor ontology in RDF/Turtle format.

<http:///processor.owl> rdf:type owl:Ontology .

Context-Awareness for Quality of Service 79

Figure 4.8: RDF graph representation of context information

:Processor rdf:type owl:class .

The context base provides functionalities to add and remove context infor-
mation. The context base can provide both persistence and in-memory storage.

Query interface: A context consumers can use the query interface to
query context information from the context base. The query interface provides
support to specify query template once and then to use that template multiple
times. For example, if we have a SPARQL query interface, then the context-
aware application developer can define SPARQL queries for anticipated situation
in the application. The templates are associated with a name and this name
can be used to query rather than the actual query statement. In the Mini-
Grid Framework, Executor and ExecutorContext act as context consumers
and queries the context base.

QueryTemplate: A query template is an encapsulation which includes
user-application quality of service description or resource capability description
and their mapping to the corresponding SPARQL query statement. A template
allows a domain expert to express domain-specific quality and resource capabil-
ity description and corresponding mapping to the SPARQL query. Among the
available templates, the application developer can choose templates relevant to
the application.

4.4.3 Context Management System - Dynamic View.

Defining Query Template: An executor can associate a specific query tem-
plate name to a query representing an application-specific bidding strategy by
calling the addTemplate() method in QueryInterface.

Consuming Context Information: The interaction diagram in Figure 4.9
illustrates the consumption of context information by an executor. Once the
executor receives a bid submission notification, it queries the query interface
for context information with corresponding query template name based on the
type of bidding strategy. The query interface would use the corresponding query
to query the knowledge base. The knowledge base returns a set of context
statements that matches the query. The executor uses these context statements
to calculate the bid.

Providing Context Information: The interaction diagram in Figure 4.9
illustrates the provision of context information by a context monitor. Initially a

Context-Awareness for Quality of Service 80

Figure 4.9: Context information consumption at an executor.

context monitor registers itself with a context interpreter. When the context of a
monitored entity changes, the context monitor notifies the context interpreter by
calling addStatement() method of context interpreter. The context interpreter
in turn calls the addStatement() method of the knowledge base and the context
statement gets added to the knowledge base.

4.5 Summary

Support of Quality of Service (QoS) in desktop Grid environment requires un-
ambiguous description of resource capabilities available and required. We have
presented the various context modeling technique and their advantages and dis-
advantages. In this chapter, we have presented the use of context information
for unambiguous description of resource capabilities. we have adapted scenario-
based ontology development and evaluated the adequacy of the resulting ontol-
ogy.

Chapter 5

Programming API

In this chapter, we provide some insights in the use of the Mini-Grid framework
in developing a sample Mini-Grid application. The Mini-Grid Framework has
been developed i) to support computational task distribution to participating
resources in Mini-Grid, ii) to model capabilities of participating resources and
capability requirements of a Mini-Grid application, iii) to extend the framework
with application specific quality of service parameters for scheduling computa-
tional tasks, and iv) to extend the framework to develop application specific
auctioning protocols.

The framework aims to provide a general and expendable functionalities
stated above. The framework has been implemented as Java classes and inter-
faces that can be used in building Mini-Grid applications. The framework target
at three different users i) Mini-Grid application developer, ii) application toolkit
developer (grid enabling existing application toolkit) and iii) domain expert to
implement application specific auction protocols and bids.

5.1 Sample Application

One of the commonly used parallel programming model is the data parallel
model. In this model, each computational task executes the same piece of code
but on a different part of the data. This involves splitting of application data
among available computational resources. The data set is typically organized
into common data structure such as an array Barney. Figure 5.1 shows an
example scenario where the data set is stored in an array (say A). The parallel
version contains three tasks each executes same code but on different parts of
the data.

Our sample application finds all the prime numbers from 1 to an upper
limit, say UPPERLIMIT as shown in the below code snippet. The UPPERLIMIT is
an input to the program.

public ArrayList<Integer> calculatePrime(int UPPERLIMIT)

81

Programming API 82

Figure 5.1: Data parallel model.

{

ArrayList<Integr> primes = new ArrayList<Integer>();

for (int i = 2; i < UPPERLIMIT; i++)

{

boolean prime = false;

int limit = (int) Math.ceil(Math.sqrt(i));

for (int j = 2; j < limit && prime==false; j++)

{

if (i%j == 0) prime = true;

}

if (prime)

primes.add(i);

}

return primes;

}

Now, we develop a parallel version of the sample application using the data
parallel model. The parallel version demonstrates a common technique used in
parallel algorithm – solving a smaller case of the same problem to speed the
solution of the full problem. An important aspect of developing a good parallel
algorithm is designing one whose work is close to the time of a good sequential
algorithm that solves the same problem. Without this condition we cannot hope
to get good speedup. Parallel algorithms are referred to as work efficient relative
to a sequential algorithm if their work is within a constant factor of the time of
the sequential algorithm. Finding prime numbers applications aims to develop a

Programming API 83

work-efficient algorithm Blelloch [1996]. The below code snippet illustrates the
parallel version of the code. This program takes two input parameters LLIMIT
and ULIMIT. Let us assume that we wish to calculate prime number between
1 to n. We split the computation into m tasks. Now, each task computes n/m
numbers, i.e., first task computes in the range 1 to n/m, second task computes
in the range n/m+1 to 2n/m and so on. The upper and lower limit of the
range becomes input to the function calculatePrime(). The calculation in
each task are independent of one another and hence leads to embarrassingly
parallel situation.

public ArrayList<Integer> calculatePrime(int LLIMIT, int ULIMIT)

{

ArrayList<Integr> primes = new ArrayList<Integer>();

for (int i = LLIMIT; i < ULIMIT; i++)

{

boolean prime = false;

int limit = (int) Math.ceil(Math.sqrt(i));

for (int j = 2; j < limit && prime==false; j++)

{

if (i%j == 0) prime = true;

}

if (prime)

primes.add(i);

}

return primes;

}

The Grid applications are either computationally intensive or data inten-
sive. The computational intensive application uses most of the CPU power
and use moderate amount of data. Here, we have used a simple application to
demonstrate how a parallel version can be developed. Though it is simple, from
parallelization point of view serves as a good example. Further, the Mini-Grid
Framework targets at application that are computational intensive and that can
be parallelized easily. However, any application that can be converted into a
Bag-of-task application can be deployed in the Mini-Grid environment.

5.1.1 Grid Enabling Sample Application

This section illustrates how the sample application can be grid enabled using
the Mini-Grid Framework. The core modeling abstractions in the Mini-Grid
framework are the interfaces and classes: Task, TaskContext, Submitter,

Programming API 84

and TaskListener. An UML diagram of the relationship between these classes
and interfaces are shown in Figure 5.2.

Figure 5.2: An UML Diagram of Task and Related Classes and Interfaces.

The basic modeling concept in the Mini-Grid framework is the Task interface.
This interface defines the computational unit that need to be distributed in
Mini-Grid. The parallel tasks in the sample application need to implement
this interface. Further, the method execute() contains the business logic of
the parallel tasks. A simple example implementation of a PrimeTask is listed
below:

public void execute()

{

for (int i = LLIMIT; i < ULIMIT; i++)

{

boolean prime = false;

int limit = (int) Math.ceil(Math.sqrt(i));

for(int j = 2; j < limit && prime == false; j++)

{

if (i%j == 0) prime = true;

}

if (prime)

primes.add(i);

}

}

In the above code snippet, the variables “LLIMIT” and “ULIMIT” are pa-
rameters to be the constructor. An instance variable “primes” holds the prime

Programming API 85

numbers in the range LLIMIT to ULIMIT. Further, the task needs a task con-
text as detailed in Section 5.2.2.

The interface Task encloses results of its execution at a remote resource
provider. The application submitting PrimeTask to the Mini-Grid environment
calls the method getResults() to get the results of execution. Hence the class
PrimeTask need to implement the getResults() method and the below code
snippet illustrates it.

public Object getResult()

{

return primes;

}

The application need to be notified once the results are available. The frame-
work uses the “Observer pattern” to notify the application important events dur-
ing the execution of a task. The framework provides an interface TaskListener
that acts as subject and needs to register with a Submitter for notifications. It
has taskAccepted(), taskCompleted(), taskRejected(), taskStarted(),
taskTimedOut(), and taskException methods. The Submitter is notified
when a task gets accepted for execution, gets rejected, gets completed, gen-
erates exception during execution and times out on a remote resource provider.
The application need to implement this interface and should have the logic for
handling the appropriate situation.

The below code snippet illustrates a sample implementation of TaskListener.
This task listener, logs in the various events that happen during the remote ex-
ecution of a task.

public class SampleListener implements TaskListener

{

private Submitter mgSubmitter;

private LocalExecutor localExecutor;

public SampleListener(Submitter submitter, LocalExecutor lEecutor)

{

mgSubmitter = submitter;

localExecutor = lExecutor;

}

public void taskCompleted(TaskEvent event)

{

logger.info("Execution of task completed"+event.getTaskId);

//Obtain completed task from Mini-Grid Submitter

mgSubmitter.getCompletedTask(event.getTaskId());

Programming API 86

//Process completed task

}

public void taskStarted(TaskEvent event)

{

logger.info("Execution Started"+event.getTaskId());

}

...

public void taskRejected(TaskEvent event)

{

logger.warn("Task could not be scheduled in Mini-Grid"

+event.getTaskId();

localExecutor.schedule(event.getTaskId());

}

...

}

Now, the sample application consists of a set of PrimeTask that can be
distributed in Mini-Grid for execution. In the code snippet LocalExecutor

corresponds to an object that is responsible for scheduling failed tasks on the
resource consumer.

5.1.2 Distributing Tasks in the Mini-Grid Environment

Client acting as a resource consumer joins the Mini-Grid environment by cre-
ating objects of class implementing Submitter. The clients can leave the Mini-
Grid environment by calling shutdown() method in Submitter. The sequence
of steps involved in the resource consumer joining the Mini-Grid environment
are:

• Create and initialize a transport component.

TransportComponent transportComponent =

TransportComponent.getInstance();

transportComponent.init();

• Create and initialize messenger component.

MessengerComponent messengerComponent =

MessengerComponent.getInstance(transportComponent);

messengerComponent.init();

Programming API 87

• Create and initialize submitter object.

Submitter minigridSubmitter =

new DistributedSubmitter(messengerComponent);

• Inform submitter the auction and evaluation method to be used.

minigridSubmitter.setAuctioneer(new FPSBAuctioneer

(minigridSubmitter, new SimpleBidEvaluator()));

The sample application running on a resource consumer can submit a task
by calling the method, submit() method. If the user has an idea on the life
time of the individual task, then he can specify it as a parameter in submit()

call, otherwise the framework uses a default value for TTL. In the code snippet,
FPSBAuctioneer corresponds to the implementation of First-Price Sealed-Bid
auctioneer.

LocalExecutor localExecutor = new LocalExecutor();

TaskListener taskListener

= new SampleListener(minigridSubmitter,localSubmitter);

for (int i=0; i< UPPERLIMIT/nofTask; i++)

{

Task tempTask = new PrimeTask(taskContext, i, i*UPPERLIMIT/nofTask);

minigridSubmitter.submit(task, taskListener);

}

5.1.3 Providing Results

Once the task gets completed at remote resource provider and is ready for
use by the sample application, the “DistributedSubmitter” object implement-
ing Submitter interface notifies the application by calling taskCompleted()

method of the class implementing the interface task listener (i.e., TaskListener
object). The application calls getCompletedTask() method to obtain the re-
sults as shown in the below code snippet.

minigridSubmitter.getCompletedTask(taskIidentifier);

5.1.4 Participating in Mini-Grid - Resource Provider

A client willing to share its capabilities join the Mini-Grid environment and
executed the task allocated to it by participating in a bidding process. The
sequence of steps involved in the resource consumer joining the Mini-Grid envi-
ronment are:

Programming API 88

• Create and initialize a transport component.

TransportComponent transportComponent =

TransportComponent.getInstance();

transportComponent.init();

• Create and initialize messenger component.

MessengerComponent messengerComponent =

MessangerComponent.getInstance(transportComponent);

messengerComponent.init();

• Create and initialize executor object.

Executor minigridExecutor =

new DistributedExecutor(messengerComponent);

• Inform the executor how to obtain its resource context.

minigridExecutor.setContext(new DefaultExecuterContext());

• Set the different types of bidders the executor can use.

minigridExecutor.setBidder(new SpeedBidder());

After the initialization, the client receives task winner notification and can
participate in the bidding process at detailed earlier in Section 3.6. The client
can leave Mini-Grid as demonstrated in the following code snippet.

minigridExecutor.shutdown();

In this section, we started with a discussion on how an algorithm can be
parallized using a simple application. Then it presents how a resource can
participate in the Mini-Grid and distribute computational task in the Mini-
Grid. In the next section we would look into implementation of some of the
core abstractions used in the Mini-Grid Framework.

5.2 Defining Context

Resource providers and resource consumer need a context model to annotate
their resources and to describe their requests. Furthermore, the Bidder com-
ponent uses this context model to obtain information required for formulating
a bid.

In order to explain how resource and task context can be stated in Mini-
Grid environment, we use the following example context model illustrated in

Programming API 89

Figure 5.3. The figure shows fragments of a ontology defined to annotate the
resources in the Mini-Grid. The ontology consists of only core concepts, their
properties and the relationship between them that are necessary for the discus-
sion. The key top-level concept ResourceType consists of classes and properties
that describe Computing, Storage and Network elements. The classes used to
describe ComputingDevice include Processor, Memory, DiskSpace, Software and
TaskScheduler.

Figure 5.3: Fragments of different concepts used in Mini-Grid resource descrip-
tion using UML.

The Processor class has clock frequency (ClockSpeed), average processor
load in 1, 5, and 15 minutes (Load1Min, Load5Min, Load15Min) as its proper-
ties. The Memory class has maximum physical memory (MaxPhysicalMem-
ory), currently available physical memory (FreePhysicalMemory), maximum
virtual memory (MaxVirtualMemory), and currently available virtual mem-
ory(FreeVirtualMemory) as its properties. The DiskSpace class has maximum
storage space (MaxSpace) and currently available storage space (AvailableSpace).
The Software class has currently installed CLC Work Bench version (Work-
BenchVersion) and currently available Mini-Grid plug-in version (PlugInVer-
sion) as its properties. The TaskScheduler class has count of currently running
and waiting tasks (QueueLength) as its properties.

5.2.1 Defining resource context

The capabilities of a resource provider are stated as a set of ContextStatements.
By looking at the example context model, it is clear that there are static as
well as dynamic context information used to describe a resource. For example,
average processor load in 1, 5 and 15 minutes are dynamic context information.
On the other hand, processor clock frequency is static context information. In
mini-gird environment, context information about resources are provided by

Programming API 90

ContextMonitors. Hence, we need to define context monitors as explained
earlier.

5.2.2 Defining task context

TaskContext refers to the capabilities required to execute a task on a remote
resource provider. For example, the task needs to be executed as early as
possible and requires physical memory 2048 m bytes to execute the task. This
can be stated as shown in the below code snippet.

By default, we have GenericTaskContext class implementing TaskContext

interface and GenericTaskContextStatement class implementing the interface
ContextStatement. However, the user is free to have his own implementation.

TaskContext taskContext = new GenericTaskContext();

taskContext.addStatement(new

GenericTaskContextStatement(TaskContext.BID_TYPE,

BidName.SPEED_STR));

taskContext.addStatement(new GenericTaskContextStatement

(TaskContext.MEMORY_REQUIRED, "2048"));

This section is concerned about implementing core abstraction in the Mini-
Grid Framework. These implementation are sufficient for normal functioning of
the framework. However, the framework permits possible extensions for specific
needs of the application. For example, application specific bids and bidders can
be developed by extending the concepts Bid and Bidder respectively. Some
of the possible extensions are explained in the next section. However, default
implementation essential abstractions have been implemented and are available
to the application developer.

5.3 Framework Extension

One of the key feature of the Mini-Grid Framework is its extensibility. The
framework can be extended to create custom classes for supplementing or re-
placing functionality supplied by the framework. The framework provides vari-
ous extension points. Application specific nature of the computational tasks can
be modelled by extending the interface Task. In a pervasive computing environ-
ment, context information have quality Buchholz and Schiffers [2003] such as
precision, accuracy, etc. The interface ContextStatement can be extended to
include these quality parameters. A domain expert can develop his own context
monitors and context interpreters by extending the interfaces ContextMonitor
and ContextInterpreter respectively.

Programming API 91

A domain expert can also define his own utility function for modeling the
bid by extending the interface Bid, used in task distribution process. Not only
bid, but he can also define other auction protocols by extending the interfaces
Auctioneer, Bidder, BidEvaluator and AuctionListener. In this section,
we explain some of the possible extensions to the framework.

5.3.1 Defining a Context Monitor

A context monitor is responsible for acquiring context information from a sensor
and associate it with a monitored entity. The context monitor registers itself
with a context interpreter by stating the monitored entity it is monitoring. This
process helps to associate the context information with specific monitored entity.

Let us assume that currently ResourceProvider(A) is available in Mini-
Grid. Further, we assume that among other context monitors, we have the
CPUStaticMonitor and the CPUDynamicMonitor providing context informa-
tion about processor of ResourceProvider(A). After the deployment of con-
text monitors at the resource provider, they need to register them self with a
ContextInterpreter. While registering they need to specify the entity that
they are monitoring and its type. Here both the monitors are monitoring the
processor of ResourceProvider(A) and hence they register with a context in-
terpreter with their individual unique identifier and stating that they are mon-
itoring CPU00 of type ResourceType.ComputationalDevice.Processor. The
following code snippet illustrates the registration process. Here the variable
resourceId contains the unique identifier of the resource.

String myComputerUri = "http://www.minigrid.org/#" + resourceId;

MonitoredEntity monitoredEntity =

new HashtableImplEntity(myComputerUri,

"ComputationalDevice.Processor");

contextInterpreter.register(monitorId, monitoredEntity);

Static context monitors, just describe context information while registering
them self with context interpreter. On the other hand, dynamic monitors pro-
vide context information at the time of registration as well as when ever the
context information changes they update by calling contextChanged() method.
This method in turn calls addContextStatement() method of context inter-
preter to which it has registered itself.

The following code snippet illustrates the provision of static context infor-
mation by a monitor.

int count = Runtime.getRuntime().availableProcessors());

contextInterpreter.addStatement(monitorId, "ProcessorCount",

count);

Programming API 92

The following code snippet illustrates the provision of dynamic context infor-
mation by a monitor. Here the variable load15Min contains average 15 minutes
processor load.

public void contextChanged()

{

contextInterpreter.addStatement(monitorId, "Load15Min",

load15Min);

}

5.3.2 Defining a Context Interpreter

The context interpreters provide context information as context statements and
these statements are stored in the KnowledgeBase of the ContextManager. The
ContextManagers provide information in device specific format and hence we
need to define mappings that convert device specific format into standard for-
mat. For example, Microsoft Windows API provides functionality to query
system information. It uses the keyword “CPUSpeed” to refer the clock fre-
quency of the installed processor. On the other hand Linux operating system
provides system calls to read system information from proc/info file. It uses
the keyword “cpu MHz” to refer the clock frequency of installed processor in
MHz. Hence, two different operating system provide same information using
different types of keywords, formats and units. Hence, we need a mapping func-
tion that can map context information in different syntax and semantics to a
uniform syntax and semantics.

Also, we can define context interpreters that can map context information
in device specific format into RDF or OWL format. Let us assume that we
are using RDF to represent context information. RDF uses RDF Resource to
define a class and RDF Properties to define the properties of a class in our
context model. When a context monitor registers with a context interpreter,
it uses a simple keyword to denote entities or resources that they are monitor-
ing, for example ComputationalDevice.Processor. Hence we need to define a
“RDFContextInterpreter” that can understand these keyword and convert into
appropriate RDF format.

The following code snippet illustrates how mapping function can be used.
“DeviceType” is an RDF vocabulary that defines the classes and properties in
our context model.

contextInterpreter.addMapping("ComputationalDevice.Processor",

DeviceType.PROCESSOR);

The “DeviceType”, RDF vocabulary contains among other the following
statements.

public class DeviceType {

Programming API 93

protected static final String uri ="http://www.minigrid.org/#";

private static Model m = ModelFactory.createDefaultModel();

public static final Resource PROCESSOR =

m.createResource(uri + "Processor");

public static final Property PROCESSORVENDOR =

m.createProperty(uri, "ProcessorVendor");

...

}

5.3.3 Defining query template

We need to define query templates that can be used by ExecutorContext and
Executor to query context information. For example, we define speed query
that can be used to query information that quantify speed. The below code
snippet illustrates a speed query template that uses the clock frequency of the
processor to formulate “SpeedBid”.

String speedQuery = prolog + NL

+ "SELECT ?speed ?load ?queueLength "

+ "WHERE {"

+ "?node mg:deviceType mg:ComputationalDevice ."

+ "mg:ComputationalDevice

+ mg:hasExecutionEnvironment ?executionEnv ."

+ "?executionEnv mg:hasProcessor ?processor ."

+ "?executionEnv mg:hasMemory ?memory ."

+ "?executionEnv mg:hasTaskExecutor ?taskExecutor ."

+ "?processor mg:clockSpeed ?speed ."

+ "?processor mg:load15Min ?load ."

+ "?taskExecutor mg:queueLength ?queueLength ."

+ "}";

queryInterface.addTemplate(BidName.SPEED, speedQuery);

Later, when Executor receives a bidSubmissionNotification and has suf-
ficient capabilities required for executing the advertised task, it queries the
ContextManager to get context information related to bidding strategy “Speed”,
as shown in the below code snippet.

if (executorContext.isSameAsTaskContext(

taskSubmissionNotification.getTaskContext()))

{

Programming API 94

TaskContext taskContext =

taskSubmissionNotification.getTaskContext();

String bidType = taskContext.getObject

(TaskContext.DEFAULT_SUBJECT, TaskContext.BID_TYPE);

BidName queryTemplateName = BidName.toBidName(bidType);

Iterator<ContextStatement> contextStatements =

queryInterface.query(queryTemplateName);

....

}

5.3.4 Defining Bid

As stated earlier “bid” quantifies the utility function that a Mini-Grid applica-
tion user has interest in. The framework comes with a default implementation
that is sufficient for normal usage. However, application specific bids can be
defined by implementing the interface Bid.

The interface Bid, a comparable and serializable

public class SpeedBid implements Bid (

...

private int bidValue;

...

public int compareTo(Bid bid) {

if (!(bid instanceof SpeedBid))

throw new ClassCastException("Invalid Object for Comparision");

SpeedBid tempBid = (SpeedBid) bid;

if (bidValue > tempBid.getClockSpeed())

return 1;

else if (bidValue < tempBid.getClockSpeed())

return -1;

return 0;

Programming API 95

}

...

}

5.3.5 User Defined Bidder

The bidder component determined the bid value based on the capabilities of the
resource provider. For each type of bidding strategy used by the application, the
framework user has to define bidders. The following snippet illustrates a simple
bidder that calculates the bid based on the resource provider’s clock speed.

The user defined bidder has to implement the interface Bidder and has to
implement the calculate bid method. In this example, the user defined bidder
queries the context manager to obtain a list of context statement that defines
the capabilities of the resource provider.

public Bid calculateBid(TaskContext taskContext) {

String processorSpeed = null;

/*

* Bidder queries context manager

*

*/

while (statementList.hasNext())

{

ContextStatement tempStatement = statementList.next();

if (tempStatement.getPredicate().contains("ProcessorSpeed"))

processorSpeed = tempStatement.getSubject();

}

/*

* Calculate bid

*/

int clockSpeed = Integer.valueOf(processorSpeed).intValue();

SpeedBid bid = new SpeedBid();

bid.setClockSpeed(clockSpeed);

return bid;

}

In Section 5.1, we discussed how parallel applications can be developed.
Then it presented how a resource can join or leave the Mini-Grid; how they can
distributethe computational tasks over the Mini-Grid; and then to collect the

Programming API 96

final results. We presented the implementation of the core abstractions of the
Mini-Grid Framework in Section 5.2, and then the possible extensions to the
framework in the Section 5.3. So far we have discussed how a new application
can be developed using the Mini-Grid Framework. In the next section, we
discuss how an existing application can be Mini-Grid enabled.

5.4 Mini-Grid Enabling Application Toolkit

Mini-Gird enabling an existing application toolkit requires two elements: grid
enabling algorithm and changes to user interface of the application toolkit. In
grid enabling algorithm, we need to design concurrent version of the algorithm,
implement the concurrent version of the algorithm by implementing or extending
the core abstractions such as Task, Context, etc.; and distribute the compu-
tational tasks to the Mini-Grid and present the integrated results to the user.
Secondly, we have to make changes to user interface of the existing tool to use
the new algorithm. This section and its subsections describe the basic tasks
involved in grid enabling existing application.

5.4.1 Grid Enabling Algorithm

• Design Concurrent Version: If we have a sequential code that we want
to transform into a concurrent version, we need to identify the independent
computations that can be executed concurrently. Iterations of loops and
function call within the code that can be executed autonomously are two
instances of computations that can be independent. There are two con-
current design models – task decomposition and data composition. The
former exploits functional parallelism features and is achieved by distribut-
ing task on different nodes of the distributed system. The later exploits
data parallelism by distributing data across the nodes of the system. In
task decomposition, the computations are a set of independent tasks that
can be executed in any order. On the other hand, in data decomposi-
tion the application process large amount of data and can compute every
element of the data independently.

• Design Implemention: Implement the decomposed algorithm using
the required abstractions of the Mini-Grid Framework as detailed in Sec-
tion 5.1 and 5.2.

• Result Visualization: Integrate the individual results of the computa-
tion and present it to the user. We can make use of data visualization
support provided by the existing application.

5.4.2 User Interface Changes

• Configuration Management: The Mini-Grid Framework requires ini-
tialization of certain parameters, for example the tcp port numbers to

Programming API 97

be used for communication among participating resources. The configu-
ration parameters are made available through a text based configuration
file. The framework comes with a default configuration file having all
parameters set to default values. However, the user can define his own
values by making changes to values of these parameters. The user can be
asked to use any text editor to make the changes. However, to prevent the
user from making mistakes, the Mini-Grid enabled application can pro-
vide a configuration user interface to make these changes. For example,
the Mini-Grid PlugIn has a configuration user interface to set nick name
to the resource and user e-mail id as shown in Figure 5.4. The workbench
user has to an option File → Collaboration Network (minigrid) →
Access Minigrid Info ... in the upper left drop down menu to invoke
the configuration user interface.

Figure 5.4: The Configuration User Interface.

• Resource Participation: When a community member can decide to
participate in Mini-Grid the framework should be invoked. A Mini-Grid
enabled application should allow the user to express his interest to par-
ticipate or leave the Mini-Grid environment. For example, the Mini-Grid
PlugIn has an user interface to achieve this. After plugin installation, a
workbench user has an option File → Collaboration Network (min-
igrid) → Join Collaboration Network in the upper left drop-down
menu to join the MiniGrid and has an option File → Collaboration
Network (minigrid) → Leave Collaboration Network to leave the
Mini-Grid as shown in Figure 5.5.

• Application Invocation: The user interface of the toolkit should pro-
vide facility for the user to execute a grid-enabled algorithm in Mini-Grid.

Programming API 98

Figure 5.5: Join/Leave Mini-Grid User Interface.

For example, the Mini-Grid PlugIn makes the grid-enabled algorithm as
yet another tool as shown in Figure 5.6. After plugin installation, a work-
bench user has an option Toolbox) → Fold with PPfold in the upper
left drop-down menu or in the Toolbox section of the user interface.

Figure 5.6: Application Invocation User Interface.

• The toolkit should have the necessary changes in its user interface for
getting input for the selected algorithm. These modification are algorithm
specific and are not discussed here. However, Section 8.5.2 provides an
example implementation for PPfold algorithm.

Programming API 99

Figure 5.7: Progress of Computation in Mini-Grid.

• Application Monitoring: When a user executes an application on Mini-
Grid, he should be kept informed about the progress of computation. The
progress bar control provides user with a visual indicator of the progress of
the application execution in the Mini-Grid. The progress bar can greatly
improve the usability of the application. Informed users are less likely
to do something bad, such as rebooting their resources. Progress bar also
provide another essential piece of information: the program is still running
and has not crashed. For example, the Mini-Grid PlugIn uses a progress
bar to indicate the completed percentage of computation. After plugin
installation, a workbench user has an option Processes in the bottom left
tabbed-pan to show the progress of computation as shown in Figure 5.7.

5.5 Summary

In this chapter, we discuss about designing a parallel version of simple sample
application. Then we describe how the abstractions can be used to implement
the parallel version. Finally, we show how this application can be integrated
into an existing application toolkit provide facilities to distribute the task while
taking away the burden of becoming deeply involved with grid technology.

Part III

Evaluation and Discussion

100

Chapter 6

Experimental Evaluation

In order to evaluate the effectiveness of the Mini-Grid Framework compared to a
single machine normally available to the user and its related overhead introduced
by the auction based scheduling strategy that slows down the execution of the
application in Mini-Grid, we carried out a set of performance tests.

The Mini-Grid Framework has been designed to address the computational
requirements of a common class of applications, named embarrassingly parallel,
or bag-of-tasks (BoT) applications. These are parallel applications that can be
decoupled in a large number of independent tasks that do not need to commu-
nicative with each other. Thus, they can be simultaneously executed in a large
number of desktop computers. The comparisons we present here are based on
the average completion time of the BoT application. The average completion
time of the BoT application is defined as the time elapsing between the sub-
mission of a bag of task and the termination (either successful or not) of all its
tasks. Specifically, we are interested in studying the following:

• Overhead, measures the additional time introduced into the execution
time of individual tasks from various sources in the framework.

• Speedup, measures the potential speedup of the application obtained by
executing an application in the Mini-Grid environment.

6.1 Experimental Setup

In this section, we present the performance evaluation of the Mini-Grid Frame-
work by deploying simple applications such as: prime number calculation appli-
cation and application that searches for a key in a large data set in a controlled
environment.

6.1.1 Application

We have considered a bag-of-task application and hence the application con-
sisted of a fixed number of tasks and all the tasks were generated at the submis-

101

Chapter 6. Experimental Evaluation 102

sion time. We have also assumed that all the tasks had the same execution time
for simplicity. Some of the data parallel model applications have this property.
Generally, for simulation purpose BoT applications are considered to be com-
posed of homogeneous Lee and Zomaya [2009]; Bertin et al. [2011]. However, in
real world application the execution time would be a variable. The application
contained 50 independent tasks having an average run-time of 70 seconds each.
The tasks were finding prime numbers between in a fixed range. The experi-
ments were repeated until 95% confidence level was achieved and the average
value was considered. This application has been used in all experiments unless
otherwise stated.

6.1.2 Testbed

In this section, we present the experimental set-up used to evaluate the various
aspects of the Mini-Grid Framework. This experimental set-up was used for all
experiments unless otherwise stated.

For our study, the Mini-Grid ran on a set of 21 identical Intel Core Duo
2.33GHz desktop PCs with 2GB of RAM, running MS Windows XP. All these
desktop PCs were connected by Gigabit Ethernet and were located on the same
physical switch. Each node could play the role of both resource provider and
resource consumer, but for simplification one node was configured to act as a
resource consumer, and the rest as resource providers.

For each auction, the resource providers submitted SPEEDBID quantified
by processor clock frequency and current workload at the individual resource
providers. The value of the speed-bid is determined by multiplying the clock
frequency of the processor and the number of cores available and then dividing
it by the number of tasks queued up for execution. The bid evaluation strategy
determines the winner based on the highest submitted bid value during the auc-
tion process. Dedicated access to the desktop PCs was obtained for the duration
of these tests, that is, only idle resources can participate in the experimental
set-up.

6.2 Average Completion Time

In this experiment, we compare the performance of Mini-Grid with a single
machine under the same workload by measuring the average completion time
of the application. Initially, we executed the application on a single machine
with Intel Core Duo 2.33GHz desktop PCs with 2GB RAM and running MS
Windows. Then we executed the same application in the experimental testbed
detailed in Section 6.1.2.

Comparison of the average completion time of the computational-intensive
BoT application in a single machine and the Mini-Grid environment is shown
in Figure 6.1. In Figure 6.1, the X-axis shows the number of machines that
participated in Mini-Grid and the Y-axis shows the average completion time
of the BoT application. The average completion time (in seconds) of the BoT

Chapter 6. Experimental Evaluation 103

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Av

g.
 C

om
pl

et
io

n
Ti

m
e

(in
 se

co
nd

s)

No. of Machines in Mini-Grid

MINI-GRID

SEQUENTIAL

Figure 6.1: The average completion time of BoT application (in seconds) - Single
machine Vs Mini-Grid

application decreases in proportion to increased participation of the resource
providers. For example, the average completion time of the application on
a single machine was 1793.9 seconds and the average completion time of the
application in Mini-Grid with 4 machines was 619.0 seconds (1/3rd of the average
completion time on a single machine).

However, Figure 6.1 does not show a linear speedup in Mini-Grid. In a
parallel system, equal work load among all processing elements leads to linear
speedup. However, unevenness in the workload partitioning makes the load of
one processing element heavier than that of others. This heavily loaded process-
ing element determines the completion time of the BoT application. Hence, we
are not seeing a linear speed-up. Also scheduling the application in Mini-Grid
has other sources of overhead as detailed in the next section.

6.3 Overhead

The overhead that occurs during execution of an application in Mini-Grid origi-
nates from various sources. The sources of overhead fall under three categories:
auction overhead, data transfer overhead and load imbalance. The auction over-
head represents the time required by the resource consumer to make a scheduling
decision, that is, selection of suitable resource provider. The data transfer over-
head represents the time required for transferring input/output data between
the resource consumer and the remote resource provider. The load imbalance
overhead occurs in the context of one or more available resource providers being
idle due to the portioning of a set of task among the available resource providers.
For example, if we have a set of ‘n’ resource providers and ‘m’ tasks to schedule
on them, then an overhead occurs if ‘m’ is not a multiple of ‘n’.

Chapter 6. Experimental Evaluation 104

0

50000

100000

150000

200000

250000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Au
ct

io
n

O
ve

rh
ea

d
(in

 m
s)

No. of Resources

14 Machines

12 Machines

8 Machines

6 Machines

4 Machines

Figure 6.2: Auction overhead in Mini-Grid - Effect of queue length and resource
participation

6.3.1 The Auction Overhead

The auction overhead depends on the number of messages exchanged between
the auctioneer and the potential bidders, the amount of data transferred in each
message, the round-trip delay (i.e., round-trip-time) of the underlying network,
the current processor load at the resources, and the task generation rate. In
the current implementation, messages exchanged between the auctioneer and the
bidders consumes one TCP/UDP packet. The round-trip delay of the underlying
network was between 50 and 120 milliseconds depending on the current network
traffic and type of network.

We examine the time taken to complete the auction process by using the
experimental set-up and the application detailed in Section 6.1.2. The exper-
iment was performed for varied queue length (1-50) and for varied number of
resources participating in the auction process (4, 6, 8, 12 and 14 machines). The
time taken for auctioning was measured as the elapsed system clock time from
the time of submission of the task to the resource consumer by the application
to the time of completion of the auction process.

The time taken for auctioning each task for a varied queue length and num-
ber of resources participating in Mini-Grid is shown in Figure 6.2. In Figure 6.2,
the X-axis shows the task queue length at the auctioneer and the Y-axis shows
the average time elapsed (in milliseconds) for conducting the auction. For a
fixed queue length, the auction time increased as the number of resources par-
ticipating in Mini-Grid increased. For example, the auction time increased by
33.6% when the number of nodes was increased from 4 to 8 (50% increase in

Chapter 6. Experimental Evaluation 105

resource participation) for a fixed queue length of 50. From Figure 6.2, it can
be observed that increase in the auction time is significant (roughly 40% to
50%) when the resource participation increased from 4 to 6 due to increased
message processing time (50%). However, when the resource participation is
higher and for a smaller percentage of increase in the resource participation, the
proportional increase in the auction time is minimal. For example, the auction
time increased by 0.2%-1.45% when the resource participation is increased from
12 to 14 (16.66% increase in resource participation) due to change in message
processing time being lower (13.3%).

Figure 6.2 illustrates that the auction time increases linearly in proportion
to queue length. This is due to the waiting time introduced by the sequential
single-item auction (i.e., tasks are auctioned one at a time) incorporated in the
framework. However, combinatorial auctions where all tasks are auctioned and
the bidding happens based on groups of tasks, can be implemented, but with
increased complexity and communication overhead.

6.3.2 The data transfer overhead

The overhead due to stage in, the time for transferring input data required for
computation from the resource consumer to the remote resource provider, and
stage out, the time for transferring the output data of computation from the
remote resource provider to the resource consumer, contributed to data transfer
overhead. We were interested in studying the overhead introduced by this data
transfer by using the experimental set-up detailed in Section 6.1.2. Firstly, we
performed experiments to determine the impact of data transfer on the comple-
tion time of a BoT application. We ran an application (say “application A”)
containing a bag of 10 tasks and each task having a run-time of 70 seconds in the
Mini-Grid environment with 10 resource providers. Next, another application
(say “application B”) having a bag of 40 tasks and each task having a run-
time of 70 seconds and involving 80 MB of data transfer was run in Mini-Grid
with 10 resource providers. Hence the applications have the same run-time and
the same experimental set-up, but one application involves data transfer and
the other does not involve any data transfer. Application A took 177 seconds
to complete and application B took 277 seconds. Thus there was 50 seconds
(28.2%) increase in run-time due to data transfer. Application A corresponds
to sequential execution and application B corresponds to execution of parallel
version of the application in Mini-Grid. Thus the experiment provides an idea
on what kind of application is suitable for Mini-Grid. An application can speed
up considerably in Mini-Grid only when the application has longer run-time
compared to the amount of data transfer involved in the application.

When decomposing an application for parallelization, one approach is to
logically partition the problem into a set of parallel tasks. However, while par-
titioning one has to consider the amount of data transfer involved. The com-
putational intensiveness index is a ratio between the execution time of the task
and the time taken for data transport. This index should have a value higher
than 3 (i.e., the execution time must be more than three time the time taken for

Chapter 6. Experimental Evaluation 106

No Amount of data transfer in-
volved in each task (in MB)

Total number of tasks in the
set

1 20 40
2 40 20
3 80 10
4 160 5

Table 6.1: Application granularity

data transport). This value has been calculated for Local Area Network (LAN)
by conducting various experiments. However, for other type of networks this
value need to be calculated. Thus one has to choose the right size for partition,
that is, granularity to optimize its performance in Mini-Grid. We performed ex-
periments using the experimental set-up detailed in Section 6.1.2 to study the
impact of application granularity of the BoT application on their completion
time. However, the application used in this experiment was different. When
scheduled in Mini-Grid, the application had to transfer 800MB input data to
remote resource providers. The application was scheduled in Mini-Grid with
varied granularity as shown in Table 6.1. The application was also scheduled
in a single machine without using the Mini-Grid Framework and it involved no
data transfer as the required data were present in the same machine.

The average completion time of the BoT application in Mini-Grid and in a
single machine is shown in Figure 6.3. In Figure 6.3, the X-axis shows granular-
ity of the application and the Y-axis shows the average completion time (in sec-
onds) of the BoT applications with varied granularity. The average completion
time of the BoT application decreases when scheduled in Mini-Grid compared
to its execution in a single machine. For example, the average completion time
of the BoT application on a single machine was 1793 seconds and the average
completion time of the same application involving 800 MB of data transfer split
into 40 tasks was 224 seconds (1/12th of the average completion time on a single
machine). However, 20 machines participated in Mini-Grid and 20 MB of data
was moved from the resource consumer to resource provider for each task. Even
for application involving data transfer performs better in Mini-Grid provided
sufficient number of resource providers are available and tasks are distributed
evenly to all the resource providers.

As stated earlier the experiment was repeated with varied task granularity
but involving the same amount of data transfer, and the results are shown
in Figure 6.3. The average completion time of the BoT application increases
as the granularity increases. For example, the completion time for 40 tasks,
each requiring 20 MB of data transfer, takes 224 seconds and 20 tasks, each
requiring 40 MB of data transfer, takes 291 seconds. Thus there is 30% increase
in completion time due to increased run-time of each task (i.e., in the first case
each task has 70 seconds run-time and in the second case each task has 140
seconds run-time). However, the first case had to schedule 40 tasks and hence
has additional overhead.

Chapter 6. Experimental Evaluation 107

0

200

400

600

800

1000

1200

1400

1600

1800

2000

20 40 80 160

Av
g.

 C
om

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Data Size (in MB)

Single Machine

Mini-Grid

Figure 6.3: Average completion time - Mini-Grid Vs Single machine

6.3.3 The Context Processing Overhead

Each resource provider participating in the auction process need to define the
bid that it is going to submit. To define the bid, the resource provider needs
to use the resource context. This involves context query and processing, which
consumes CPU time. In our implementation context information are stored in
a RDF triplestore, a database for the storage and retrieval of subject-object-
predicate triples. The triplestore needs to load data and respond to query over
a knowledge base. Hence, time taken by the resource provider to define the
bid depends on the query response time of the triplestore. Query response
time varies widely with different implementation. A review of the literature can
provide many studies on performance of RDF triplestore that are available. For
example, Florian Stegmaier et al. Stegmaier et al. [2009] have stated that the
execution time of query against database containing 100,000 triple set lasts for
28 milliseconds in Jena. However, other implementations like Oracle’s Semantic
Technologies consume even less time. This execution time would be 5-6% of the
time-to-bid value. Hence, context processing time does not contribute much to
the auction overhead. When the context processing time is higher than time-
to-bid, the bidder (resource provider) would submit a delayed bid. In the mean
time, once time-to-bid expires, the auctioneer (resource consumer) would ignore
the delayed bid. Delyaed bid can be identified by the combination of resource
identifier and task identifier contained in the bid.

6.4 Speed-up

According to Amdahl’s law M. [1967], speed-up can be defined as the time
taken for completing an embarrassingly parallel application on a single processor
system divided by the time taken for completing the same application in Mini-

Chapter 6. Experimental Evaluation 108

Grid. If Ts is the time taken to execute the application on a single processor
system and if Tp is the time taken to execute the application in Mini-Grid, then

Speedup = Ts/Tp (6.1)

The above equation assumes that the parallel application consists of 100 per-
cent code that can be run in parallel. But practically, there would be certain
percentage of execution that has to be in serial. Considering this factor, the
Amdahl’s law can be restated as

Speedup ≤ 1

(1− pctPar) + pctPar
p

(6.2)

where pctPar is the percentage of execution time that will be run in parallel,
and p is the number of machines (i.e., CPUs) on which to run the parallel
application. To compute speedup, the formula has taken the serial execution
time and normalized it to 1. The time of the parallel execution is estimated
in the denominator to be the percentage of serial time (1 − pctPar) and the
percentage of execution that can be run in parallel divided by the number of
machines (i.e., CPUs) to be used (pctPar/p). Amdahl’s law gives us an upper
bound on the speedup we might expect to achieve from the parallelization of
a serial application. However, it ignores real-world circumstances like overhead
due to scheduling management, communication, etc.

We examine the speed-up that can be obtained in Mini-Grid by using the
experimental set-up and application detailed in Section 6.1.2 using the equa-
tion 6.1. The speed-up that can be obtained in Mini-Grid is shown in Figure
6.4. In Figure 6.4, the X-axis shows the number of machines that participated
in Mini-Grid and the Y-axis shows the obtainable speed-up factor in Mini-Grid.
And in Figure 6.4, we also show the speed-up that can be obtained theoritically
using equation 6.2, assuming 5% of code requires sequentail execution. From
Figure 6.4, we could see that there is an increase in speed-up with increase in
the number of resource providers available in Mini-Grid. However, the speed-up
is not linear, as one would normally expect as per Amdahl’s law. This is due
to the fact that the overheads are not incorporated in the model. We have seen
that the overheads are directly proportional to the number of resources, for ex-
ample the auction overhead. Now incorporating this overhead into equation 6.2,
we get

Speedup =
1

(1− pctPar) + pctPar
p +Kp

(6.3)

where K is a fixed factor.
Now, we calculate the speedup using the equation 6.3, and assuming K =

0.057 (a constant value, for simplicity), as shown in Figure 6.4. One can observe
that the performance of the Mini-Grid gets closer to the theoretically calculated
speedup with overhead incorporated in the model. However, there is slight
variation. This is due to the scheduling mechanism adopted by the operating

Chapter 6. Experimental Evaluation 109

0

1

2

3

4

5

6

7

8

9

4 6 8 10 12 14

Sp
ee

du
p

No. of Resources (CPUs)

Mini-Grid

Amdhal's Law

Theoritical

Figure 6.4: Speed-Up in Mini-Grid

system for multi core machines. We observed that the time taken to complete
‘n’ and ‘n+1’ tasks on a machine having dual core and Windows XP operating
system is the same, where n is a positive odd integer. That is, the machine
takes the same amount of time to complete a set of 7 and another set of 8 tasks.
Though the experiments were performed with systems having Windows XP,
other operating systems such as Ubuntu and Mac Os X exhibit similar property
on dual core machines.

6.5 Discussions

Effectiveness of the market-based mechanism over the simple queuing algorithms
like round-robin algorithm is proved in Gomoluch and Schroeder [2003]. A com-
parison of different auction protocols as a design choice for resource allocation
in an ad hoc grid under different network conditions has been investigated and
presented in Behnaz and Koen [2008]. Now, we compare the performance of
our framework with Globus Toolkit, a de facto Grid system middleware and
Entropy system, the commercial enterprise desktop Grid.

6.5.1 Mini-Grid vs Globus

Globus offers Grid information services via an LDAP-based network directory
called Metacomputing Directory Services (MDS) Laszewski et al. [1997]. Globus
MDS service consists of two components: Grid Index Information Service (GIIS)
and Grid Resource Information Service (GRIS). GRIS provides resources dis-
covery services on a Globus based Grid. The directory information is provided
by a Globus component running on a resource or other external information

Chapter 6. Experimental Evaluation 110

Grid System Response Time
(1 Query / 1
Auction) (m
sec)

Response Time
(10 Query / 10
Auction) (m
sec)

Response Time
(50 Query / 50
Auction) (m
sec)

MDS2 1219 5534 29,175
Mini-Grid 603 9635 45,758

Table 6.2: Comparison of resource discovery performance in the Globus and the
Mini-Grid environments

providers. The resource information providers use a push protocol to update
GRIS periodically. GIIS provides a global view of the Grid resources and pulls
information from multiple GRIS to combine into a single coherent view of the
Grid. Thus Globus can be considered to follow “information-push” model since
the resource information are periodically pushed from resource providers. Re-
source discovery is performed by querying the MDS.

Experimental study conducted in Schopf et al. [2005] presents the perfor-
mance of MDS (v. 2.4.3) without caching. Their testbed consisted of a set of 5
client nodes and one server node, all connected by the same Gigabit Ethernet
physical switch. The server machine had a dual Intel (hyperthreaded) Xenon
running at 2.20GHz with 1GB of RAM. Each client machine had a dual CPU
1133MHz Pentium III machine with 1.5GB of RAM. The performance evalua-
tion has been conducted with sequential queries from different clients against
one Grid Information Service running on one server machine. The entries in the
registry were updated once in 10 minutes. The index had 10 entries (i.e., 10
resource providers were present in the Globus Grid and registered them selves).

We have used the experimental setup described in Section 6.1.2. The re-
source discovery mechanism in Globus is querying the MDS service and the
mechanism in Mini-Grid is auctioning. Thus we can compare the average auc-
tion time incurred in the Mini-Grid with query performance of the MDS index
service. The two testbed setups were slightly different. However, the network
environment in both testbed setups are similar and the computational capacity
of server machine in Globus and resources in the Mini-Grid testbed are compa-
rable. Table 6.2 shows a rough comparison of resource discovery mechanism in
the Globus Grid environment and Mini-Gird.

At first glance, by looking at Table 6.2 one could conclude that the Globus
MDS performs 60-70% better than the Mini-Grid approach. However, it is
important to note that the time taken by Globus MDS is only for resource
discovery. On the other hand, in Mini-Grid, it is not only resource discovery
but aslo for resource selection and resource allocation. Also, it is important to
note that Globus MDS provides recent but not guaranteed to be absolute latest
resource information. For example, in the Globus experiment, resource infor-
mation was updated once every 10 minutes. When the frequency of resources
joining and leaving the grid system increases, Globus MDS could provide stale
information.

Chapter 6. Experimental Evaluation 111

6.5.2 Mini-Grid vs Entropia

Resource availability traces collected from the deployment of Entropia desktop
Grid at San Diego Super Computer Center (SDSC) reports an average small
gap length of 35.9 seconds Kondo [2005]. These short gaps occur exclusively in
between the termination of a task and the beginning of a new task on the same
host. The sources of this delay include various system costs of receiving, schedul-
ing and sending a task as well as an actual built-in limitation that prevents the
system from sending tasks to resources too quickly. That is, the Entropia server
enforces a delay between the time it receives a request from the worker and
the time it sends a task to that worker Kondo [2005]. In Mini-Grid, the tasks
are made available to resource consumers (i.e., workers) through TaskBus. The
TaskBus is a kind of Distributed Hash Table (DHT). Once the resource con-
sumer receives a task from an application, it puts the task into the TaskBus.
Once the resource provider receives the winner notification, it retrieves the task
from the TaskBus and executes it. Thus, we do not have any forces delay be-
tween the time the resource consumer sends the winner notification and the
time the resource provider retrieves the task from the TaskBus.

6.5.3 GridFTP vs TCP

One of the important source overhead in any Grid computing environment is due
to data transfer. Currently, the Mini-Grid Framework uses TCP/UDP-based
socket communication for data transfer. Globus based Grid environments uses
GridFTP protocol William et al. [2005] for data transfer. Now, we compare
the performance of the GridFTP protocol and TCP/IP-based socket communi-
cation. Even though the GridFTP protocol uses underlying TCP based socket
communication, it uses multiple TCP streams in parallel. A recent performance
evaluation reported in Butler [2010] points out that the use of an optimized mod-
ern TCP stack in an uncongested lossless network makes it possible to achieve
high data rates without employing GridFTP. Further, it points that using an
un-optimized TCP stack in an uncongested network it is possible to achieve
high data rates by employing parallelization technique.

In the Mini-Grid Framework implementation, we have used up to a maxi-
mum of five parallel TCP connections for data transfer. However, we have not
optimized buffer sizes used in these TCP connections.

6.5.4 Semantic Vs Keyword Based Matchmaking

Semantic based matchmaking results in greater “hits” than conventional key-
word based matchmaking. The semantic based matchmaking using subsump-
tion relationship returns not only exact matches but also related matches. But
conventional keyword based matching returns only exact matches. However,
conventional keyword based matching has less overhead in the matching pro-
cess compared to semantic approach Amarnath et al. [2009].

Chapter 6. Experimental Evaluation 112

In the Mini-Grid Framework, semantic based matchmaking does not intro-
duce additional overhead. Each resource provider has a context manager that
evaluates the suitability of the resource provider to execute the task and then
executes a query to calculate the bid value. Since, we use simple context model
that has relatively less number of concepts the overhead introduced by the se-
mantic based technique falls below the time-to-bid (TTB) value. However, it
has one time initial memory overhead during loading the ontology. We have
used Java Simple Object Notation (JSON) for serializing task context informa-
tion and transferring the context information between resource provider and
resource consumer. Further, overhead in loading ontology and querying on-
tology depends on the RDF store used. Also main memory based RDF store
perform better compared to their database based RDF store. We have used the
Jena framework which requires significant improvement in query processing as
reported in literature on evaluation of RDF Querying framework Schönberg and
Freitag [2009].

6.5.5 Conclusion

Scheduling BoT application in the Mini-Grid environment does not show a lin-
ear speedup with increase in number of resources participating in the Mini-Grid.
Unevenness in workload partitioning and other sources of overhead prevent a
linear speedup. The auction overhead increases with increase in queue length
at the resource provider and the number of resources participating in the Mini-
Grid. For data intensive applications, speedup can be expected to increase
linearly only when the execution time of a task is higher than the time required
for performing data transfer. The speedup depends on the local scheduling al-
gorithm used in multi-core desktop computers. Semantic-based resource match-
making introduces additional overhead compared to traditional keyword-based
approach. However, the matching algorithm provides higher hit count compared
to traditional keyword-based matching algorithm.

6.6 PPfold Lab Deployment

In this section we present the performance evaluation of the Mini-Grid Frame-
work when used in a real application, a parallel version of RNA secondary
structure prediction algorithm (PPfold).

6.6.1 Application

Ribonucleic acid (RNA) is an important molecule that performs a wide range
of functions in biological systems. In particular, it is RNA that contains genetic
information of viruses such as HIV and thereby regulates the function of these
viruses. Hence, it is important to obtain RNA structural information. RNA
molecules have two sets of structural information: the primary structure of

Chapter 6. Experimental Evaluation 113

RNA and tertiary structures. RNA secondary structure is a restricted subset of
tertiary structure Wang and Zhang [2002].

Many computational methods have been proposed in an attempt to predict
RNA secondary structures. In this study, we focus on pfold B and J [1999, 2003],
a Stochastic Context Free Grammar (SCFG) based RNA secondary structure
prediction algorithm. The algorithm uses phylogenetic stochastic context free
grammar (phylo-SCFG) that predicts RNA secondary structures. SCFG are
probabilistic models that consists of symbols and production rules with asso-
ciated probabilities that can capture primary sequence features as well as long
range interaction between base pairs in a RNA secondary structure. Pfold uses
phylo-SCFG to predict the most likely common secondary structure based on
a model of secondary formation combined with a phylogenetic analysis of the
observed substitution pattern. Pfold use inside-outside method to estimate pa-
rameters for structural prediction of the SCFG. The inside-outside method,
a forward-backward algorithm used to compute the probabilities that a given
production will be used in a random derivation of a sequence. Once we have
the SCFG, we can train it by using Expectation Maximization using the inside-
outside method to estimate the maximum likelihood probabilities. We use a par-
allel version of the algorithm. The algorithm will be discussed in Section 8.2.2.

6.6.2 Testbed

For our study, Mini-Grid ran on a set of six heterogeneous desktop PCs having
clock frequencies ranging from 1.1GHz to 2.1GHz and physical memory ranging
from 1GB to 2GB. All these desktop PCs were connected by Gigabit Ethernet
and were located on the same physical switch. Each node could play both the
role of resource provider and resource consumer, but for simplification one node
was configured to act as a resource consumer and the rest as resource providers.

For each auction, the resource providers submitted SPEEDBID quantified
by processor clock frequency and current workload at the individual resource
providers. Dedicated access to the desktop PCs was obtained for the duration
of these tests (i.e., only idle resources can participate in Mini-Grid).

6.6.3 Distributing PPfold in Mini-Grid

The algorithm generates intermediate results that need to be stored on the
resource consumer node. Thus, the algorithm puts high main memory require-
ments, for example to fold HIV genome of 10000 base pairs it requires 5-6GB
of RAM. Hence for our experiment, we have assumed that the resource con-
sumer has the capability to store all the data. On the other hand, the memory
requirements for resource providers are not so high, as they need to store only
the data necessary for execution of the current calculation. The data necessary
for each task depends on the number of division, a parameter to the algorithm.
As explained in Sükösd et al. [2011], even for a smaller number of divisions the
algorithm places memory requirements that a resource provider cannot meet.

Chapter 6. Experimental Evaluation 114

To avoid overloading resource providers, we have utilized the context mod-
eling features of the Mini-Grid Framework. As stated earlier, a task has task
context detailing the requirements of that task. The algorithm provides an es-
timation of memory requirements as part of the task context. The submitter
announces these memory requirements as part of task context information and
only executors having sufficient memory could participate in the bidding pro-
cess. This avoids overloading the resource providers. For our experiments we
have used the utilization function based on the ability to complete the task at
the earliest (i.e., the bid is modeled using the clock frequency of the executor
and its current workload). The submitter selects the executor that can complete
the task quickly and send the task to that executor for execution.

Algorithms such as PPfold put another challenge for deploying them in Mini-
Grid involving large amount of data transfer between the resource consumer and
resource provider. The performance depends on the amount of data transfer
involved. The framework’s overhead increases by a factor proportional to the
amount of data transfer. To overcome this issue, the algorithm reports an
estimation on the amount of data transfer required for each task and their
run-time. Then based on this information the framework makes a decision on
scheduling the task in Mini-Grid. We calculate the computational intensiveness
of the task, a ratio between the run-time of the task and the time required for
transferring the data necessary for that task. If the computational intensiveness
index falls below a threshold value, then the framework schedules the task locally
instead of distributing it in Mini-Grid. The threshold value for computational
intensiveness index has been determined based on the trial runs in Mini-Grid.

6.6.4 Theoretical Speed-up

The algorithm might not scale well even with an increase in the number of
resources participating in Mini-Grid. We illustrate this in Figure 6.6, using
the inside part of the algorithm in PPfold as an example. Each task takes a
certain number of “units of time” for execution (relative), which depends linearly
on its height in the triangle. Tasks in each row are assumed to be executed
simultaneously if additional resource providers are available. The theoretical
speedup for n cores is expressed as

sn =
total units of time on n cores

total units of time on one core

Further, the theoretical optimal speedups vary widely with the chosen num-
ber of divisions (N) and the available number of cores (n), for both the inside
and the outside parts of the algorithm. The expectation value calculations are
analogous to the inside algorithm and hence their theoretical performance is
expected to be the same. Figure 6.5 illustrates the complexity of how the the-
oretical maximum speedups for execution on a single machine with two-cores
versus distributed in Mini-Grid with six-cores vary as a function of divisions
for the different parts of the algorithms. In Figure 6.5, the X-axis shows the
number of divisions chosen in SCFG part and the Y-axis shows the theoretical

Chapter 6. Experimental Evaluation 115

Figure 6.5: Theoretical speedup calculation - Comparing dual core Computer
and six-core Mini-Grid.

speedup factor obtainable. From the figure one could observe that periodically
the expected factor of improvement peaks. The periodicity in the figures is
related to the divisibility of the number of cores with the number of chosen
divisions. In the limit where N → ∞, the factor speedup approaches n. This
has been observed in practice on a shared-memory infrastructure Sükösd et al.
[2011]. The stated theoretical model assumes that all tasks are distributed all
the time with zero data transfer, as in a shared-memory environment. This is
not a realistic model for Mini-Grid; therefore its performance in Mini-Grid is
expected to decrease significantly.

Theoretical speedups can be calculated in a similar manner for any number
of divisions, for the outside and the expectation parts of the algorithm. In Fig-
ure 6.6, we illustrate the theoretical speed-up factor that can be obtained for the
inside part of the PPfold algorithm by varying the number of cores available in
Mini-Grid. For this illustration, we have considered six divisions (corresponding
to the 6 tasks in the bottom row), input parameter to the algorithm. The first
column in the table corresponds to the theoretical run-time of the inside part
of the PPfold algorithm in Mini-Grid with single core. When an additional core
is available, the algorithm is expected to complete in 62.5% of the time taken
when executed on one core. With the availability of four additional cores, the
algorithm is expected to complete in 42.6% of the time taken when executed on
single core.

Chapter 6. Experimental Evaluation 116

Figure 6.6: Theoretical speed-up.

Experiment Parameters No. of cores in Mini-Grid
1 12 9 6
2 9 12 6
3 3 7 6
4 7 14 6
5 12 12 12
6 24 24 12

Table 6.3: Experiment Details

6.6.5 Experimental Results

The scope of the controlled experiments has been limited to a single biological
problem, namely the folding of an alignment of 3000 nucleotides in length.
This alignment represents a sequence that is somewhat longer than the large
ribosomal subunit, and thus presents a realistic scenario of a problem that a
biologist could solve on their own laptop, but would probably prefer to speed up
with the aid of Mini-Grid. Table 6.3 shows various controlled experiments that
were carried out and the parameters used in those experiments. We have varied
the phylogenetic divisions as shown in column 2 and FCFG divisions as shown
in column 3 and the number of cores used in Mini-Grid for the experiment.

The results of these experiments on a single machine with dual core are
provided in Table 6.4. The second, third, fourth and fifth columns of the table
provide the execution time (in seconds) of phylogenetic part, inside part, outside
part and expectation part of the algorithm respectively.

The results of the experiments outlined in Table 6.3 in Mini-Grid are pro-
vided in Table 6.5. The second, third, fourth and fifth column of the table
provide the execution time (in seconds) of phylogenetic part, inside part, out-
side part and expectation part of the algorithm respectively.

Figure 6.7 compares the speedups achieved in the Mini-Grid environment

Chapter 6. Experimental Evaluation 117

Experiment Phylo. Part Inside Part Outside Part Expectation Part
1 386.5 668.4 1406.3 188.9
2 408.7 623.2 1296.7 175.3
3 468.2 678.2 1482.3 201.5
4 415.2 592.1 1253.7 169.0
5 415.2 592.1 1253.7 169.0
6 375.2 591.3 1231.1 164.3

Table 6.4: Execution Time on Single Machine (2 Core).

Experiment Phylo. Part Inside Part Outside Part Expectation Part
1 160.0 413.0 612.2 176.4
2 197.1 371.0 545.9 148.2
3 263.7 522.9 766.3 178.5
4 240.0 358.4 550.7 155.0
5 97.2 349.7 415.6 145.9
6 85.7 332.4 354.3 168.7

Table 6.5: Execution Time on Mini-Grid.

with the theoretical maximum speedup obtainable. Considering the fact that
the theoretical speedup calculations do not consider the overhead due to data
transfer, the speed-up observed in the experiments as shown in Figure 6.7a
and 6.7b is consistent with the theoretical obtainable speed. However, the
Figure 6.7c and 6.7d shows that the speed-up observed in the experiments
decline sharply compared to the theoretical obtainable speed. This is due to
the fact that a fraction of the tasks were not having the required computational
complexity and hence were not distributed to the Mini-Grid environment and
they were run sequentially. For example, for experiment# 1 detailed in the
Table 6.5 out of 45 tasks generated 9 tasks were not distributed to the Mini-Grid
(1/5th of total tasks generated). In summary, the Mini-Grid framework performs
better when the individual tasks of the application have higher computational
complexity index.

6.7 Summary

This chapter has presented performance evaluation using various experiments.
First, we present the evaluation using a simple sample application. We have
presented the speedup factor achieved in the Mini-Grid in comparison with the-
oretical upper bound on the speedup using Amdahl’s law. Next, we examine the
performance degradation due to different sources of overhead. Then, we present
the performance comparison of the Mini-Grid with other popular alternatives.
Secondly, we present the performance evaluation using controlled lab experi-
ments using the ppfold application. We compare and discuss the performance

Chapter 6. Experimental Evaluation 118

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Sp
ee

d-
up

Experiment #

Phylogenetic Part

Theoritical

Observed

(a) Phylogenetic Part

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Sp
ee

d-
U

p

Experiment #

Outside Part

Theoritical

Observed

(b) Outside Part

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Sp
ee

d-
U

p

Experiment #

Inside Part

Theoritical

Observed

(c) Inside Part

0

1

2

3

4

5

6

7

1 2 3 4 5 6

Sp
ee

d-
U

p

Experiment #

Expectation Part

Theoritical

Observed

(d) Expectation Part

Figure 6.7: Speed-up: Theoretical Vs Observed

Chapter 6. Experimental Evaluation 119

of the Mini-Grid with theoretical obtainable speedup. We conclude that the
Mini-Grid performs better if the tasks have a higher computational complexity
index.

Chapter 7

Simulation

Intuitively, auction-based task allocation should achieve better performance
than traditional centralized scheduler. To validate this intuition, we developed
a discrete event simulator (based on SimJava libraries F and R [1998]) and used
to compare the performance of auction-based and centralized scheduling strate-
gies for variety of different workloads. The comparison we present here is based
on the two metrics:

• Average number of task execution failures, defined as the number of tasks
that failed because of resource failure.

• Average number of task scheduling failures, defined as the number of tasks
that failed because of unavailability of resources to execute a task.

7.1 The architecture of the simulator

In the Figure 7.1, we illustrate the various entities involved in our simulation of
traditional centralized approach: the ResourceBroker is the entity that receives
the task from a BoT application and makes a scheduling decision and decides
the ResourceProvider represented as R1, R2, etc. The Grid Information system
(GIS) queries the participating resources about their availability and provides
resource status information to the ResourceBroker on request. The Resources
are responsible for execution of the task. When a task is submitted to the
ResourceBroker, it queries the GIS and decides the Resource that executes the
task. The Resource notifies the ResourceBroker after it has completed the task
execution. The GIS queries periodically for status of resources. We have used a
query interval interval of 600 seconds and 0.19 milliseconds for query response
time in our simulation. These parameters are obtained from the study reported
in Laszewski et al. [1997].

We have also developed a Mini-Grid simulator that has all the Mini-Grid
components such as Resource Provider, Resource Consumer, Auctioneer, Bid-
der, TaskBus, TaskExecutor, Messenger, and Context-Management sub-module.

120

Chapter 7. Simulation 121

Figure 7.1: Centralized Resource Scheduling - Simulator Components.

The application generates BoT tasks and submits them to ResourceConsumer.
The ResourceConsumer schedules the task on the available resource. After com-
pletion of the task, the resource notifies the ResourceConsumer about the result
of execution. The ResourceConusumer distributes the task to the Resource-
Provider based on the auction mechanism. The ResourceProvider has Con-
textManager that can provide context information about the ResourceProvider.
The ResourceProvider also has two types of ContextMonitors: the CPU monitor
and the TaskExecutorMonitor. They provide static information such as CPU
processor and dynamic information such as current CPU workload. All these
components are developed as entities using SimJava library. We have used 600
milliseconds for Time-to-Bid and assumed 200 milliseconds of network latency.

7.2 Desktop Grid Configurations

The space covering the relevant parameters for our study is too large to explore
exhaustively. Therefore, we fix a number of system characteristics. For our
study, we have considered a fixed value for the total computational power of
the Grid in all the configurations. The total computational power P of a con-
figuration is defined as the sum of the computing powers Pi of the individual
resources. However, individual Desktop Grid configurations differs from each
other in the availability of the participating resources. The computing powers
Pi of the individual resources, expressed as a real number whose value is directly
proportional to the speed of the resource (i.e., a resource i with Pi = 2.5 is twice
faster than a machine j with Pj = 1.25). For this study, we have fixed the value
of P to be 1000 for all configurations and the actual computing power of the
individual resource to be 10 (i.e., Pi = 10).

We consider four distinct desktop grid configuration with different resource
availability levels (i.e., the percentage of time that a given resource is avail-
able for computation in spite of preceding failures) as detailed by Joshua and
Henri Joshua and Henri [2007] . The fault time (i.e., the time elapsing be-

Chapter 7. Simulation 122

Sl.No. DG Name Shape Scale Availability
1 Condor 275599 0.545 93.17%
2 CSIL 282700 0.554 93.17%
3 Entropia 13190 0.550 39.18%
4 UCB 444 0.355 0.06%

Table 7.1: DG Configuration.

tween two consecutive failures) is assumed to be a random variable with a
Weibull distribution as reported by Daniel Nurmi et. al. Daniel et al. [2005].
And the repair time (i.e., the time elapsing between the occurance of fault and
the time when the resource becomes operational again) is assumed to be uni-
formly distributed between 120 and 600 seconds for a reboot as reported by
Brievik et. al. J. et al. [2004] or exponentially distributed with a mean of 2
days for a hardware crash as reported in by Soonwook Hwang and Carl Kessel-
man Hwang and Kesselman [2003]. The mean of the fault time (mean time
between faults - MTBF) is equivalent to the mean of the Weibull distribution,
defined as MTBF = WeibullMean = scale ∗G((shape+ 1)/shape) where G is
the complete gamma function.

In simulation, we have fixed the MTTR value by assuming the mean reboot
time to be 360 seconds (the mean between 120 and 600 seconds) and the mean
recovery time to be 172800 (expressing 2 days in seconds). Therefore, MTTR
is defined by MTTR = 0.2 ∗MeanRecoveryT ime + 0.8 ∗MeanRebootT ime.
In our scenario, the MeanRebootTime = 360 seconds (the mean between 120
and 600 seconds) and the MeanRecoveryTime = 172800 (the 2 days in seconds).
Therefore, the MTTR is MTTR = 0.2 ∗ 360 + 0.8 ∗ 172800. Thus the MTTR
has a constant value 34848 seconds.

The availability α of the machines can be obtained from MTTB and MTTR
values using the relation α = MTBF/(MTBF + MTTR). The various desk-
top configurations used in the simulation and their resource availability are
tabulated in the Table 7.1. The table provide shape and scale parameter of
Weibull distribution that characterize the resource availability. Using these two
parameters we can calculate the mean of the distribution that corresponds to
availability of resource in the respective configurations.

7.3 Workloads

For our study, we considered various workloads representing different types of
BoT applications with different task submission rate. The type of application
corresponds to the degree of parallelism represented by task granularity. Fur-
ther, tasks of same granularity have approximately the same mean execution
time.

In general, on week days, a daily cycle with a high submission rate during
the working time and low submission rate during the night has been reported

Chapter 7. Simulation 123

Sl.No. Task Granularity Task Count Application Size
1 1000 3600 3600000
2 5000 720 3600000
3 25000 144 3600000

Table 7.2: Workload.

by Dror Feitelson and Bill Nitzberg Dror and Bill [1995]. The peak is in late
morning with noticeable drop during the lunch. This pattern can be represented
by assuming exponential distribution for task interarrival rate (i.e., the number
of tasks submitted per unit of time). We have assumed that task submission
rate to be exponentially distributed with inter-arrival rate 270 seconds. In our
simulation study, we have considered three different granularity vales 1000, 5000,
and 25000 seconds, respectively. These three granularity levels correspond to
three different types of application. The actual execution times of individual
tasks have been assumed to be uniformly distributed. In our study, we have
assumed a constant application size in all workload configuration and hence the
number of tasks in the individual application depends on the task granularity.
The number of tasks in a BoT application can be determined by adding tasks to
the BoT until their execution time reach the above application size as tabulated
in the Table 7.2. Task granularity represents the size of the individual tasks
in the BoT application. For example, a task with granularity 1000 takes on
an average 1000 seconds on a machine with Pi = 1. Each row in the table
represents a BoT application. However, the total execution time of the BoT
application remains a constant.

7.4 Validation of Simulation Results

In order to validate the results of our simulation, we have used a validation
technique called Fixed Values Sargent [1995]. Fixed values are used for various
input parameters and internal variables and the results of the simulation are
compared to easily calculated values. Further, trace files have been used to
walk through the events occurred during simulation and validate manually the
events. Since, the calculated values and the simulated values are equal and walk
through identifies all the events during simulation to be as expected, we can be
confident with correctness of our simulator.

7.5 Results and Discussion

7.5.1 Impact of Resource Failures on Scheduling

In this section, we would be presenting the impact of failure on scheduling in
the centralized approach and the Mini-Grid approach. The results of the exper-
iments conducted using the centralized approach are tabulated in the Table 7.3

Chapter 7. Simulation 124

Sl.No. Granularity Submitted Completed Failed DG Configuration
1 1000 3600 431 3169 Condor
2 5000 720 580.5 139.5 Condor
3 25000 144 122.9 14.1 Condor
4 1000 3600 432.4 3167.6 CSIL
5 5000 720 580.3 139.7 CSIL
6 25000 144 129.9 14.1 CSIL
7 1000 3600 373.9 3226.1 Entropia
8 5000 720 423.3 296.7 Entropia
9 25000 144 85.6 58.4 Entropia
10 1000 3600 172.6 3427.4 UCB
11 5000 720 102.1 617.9 UCB
12 25000 144 11.7 132.3 UCB

Table 7.3: Results for Centralized Approach.

and the experiments using the Mini-Grid approach are tabulated in the Ta-
ble 7.4. The experiments have been repeated by varying the granularity and
the desktop grid configuration. The experiments were repeated until 95% con-
fidence level was achieved and the average value was considered. Each row
corresponds to an experiment and provides information about the task gran-
ularity and the desktop grid configuration used in the experiment. Then, we
provide information on number of tasks submitted, number of tasks completed
and number of tasks failed.

From the Table 7.3 and Table 7.4, we could see that the number of task
failed to execute decrease with increase in the task granularity and increases
with decrease in resource availability. The task failures can be because of two
reasons: failed during execution because of resource failure and failed during
scheduling because of non-availability of resources. In the centralized approach,
the clients update the registry or central scheduler or resource broker only at
certain frequency, for example MDS of Globus toolkit. Further, the clients con-
tact the ResourceBroker or central scheduler to inform about their availability
only when they have completed the execution of currently scheduled task, for
example BOINC client. But in the Mini-Grid approach, each time the Resource-
Consumer schedules a task, it announces to all and the resources independent
of what they are doing participate in the auction process. Hence, tasks can be
queued at the ResourceProviders in the Mini-Grid approach. Further, the Re-
sourceConsumer can select the resources based on their current workload. In the
Mini-Grid approach, the failures increases slightly with increase in task granu-
larity. In both cases, the number of failure increases with decrease in availability
of resources. However, the Mini-Grid approach performs better than the cen-
tralized approach as shown in Figure 7.2. This is because centralized approach
mostly uses stale information for scheduling and the Mini-Grid uses current
information.

Chapter 7. Simulation 125

Sl.No. Granularity Submitted Completed Failed DG Configuration
1 1000 3600 3436.3 163.7 Condor
2 5000 720 683.4 36.6 Condor
3 25000 144 133.9 10.1 Condor
4 1000 3600 3443.5 156.5 CSIL
5 5000 720 684.4 35.6 CSIL
6 25000 144 134.7 9.3 CSIL
7 1000 3600 2897.1 702.9 Entropia
8 5000 720 564.1 155.9 Entropia
9 25000 144 98.7 45.3 Entropia
10 1000 3600 1347.3 2252.7 UCB
11 5000 720 241.6 478.4 UCB
12 25000 144 32.6 111.4 UCB

Table 7.4: Results for Mini-Grid Approach.

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f T
as

ks
 F

ai
le

d

Centralized

Mini-Grid

Figure 7.2: Failures : Centralized Resource Scheduling Vs Mini-Grid.

Chapter 7. Simulation 126

Sl.No. RC Count RP Count Submitted Completed Failed %of Completion
1 1 100 1024 1010.8 13.3 84.23
2 2 100 512 502.3 9.7 83.70

Table 7.5: Multiple Resource Consumers - Impact of Failures.

7.5.2 Impact of Multiple Resource Consumers

The experiment used for studying the impact of presence of multiple resource
consumers is slightly different from the workload presented earlier. For this
study, we have used an application that has 1200 tasks having an average
execution time of 1000 seconds. The actual execution time of the individual
application have been assumed to be uniformly distributed. The Mini-Grid en-
vironment consists of 100 resource providers and 2 resource consumers. The
resource providers can participate in both the auctions conducted by the two
resource consumers. The actual computational power of the individual resource
providers have been assumed to be a fixed value 10. Simulation of resource
failures are according to the Condor desktop grid configuration stated in the
earlier simulation experiment. We have Further, we have assumed that all the
1200 tasks are submitted at the same time by the application to the resource
consumer. The results are tabulated in the Table 7.5. This table presents the
two experiments that were conducted for evaluating the impact of failures when
multiple resource consumers are present. In the first experiment, a single ap-
plication submits all the tasks to a single resource consumer and the results are
presented in the first row of the Table 7.5. In the second experiment, two appli-
cations submit 512 tasks each to the two resource consumers and the results are
presented in the second row of the Table 7.5. We could observe that the per-
centage of completion of tasks in both the experiments are almost same. Thus
resource failures have an impact that is independent of the number of resource
consumers present in the Mini-Grid environment.

During the above two experiments, we have also measured the average task
completion time, the time elapsing between the submission of a task and its
termination, if successful and the average task scheduling time, the time elapsing
between the submission of a task and its start of execution, if successful. The
results are tabulate in the Table 7.6. When the workload is shared by the
increasing the resource consumers, the average task scheduling time decreases.
However, the average task completion time does not change much even though
the average task scheduling time decreases by 50%. We have observed that
during the simulation, when multiple resource consumers conduct auctions at
the same time, the resource providers submit bids that are proportional to the
TaskExecutor queue length. Since, there is a time gap between the submission
of bids and the award of a task for execution, they submit bids with same value.
It may be possible that some resource providers win both auctions and hence,
a waiting time is introduced for the second task. The bids do not represent the
fact that the resource provider is participating in multiple auction process. This

Chapter 7. Simulation 127

Sl.No. Avg. Task Completion Time Avg. Task Scheduling Time
1 612.22 312.43
2 616.83 161.38

Table 7.6: Multiple Resource Consumers - Impact on Task Completion Time.

issue needs further investigation.

7.6 Summary

In this chapter, we have presented the performance of auction-based scheduling
strategy in the Mini-Grid Framework. In order to evaluate the performance, we
compare the auction-based strategy with centralized scheduling approach. In
both of these cases we observe that task granularity has an impact on task execu-
tion failure rate. However, the Mini-Grid Framework performs better compare
to the centralized approach. Presence of multiple resource consumer does not
affect the performance. However, freshness of context information has an impact
on the average task completion time. Context gets updated after submission of
bids and before declaration of auction result. This problem can be solved by
using iterative auctions in which the resource providers can bid simultaneously
in a single round. In iterative auctions, the auction protocol repeatedly interacts
with the different bidders, aiming to adaptively elicit enough information about
the bidders. Iterative auction has been designed to solve resource allocation
problems, for example for auctions in multiple identical items M. [2004].

Chapter 8

Real-World Usage and
Deployment at a Biology
Lab

In this chapter, we describe the deployment of a parallelized sequence search tool
(Basic Alignment Search Tool) Altschul et al. [1990] and RNA secondary struc-
ture prediction algorithm (PPfold) Sükösd et al. [2011] in Mini-Grid at iNano
(interdisciplinary Nanoscience center) at Aarhus University, Aarhus1. BLAST
is designed to search all available sequence databases for similarities between a
protein or DNA query and known sequences. The PPfold is a parallel version
of RNA secondary structure prediction using stochastic context-free grammars.

Department of Molecular Biology, University of Aarhus, Aarhus is organized
as “labs”. Each lab has a professor as its head and a range of associated pro-
fessors, postdoctoral scholars, PhD students, and technical and non-technical
staff members. The research focus of a lab is centered around the head’s area
of specialization. The researchers within a lab collaborate to a larger extent
than researchers between labs. Researchers can work either in the lab or in
their office. Each researcher has a personal laptop or desktop computer and
each lab has a desktop computer. The department has a library equipped with
eight desktop computers. The desktop computer in the lab and the desktop
computers in the library are shared between researchers. All these computers
are connected both by wired LAN and by wireless LAN. Normally, researchers
use their personal computers for literature review, documenting research out-
comes, preparation of lecture material, personal use (e-mail, browsing, etc.),
and so on. The researchers perform experiments in the lab and use the shared
computer in the lab for personal use and for accessing biological data. Most of
the researchers have CLC Bio Workbench installed in their personal computers
and also in the lab computers. Most of the researchers use different versions of

1www.inano.au.dk

128

Chapter 8. Real-World Usage and Deployment at a Biology Lab 129

Figure 8.1: The CLC Bio Workbench - Screenshoot.

Windows operating system. However, few researchers also use Mac Os X and
different versions of Unix or Unix-like operating system.

8.1 CLC Bio Workbench and Framework Inte-
gration

The CLC Bio Workbench creates a software environment enabling users to make
a large number of bioinformatics analysis combined with data management and
graphical visualization of biological data as shown in Figure 8.1. The software
is available for Windows, Mac Os X, and different Unix platforms.

Further, the CLC Bio developer kit API permits integration of various algo-
rithms and workflows within bioinformatics into the workbench as plugins. The
CLC Bio Workbench has a complete infrastructure for data management (both
locally and through network) that can be utilized by individual plugins as well
as an execution model for bioinformatics algorithms.

The Mini-Grid Framework has been integrated with the workbench as one
such plugin. Clients participating in the Mini-Grid environment can use this
plugin to access the functionality provided by the framework. The plugin ab-
stracts task distribution and context modeling from the algorithm developer.

8.2 Real-World Applications

In this section, we present two bioinformatics algorithms that have been imple-
mented using the integration plugin.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 130

8.2.1 The BLAST Algorithm

Recent advancements in molecular biology techniques permit scientists to gather
huge amount of DNA sequence data. Further, these data have been collected
and annotated in large sequence databases publicly available at institutions
such as NCBI GenBank. By identifying sequences of similar genes or proteins,
scientists can find clues to biological function. Thus, extracting information
from large databases is a very common and important task for a computational
biologist Zomaya [2006].

One of the popular and widely used tools by the bioinformatic community for
performing sequence searches is the Basic Alignment Search Tool (BLAST) Altschul
et al. [1990], a program to perform pairwise sequence alignments. It uses
scoring matrices to compare short subsequences in the query sequence against
the entire target or protein sequence database to find statistically significant
matches Zomaya [2006]. The algorithm, based on divide-and-concur approaches,
recognize the embarrassingly parallel nature of the BLAST searches. The query
can be segmented and distributed to each computer node and processed in par-
allel with the database duplicated on each node. However, for databases too
large to fit in the physical memory of each compute node, each query still runs
slowly due to virtual memory swapping to hard disks. There is no dependency
between tasks in this implementation of the BLAST algorithm. However, in
the next section we would look into another algorithm compromising multiple
interdependent tasks.

8.2.2 PPfold Algorithm

Pfold implements a “Stochastic Context Free Grammar (SCFG)” designed to
produce a “prior probability distribution of RNA structures” for an RNA align-
ment input. The algorithm consists of three computational intensive parts:
phylogenetic calculations, an inside-outside algorithm, and an expectation value
calculation algorithm. A parallel version of this algorithm, called PPfold, has
been recently parallelized by Zsuzsanna Sukosd et. al. Sükösd et al. [2011].

For the purposes of this study, the task dependencies are very important. In
the phylogenetic part of the algorithm, there is no task dependency. Figure 8.2
illustrates the geometry of dependencies among tasks in the inside-outside part.
Each parallelogram represents a task, and includes a number of points to be
calculated. For example, the computation of the task represented by blue-
colored parallelogram depends on the completion of computations of the tasks
represented by blue and green parallelograms in Figure 8.2. Dependencies in
the expectation value calculation part are analogous to the inside-outside part.
The number of divisions in the first row is a parameter of the algorithm. The
size of each task depends on the number of divisions.

The algorithm operate over a two dimensional matrix, where the computa-
tion of each cell in the matrix depends on the completion of computation in
the neighboring three cells that are north, northwest and west cells as shown in
Figure 8.3b. This dependency structure would only allow only a single set of

Chapter 8. Real-World Usage and Deployment at a Biology Lab 131

diagonal elements of the matrix to be computed at any time. Thus it creates a
pattern of computation that advances diagonally as shown in Figure 8.3a. Thus
generation of tasks happens in an asynchronous wavefront form; a new task is
generated and queued for immediate execution as soon as its dependencies are
completed, which precludes extra waiting time. Further, the number of tasks in
each wavefront step varies and hence the number of resource required for com-
putation varies in each wavefront step. Some of the resource may be idle and
has an impact on the overhead. Adoption of non-shared memory design makes
it possible to run in Mini-Grid. However, this design decision necessitates large
amount of data transfer between the resource consumer and the remote resource
providers. Hence, data transfer overhead increases significantly.

Figure 8.2: Task dependencies in PPfold Sükösd et al. [2011]

8.2.3 CLC Bio Workbench and Application Integration

The PPfold and the BLAST algorithms are developed as separate plugins. These
plugins are completely orthogonal to the Mini-Grid framework plugin. These
algorithms are not aware of any functionality provided by the framework. They
use an abstract mechanism for executing tasks in parallel, and the framework
just concentrates on distribution of tasks to the participating clients.

A third integration plugin provides concrete implementation of an execu-
tion model that can use the Mini-Grid Framework to distribute the tasks in
Mini-Grid. We can say that this integration plugin binds the algorithm with
the framework. The integration plugin permits the replacement of PPfold or
BLAST with any other parallel version of a bioinformatics algorithm. Similarly,
the Mini-Grid framework can be replaced with any other framework that can
distribute tasks.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 132

(a) Matrix Wavefront Computation (b) Single Cell

Figure 8.3: Wavefront Application.

8.3 Plugin Installation

The Mini-Grid Framework along with a default configuration file and the im-
plementation of the algorithm gets distributed as an integration plugin. For
the first time, the user needs to download the integration plugin from a specific
location and install it using the plugin management functionality provided by
the workbench. The screenshot in Figure 8.4 depicts the plugin management
functionality provided by the workbench. The CLC Workbench then guides the
user to navigate through the installation dialogs. Later on, the CLC Work-
bench detects the availability of a new version of the plugin and automatically
upgrades with the user approval.

8.4 Deployment Challenges

Even with the availability of advanced grid programming toolkits, development
and deployment of grid applications have been identified as a critical issue Gan-
non et al. [2003]. Through the extension of Grid to non-dedicated resources,
the complexity of the deployment greatly increases. According to Daniel Mi-
noli Minoli [2005], the tasks involved in the deployment of a Grid infrastructure
include, but are not limited, to:

• Installation of grid middleware on participating resources.

• Configuration of installed grid middleware for customized use.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 133

Figure 8.4: Plugin management screen.

• Administrative access on the donor machines to install and configure grid
middleware.

• Managing enrollment of donors and users.

Traditionally, a handful of administrators with specialist knowledge man-
age their Grid infrastructure, configure each resource and pre-install all Grid
services which are required von Laszewski et al. [2002]; Friese et al. [2006], and
infrastructures are centrally managed Mambretti [2006]. But when a large num-
ber of resources are added to the Grid dynamically, central administration is no
longer feasible Friese et al. [2006]. With increased adoption of grid application,
requiring the end user administrative account on the system for deployment is
not feasible Smith et al. [2004].

In the next sections, we discuss our approach to deployment of a parallelized
Basic Alignment Search Tool (BLAST) and RNA secondary structure prediction
algorithm (PPfold) on Mini-Grid at iNano while addressing the above challenges
and solutions.

8.4.1 Deployment Aim

We deploy the Mini-Grid enabled CLC Bio Workbench at iNano by meeting the
challenges detailed in Section 8.4 to validate the framework against:

• Support for dynamic resource participation.

• Symmetrical resource sharing.

• Ad hoc grid formation for short duration.

• Support for heterogeneous resource participation.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 134

Future Deployment#1 Deployment#2

Application BLAST PPfold
Type of application BoT Wavefront
Load balancing No Yes
Context-aware scheduling No Yes
Coexistence of multiple versions No Yes
Time-to-bid Constant Dynamic
Data transfer No Yes

Table 8.1: Deployment characteristics.

The parts of the platform exercised during deployment are mapped in Ta-
ble 8.1.

8.4.2 Deployment Process

The deployment process contained two steps: first deployment and second de-
ployment. Each step had four processes: planning the deployment; deployment
execution; observe, patch, package, and update; and feedback for further devel-
opment.

In the planning process, the stakeholders are consulted to decide on the
deployment dates and the responsibilities of individuals. The deployment ex-
ecution process has been detailed in Section 8.5. During the deployment we
observed the system behavior and prepared patches for minor issues and up-
graded the system. Major issues served as input to the next iteration of the
development process.

In a dynamically changing environment, deployment becomes part of an ad
hoc grid application instead of being handled by a system administrator Smith
et al. [2004]. The CLC Workbench can detect the availability of a new version
of the plugin and can perform automatic updates with the user approval.

8.5 Deployment Execution

The activities involved in the pilot deployment execution process includes: in-
frastructure setup, resource acquisition, application specific setup and applica-
tion deployment activity.

The infrastructure set up activity involves installation and configuration of
the Mini-Grid Framework. One of the main goals of the framework is to involve
minimal configuration. The framework requires four parameters related to com-
munication, for example, the multicast IP address and the port numbers for
communication. However, the framework gets distributed with a configuration
file containing default values to these parameters. As detailed in Section 8.1,
the framework gets distributed as a plugin.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 135

The resource acquisition activity involves recognizing and recruiting the idle
resources of users. At the architecture level, Mini-Grid has been designed as a
symmetric system, that is, users can not only contribute but also consume. At
the practical level, information about deployment and invitation to participation
was done through workshops and portal. Like traditional volunteer computing
platforms, Mini-Grid does not have the concept of incentive. However, Gri-
dOrbit public displays and GridNotify personal notification systems have been
used to create awareness Hincapié-Ramos et al. [2011] of the Mini-Grid resource
sharing infrastructure in the biology laboratory.

The application specific setup activity involves installing the Mini-Grid ap-
plication and associated data required for its execution. The framework has
been integrated with the CLC Workbench that enables the Mini-Grid applica-
tion developer to develop his algorithm as a plugin to the CLC Workbench.
Further, the workbench provides automated import actions to download the
required data from any location. Thus a resource consumer can download the
necessary data for computation using this future. However, the actual data dis-
tribution among participating resource providers happen through the Mini-Grid
task bus.

The application deployment activity involves algorithm description, resource
constraints, resource discovery, resource ranking and task execution as detailed
in Section 8.5.2.

8.5.1 Application Specific Setup

The application specific setup activity involves the following steps: setting up
the CLC Workbench, installing the Mini-Grid plugin, and some basic configu-
ration for the ambient display system. A detailed explanation about installing
the CLC Workbench and configuration for the ambient display system is beyond
the scope of this thesis. However, we have explained the plugin installation in
Section 8.3.

8.5.2 Application Deployment

The application deployment activity involves the following steps: application
description, resource constraints, resource discovery, resource ranking, and task
execution. The application description involves the end user, that is, the bi-
ologist to select an algorithm with associated data and necessary parameters.
In the CLC Workbench, first the user needs to select the algorithm as shown
in Figure 8.5. Then the user has to a nucleotide sequence, sequence list, or an
alignment tree (i.e., the data and input parameters to the algorithm) as shown
in Figure 8.6 and in in Figure 8.7. Then has to make a decision on algorithm
execution (either locally or in Mini-Grid) as shown in Figure 8.8. And finally
the user has to select the mechanism for handling the results as shown in Fig-
ure 8.9. These steps explained so far depict the application description step.
The application description is the only step which the end user must be involved
in.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 136

Figure 8.5: Algorithm selection.

Figure 8.6: Input Data selection.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 137

Figure 8.7: Parameter selection.

Figure 8.8: Mini-Grid execution.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 138

Figure 8.9: Result handling.

Figure 8.10: Result visualization.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 139

The resource constraints are specified by the Mini-Grid application devel-
oper. These are more determined by the nature of the algorithm. For example,
PPfold – a wavefront parallel algorithm – generates computational tasks that has
certain memory requirements. In the first deployment, we used Basic Alignment
Search Tool (BLAST) that finds the region of similarity between sequences and
in the second deployment, we used PPfold algorithm explained in Section 8.2.

8.6 Deployment

In this section, we present the pilot deployment of the real-world applications
discussed in Section 8.2 by adopting the deployment process detailed in Sec-
tion 8.4.2.

8.6.1 Deployment Period

The deployment happened at the interdisciplinary Nanoscience center (iNano)
at Aarhus University, Aarhus in two phase. We conducted the first phase of
the deployment for a period between 31st of May and 4th of July, 2010; and the
second phase of the deployment for a period between 3rd of January and 16th

of January, 2011. Figure 8.11, shows a user using Mini-Grid enabled CLC Bio
Workbench during deployment.

Figure 8.11: User using Mini-Grid enabled CLC Bio Workbench during deploy-
ment.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 140

8.6.2 Deployment Environment

The characteristics of the deployment environment are: dynamic and volatile
resource participation; and heterogeneous nature of resources.

The resources that participated during the deployment could be classified as
shared and personal resources. The shared resource included desktop computers
available in library and labs; and the personal resources included desktops and
laptops of the biology researchers. The number of non-dedicated resources is
much higher than in traditional Grid systems. The Mini-Grid environment
encompasses transient individual nodes (e.g., non-dedicated workstations).

The users participating in the deployment typically will try to provide re-
sources to the extent of their possibilities, as they wish to help the community.
Users want their resources to be used by the community. However, they still
want to retain control of their resources. This will result in intermittent resource
availability, as users can decide whether to contribute or not at any moment.
Another aspect that must be considered is that participating resources can be
heterogeneous in terms of processing capabilities, and configuration. For ex-
ample, a resource can be single processor or multi-processor with shared or
distributed memory.

The run-time of individual instance of an algorithm can range from a few
minutes to one or two hours depending on the size of input data and parameters
of the algorithm.

8.7 Learning from the Field

In this section, we summarize the lessons learned during the deployment. We
have presented the lessons learned during the first deployment detailed in Sec-
tion 8.7.1 and during the second deployment detailed in Section 8.7.2.

8.7.1 The First Deployment

We were experiencing some form of failure in the first deployment. For exam-
ple, some software bugs occur only during the deployment. However, in the first
deployment both the system developers and the end-user gained better under-
standing of the real requirements. The important lessons learned during the
first deployment are:

• Deal with virtual IP address: At iNano, few people used softwares
that create virtual IP address, and hence, we needed a solution in the
framework for dealing with these virtual IP addresses.

• Coexistence of multiple versions: We identified the need of support
for coexistence of multiple versions of the framework and algorithm.

• Need of pre-deployment field test: The framework exhibits different
behavior during the deployment at iNano compared to the testing at ITU.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 141

The difference in network environment at ITU and iNano contributed to
the difference in the system behavior.

• Support for data transfer by the framework: Initially, we assumed
that the data transfer would be done by CLC Bio API. However, we
realized the need for having the support for data transfer by the framework
independently.

• Need of dynamic value for time-to-bid: We assumed that the appli-
cation would decide on the value for time-to-bid. However, the framework
provides default value. But during the deployment we realized that it
should be determined dynamically by the framework based on the net-
work and resource load.

8.7.2 The Second Deployment

The second deployment aimed to resolve uncovered and not solved issues during
the first deployment. The experience from the first deployment was used to
address the weakness of the framework.

To deal with issues with virtual IP addresses, the messenger component now
binds to all available interfaces and performs a reachability test to identify cor-
rect interfaces for communication. We used the context-awareness framework to
deal with coexistence of multiple versions of the framework and plugin. The plu-
gin and the Mini-Grid Framework implementation have version numbers. This
metadata has been made part of the context model. Hence, a resource provider
participates in the task distribution process only if it had the same framework
and plugin versions as requested in the task context. The matching process at
the resource provider side ensures this. Pre-deployment test was performed at
iNano before actual deployment. The framework has support for data transfer
independent of the CLC Developer Kit API. A simple algorithm has been de-
vised to deal with determining the time-to-bid dynamically as explained in Bid
Submission subsection of Section 3.5.2.

The following lessons were learned during the second deployment.

• Need for system stability testing: The system still needs to be fine
tuned for its stability. Currently, we have deployed the system for a short
time and we have to ensure that the system can operate on a large scale
for several months using stability testing.

• Remote logging issue: We had implemented a remote logging facility
but it proved to be a potential bottleneck. We had configured a server
machine at ITU for pushing the log files periodically and this requires
Internet connectivity. During deployment, if network connection from a
machine to the ITU server is lost, then the system generates exception
messages and the system fails.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 142

8.8 Results and Discussion

In this section, we discuss the results of the first and the second deployments
at iNano. We have collected the data manually and through log files. The
framework generated log files during the deployment at each resource. The log
file data consists of precise traces of each event happening at the client. The
log file along with other information provides: number of bids received by a
resource consumer during an auction, time taken for conducting the auction,
time taken for execution of a task at remote resource providers, time taken for
transferring files from resource consumers to resource providers, the usage time
of the workbench,and so on. These data have been analyzed and presented
here. A wiki page was also maintained during deployment to log in data such
as operating system, ip address, processor clock frequency, physical memory
available, the owner of the resource and his contact details. The resources
were identified by means of a unique identifier generated by the framework
automatically the first time when the workbench is used. Regular expressions
have been used for extraction of relevant data from log files and Microsoft Excel
for data analysis.

8.8.1 Dynamic Resource Participation

During the deployment, the Mini-Grid Framework supported dynamic resource
participation. For example, in the first deployment 35 machines participated
and in the second deployment 19 machines participated. The availability of
these resources during the period of deployment was also dynamic.

We have presented the resource availability during the first deployment in
Figure 8.12a and the resource availability during the second deployment in Fig-
ure 8.12b. In Figure 8.12, the X-axis shows the date of deployment and the
Y-axis shows the number of resources that were available on a particular date.
From the figure, one can observe that even for a fixed number of Mini-Grid
enabled resources, their availability varies widely. The participants make vol-
unteer contribution ranging from a few hours a day to entire 24 hours. Thus
the availability of the resource is highly dynamic.

While aggregate resource availability reflects the overall availability of Mini-
Grid, it is possible that some hosts are less available than others. We investigate
per host availability to reveal any potential imbalance. Figure 8.13 illustrates
contribution pattern of personal desktop computers and laptop computers by
two example users during the first deployment. In Figure 8.13, the X-axis
represents the day of deployment; the Y-axis represents time of a day; and
white indicates resource inactive, red indicates available but not contributing
resources and green indicates contributing nature of the participating resource.
We can observe that resource participation varies highly. However, availability
of desktop computers was higher than laptop computers. For more detailed
discussion refer to Hincapié-Ramos et al. [2011].

During the deployment, by a rough estimate, we can say that 40-50% of
committed volunteers participated. Another observation was that the capacity

Chapter 8. Real-World Usage and Deployment at a Biology Lab 143

0

5

10

15

20

25

30

35

40

MiniGrid Enabled Nodes

Available Nodes

(a) First deployment.

0
2
4
6
8
10
12
14
16
18
20

N
o.

 o
f R

es
ou

rc
es

Date of Deployment

AvailableNodes

MiniGridEnabledNodes

(b) Second deployment.

Figure 8.12: Host availability.

day 0
GO public display

day 0
GO public and

personal displays

day 0
GO public and

personal displays

GO public and
personal displays

GO public display

GO public display

tim
e

(h
ou

rs
)

days

(a) Desktop Availability.

Participant 7 Participant 8

0.00

8.00

16.00

23.59

day 0
GO public display

day 0
GO public and

personal displays

GO public and
personal displays

GO public display

tim
e

(h
ou

rs
)

days

(b) Laptop Availability.

Figure 8.13: Availability of Desktop vs Laptop (adopted from Hincapié-Ramos
et al. [2011]).

of Mini-Grid increased by 7% during working hours compared to non-working
hours. This in contradiction to resource availability reported in Vladoiu et al.
[2009]. They have observed 50-60% resource availabilty during normal and ex-
tended working hours and 95-100% resource availability during non-working
hours. The other study has considered only laboratory desktop computers of
a University compared. Thus the personal resources participating in Mini-Grid
contributed to variation in observation. The increase in capacity of Mini-Grid
can be attributed to the work habit of participants. Normally, the participants
shutdown their computers after working hours or configuring their resources to
go into full hibernation mode. In coherence with observations reported in Bhag-
wan et al. [2003], we also observe steady decrease in total number of resources
that are available over subsequent days towards the end of the deployment.

8.8.2 Symmetric Resource Participation

During the first deployment, we observed that out of 35 clients participating
in Mini-Grid, 8 clients had played the role of resource consumer by executing
at least one instance of the algorithm in the Mini-Grid environment. The ar-
chitectural design of Mini-Grid as symmetric system led to foster participation
through ambient technologies (i.e., GridOrbit and GridNotify) rather than in-
centives Hincapié-Ramos et al. [2011]. The main motivations for biologists to

Chapter 8. Real-World Usage and Deployment at a Biology Lab 144

join the Mini-Grid are: getting analysis results faster, exploring the potential
benefit of the infrastructure, and helping their colleagues.

During the second deployment, we observed that out of 19 clients partic-
ipating in Mini-Gird environment, only 2 clients played the role of resource
consumer. During the second deployment, we could see that 10% of the clients
played both roles. On the other hand, during the first deployment we could see
that 23% of the clients had played both roles. The BLAST application being the
dominant database search tool in molecular biology contributed the increased
symmetric resource participation nature during the first deployment. Conver-
sly, only two users were interested in PPfold application and hence others were
just contributing. Thus, Mini-Grid enabling a set of useful and possible bio-
informatics algorithm could motivate higher user participation. Further, during
discussion with Biologists at iNano, it was revealed that other tools having sim-
ilar functionality to CLC Bio are also being used by the participants. Such tools
need to be Mini-Grid enabled for those users to get the benefit. Further, other
motivation and awareness techniques can be explored.

8.8.3 Support for Heterogeneous Resource Participation

The ability of the Mini-Grid Framework to support heterogeneous resource par-
ticipation can be seen from Figure 8.14. Figure 8.14, illustrates participating
resources having different capabilities such as: varied CPU clock frequency;
varied physical memory; varied operating systems, and different versions of op-
erating system. Apart from that, the resources had different versions of the
plugin and different versions of the framework. Further we observed different
types of resource participation during both first and second deployment such as:
dedicated desktop computers; non-dedicated office desktop computers; shared
desktops in labs and library; and non-dedicated laptop computers. Thus Mini-
Grid exhibited heterogeneous resource participation.

The resources participating were heterogeneous in terms of their capability.
Figure 8.14a illustrates the distribution of computing power of the resources par-
ticipating in the second deployment and Figure 8.14b illustrates the distribution
of the operating system of the resources participating in the second iteration of
the deployment.

8.8.4 Ad hoc Mini-Grid Formation

The Mini-Grid Framework supports a research team to collaborate on a tem-
porary basis to form a small ad hoc grid for a short duration. During the
deployment, we observed that one of the participants was able to form an ad
hoc grid using resources available in his office. Five desktop computers avail-
able in his office were used in this process. They were having different operating
systems and different capabilities. He could do that by changing the multicast
IP address used to form Mini-Grid. It did not affect the function of the other
Mini-Grid deployed at iNano.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 145

0

2

4

6

8

10

12

14

16

18

1.86 2 2.13 2.16 2.4 2.44 2.6 2.66 3.07 3.3

N
o.

 o
f R

es
ou

rc
es

CPU Frequency (in GHz)

(a) CPU Frequency Distribution.

0

1

2

3

4

5

6

7

8

Ubuntu Windows XP Mac Windows7

N
o.

 o
f R

es
ou

rc
es

Name of Oprtating System

(b) OS Distribution.

Figure 8.14: Distribution of CPU Frequency and OS of the Resources.

8.8.5 Deployment Effort

Using documentation available on the BOINC website, we made a qualitative
comparison of Mini-Grid to BOINC. We compared the two frameworks using
three different measures: the number of steps involved in creating a project,
framework requirements and major framework futures. The purpose of the
comparison was to determine whether the process of deploying a desktop grid
infrastructure was easier using Mini-Grid or using BOINC.

The process involved to create and start a project on a medium to high-
power Unix or Linux server has been tabulated in Table 8.2. The BOINC
framework consists of two layers which operates under client-server technology,
a central scheduling server and a number of clients installed on the volunteer’s
computers. Due to dependency on other software packages such as MySQL,
Apache and PHP, there are several steps involved in the installation of BOINC
server. By contrast Mini-Grid has no dependencies on other software packages,
and hence there is no need for installation of dependent software packages. The
Mini-Grid framework is made available to an application developer as jar files
that contains all the class files and related data files that are referenced by the
classes. Jar files simplify distributing the framework as a single, compressed file.
The application developer has to ensure that they have the necessary jar file in
classpath.

To create a functional project, BOINC requires that an assimilator be de-
veloped. The assimilator component receives canonical result data from BOINC
and sends it to a database that is separate from the project database. BOINC
requires a project to configure fixed static set of data servers that are main-
tained for a particular project and makes available for data distribution. An
administrator must dedicate time to configure and maintain these data serv-
ing machines, which are generally independent for each BOINC project. The
Mini-Grid Framework does not require any such component as the results are
handled by the application. The framework provides an asynchronous notifica-
tion method that can be used by the application for collecting the results. Aside

Chapter 8. Real-World Usage and Deployment at a Biology Lab 146

from assimilator component, it is necessary to develop workgenerator compo-
nent to generate work units and validator component to validates the results.
The Mini-Grid Framework does not support result validation, as it aggregates
resources from within the organization connected by a local area network. The
Mini-Grid Framework provides conceptual abstraction task for representing a
unit of work that can be distributed over the network to another node for ex-
ecution. The application developer has to define the tasks that compose the
application, as well as the logic ruling their integration. Here, we have consid-
ered only a simple task for the purpose of comparison. However, the Mini-Grid
Framework provides context abstraction for defining the application specific
quality of service requirements. The BOINC framework operates on best ef-
fort basis and hence does not support any application specific quality of service
requirements.

Table 8.2 and table 8.3 show that there are more steps involved in creating
a project/application with BOINC than with Mini-Grid. In addition, the steps
in the BOINC project creation process tend to be more difficult. One reason is
that several of the steps require specific skills like experience with Linux system
administration. Another reason is that BOINC does not have a single, unified
configuration utility. Instead, users are required to edit XML configuration files
in several different locations to create a functional project. Developing compo-
nents for the BOINC framework requires not only a knowledge of the C++ or
FORTRAN programming languages, but also an understanding of the BOINC
specific API. All of these factors contribute to the complexity of the BOINC
framework. The Mini-Grid Framework requires to edit just one configuration
file for modifying the default behavior.

As a client, the BOINC user needs only to download the client software
from the BOINC website and register to one of the existing projects. Once the
BOINC user runs the client, it allows the user’s computer to be included as one
of the slaves. BOINC servers use a Apache web server to expose a simple web
page offering basic functionalities: user registration, statistics, BOINC client
download, etc. The BOINC server must operate user forums related to the
project where users can ask questions and their problems.

The Mini-Grid framework, based on peer-to-peer architecture does not have
separate server and client software. Using the framework a node can play either
resource provider or resource consumer or both roles. The deployment of the
Mini-Grid framework needs to download the framework as Java jar file from
a website or a central server or can be bundled with the application. It is as
simple as deployment of BOINC client software. The project team can maintain
a website, for example The Mini-Grid Project for Department of Molecular
Biology at Aarhus University2. The project website, an important dissemination
tools, informs the community about the project and how the users can contribute
to the project.

Table reftab:comframe shows a comparison of the requirements and restric-

2http://mbg.medarbejdere.au.dk/en/service-and-facilities/core-facilities/

the-Mini-Grid-project-for-department-of-molecular-biology/

http://mbg.medarbejdere.au.dk/en/service-and-facilities/core-facilities/the-Mini-Grid-project-for-department-of-molecular-biology/
http://mbg.medarbejdere.au.dk/en/service-and-facilities/core-facilities/the-Mini-Grid-project-for-department-of-molecular-biology/

Chapter 8. Real-World Usage and Deployment at a Biology Lab 147

Step Description
1 Install Python
2 Install PHP
3 Install and configure Apache with the PHP module
4 Install and configure MySQL
5 Download the BOINC source code
6 Compile and install BOINC
7 Develop the science application component in C++ or

FORTRAN using the BOINC API
8 Develop the work unit generator component in C++ using

the BOINC API
9 Compile the provided ‘ sample trivial validator ’ component

(accepts all results as valid)
10 Develop the assimilator component in C++ using the

BOINC API
11 Run the make_project script
12 Append the BOINC Apache configuration to the system

Apache configuration
13 Configure the project by editing the XML configuration file
14 Add the project to the database using the xadd scripts
15 Move the MySQL socket to /var/lib/mysql/mysql.sock

16 Define a sample application, build the application and copy
the executables to the appropriate subdirectory

17 Create an application version for the sample application
18 Sign the sample application with the sign_executable

program
19 Run the update_versions script
20 Add work units to the project work folder at

\$PROJECTROOT/download

21 Create XML configuration files for each work unit
22 Create XML configuration files for each result
23 Run the create_work program to add the work units to

the project database
24 Add entries for the work unit generator, feeder, transistor,

file deleted, trivial validator, and assimilator to the project
configuration file

25 Start the project server
26 Edit the project configuration file to allow users to create

accounts

Table 8.2: BOINC Project Creation Process

Chapter 8. Real-World Usage and Deployment at a Biology Lab 148

Step Description
1 Obtain minigrid-framework.jar file and ensure that it is in

your class path
2 Create or modify existing ‘ log4j ’ configuration file (if re-

quired, otherwise default configuration file is available)
3 Configuration communication end point to be used by the

framework (however, default configuration file is available)
4 A resource provider client has to define ExecutorContext

abstractions (however, default implementations of this ab-
stractions is available)

5 A resource provider client can join the Mini-Grid envi-
ronment by creating Executor object and invoking start
method

6 A resource consumer client has to define Task,and
TaskContext (however, default implementation of
TaskContext is available)

7 A resource consumer has to define TaskListener to receive
asynchronous notification about current task status

8 A resource consumer client can join the Mini-Grid envi-
ronment by creating Submitter object and invoking start
method

9 A resource consumer client can ask Mini-Grid to distribute
computation task to the infrastructure by calling submit()

method of Submitter
10 On receiving notification, a resource consumer client can

get the results from the TaskBus

11 The application integrates the obtained results and has to
present them in a user understandable format

Table 8.3: Mini-Grid Application Development and Deployment Process

Chapter 8. Real-World Usage and Deployment at a Biology Lab 149

Requirement BOINC Mini-Grid
Platform Can function on any plat-

form supported by Java
Server limited to Linux
platform; clients are avail-
able for Windows, Linux
and Mac OS X

Programming lan-
guage for framework
specific components

Java C++ and optionally FOR-
TRAN wrappers

Database MySQL Currently in-memory data
structures are used. How-
ever, can be extended to use
file or database systems

Prerequisites Apache, Python and PHP JVM version 1.5 or later

Table 8.4: Comparision of Framework Requirement.

tions of each framework. Platform-independence is an important property of
the Mini-Grid Framework as it allows users to select the platform they are most
comfortable using. Since our entire framework has been built using Java, both
the resource provider and resource consumer can be used on any platform sup-
ported by Java. The BOINC server is restricted to the Linux platform. In the
BOINC framework, the choice of language in which the various server-side com-
ponents can be developed are C++ or FORTRAN. The Mini-Grid framework
used Java programming language for the component developments. BIONC has
database support compared to the Mini-Grid framework. In addition, the Mini-
Grid Framework does not have any external programming language or softwares
dependencies other than the Java Virtual Machine. However, the Mini-Grid
Framework uses Log4j and Jena frameworks for its functioning. Everything
required to use the framework is provided along with the framework.

Table 8.5 shows a comparison of the major features of each framework. The
features of the framework are quite different, reflecting possible differences in
design goals. The features of the Mini-Grid Framework suggests that its goal
is making deployment process simple and provides support for application spe-
cific quality of service. However, BOINC has the core functionality of a public
resource computing. Compared to BOINC deployment, Mini-Grid deployment
is simple.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 150

Feature BOINC Mini-Grid
Architecture Client-server Peer-to-peer

Result validation Yes No

Cross-platform server No yes

Cross-platform client Yes Yes

Framework compo-
nents to be imple-
mented

work unit generator, assim-
ilator and validator

Task and Context

Suitable for legacy ap-
plications

Yes (but with difficulties) No (but Java applications
can be modified)

Suitable for non-legacy
applications

Yes Yes

Logging support No Yes

Configuration manage-
ment

Using multiple scripts at
different location

One single configuration file

QoS support Best-effort Application specific

Table 8.5: Comparison of Framework Features.

Chapter 8. Real-World Usage and Deployment at a Biology Lab 151

8.9 Summary

In this chapter, we have described the deployment of a parallel version of BLAST
and Pfold algorithm in Mini-Grid at iNano center, Aarhus University, Aarhus.
We have discussed the application deployed, the challenges of deployment, de-
ployment process, how the actual deployment happened and learning from the
deployment. Finally, we present the results of the deployment and discuss the
results.

Part IV

Conclusion

152

Chapter 9

Conclusion

Desktop grids are attractive platforms for running compute-intensive applica-
tions. However, building such systems is complicated as the participating re-
sources are heterogeneous, volatile, do not have adequate security measures and
subject to failures. In this thesis, we focused on the development and the de-
ployment of the Mini-Grid Framework for resource management in ad hoc grids
using market-based scheduling and context-based resource and application mod-
eling. The Mini-Grid Framework enables the construction and the deployment
of ad hoc grids that supports: ease of deployment, decentralized task distribu-
tion, smaller scale grid formation, and symmetric resource usage by participants.
Furthermore, users can specify non-performance based parameters that influ-
ence resource allocation.

The main contributions of this thesis are:

1. Symmetric resource usage: The users can contribute their resources to
the Mini-Grid environment as well as use the available resource in the
environment.

2. Smaller scale grid formation: The Mini-Grid environment can be created
by combining the power of the computers at an institutional level or at
an organizational/institutional level.

3. Decentralized task distribution: The Mini-Grid Framework adopts auction
strategies for dynamic resource discovery and selection.

4. Resource and task modeling: We have used ontology based context model
to describe resource capabilities and to model resource requirements of an
application.

5. Application specific quality parameters: The Mini-Grid Framework sup-
ports specification of application specific quality parameters for schedul-
ing.

6. Ease of deployment: The Mini-Grid environment can be setup with mini-
mal configuration and installation effort.

153

Chapter 9. Conclusion 154

In general, we summarize the following main contributions of this thesis:

• Mapping study of existing desktop grid systems

In this thesis, we have presented a taxonomy for desktop grid systems fo-
cusing on resource provision, scalability, organization, resource utilization,
supported quality-of-service, and deployment effort. We surveyed some of
the desktop grid system and mapped them using the taxonomy. On the
basis of this taxonomy and mapping, we presented the current state of
research in desktop grid systems and we were able to identify the possible
research gaps.

• Context-based auction strategy for dynamic task distribution

We used peer-to-peer techniques to implement a desktop grid system that
eliminates the need for a centralized scheduling component. We have used
a marked-based auction mechanism for dynamic task distribution. Tra-
ditionally in price-based mechanism, the price represents supply/demand
condition of resources. However, we have used utility function based on
application specific quality parameters for representing supply/demand
condition. This approach enabled the use of context-based application
specific quality parameters for dynamic task distribution. We have shown
that a market-based auction mechanism can be used to compensate for
absence the central server.

• Modeling entities such as resources and applications using their
context

For the resource description model the thesis proposes an alternative to
the classic attribute-based symmetric resource description model with an
extensible ontology-based context model. This model provides founda-
tion to a flexible and extensible resource discovery and resource selection
mechanism. The context information of resources and computational tasks
have been modelled as OWL concepts and properties. The context infor-
mation is stored in a knowledge base and resource requests are expressed
using SPARQL queries. Furthermore, we have proposed a template-based
approach to model user-application quality of service description or re-
source capability description for mapping to the corresponding SPARQL
query statement. Finally, this approach simplified resource description
compared to traditional approach.

• The Mini-Grid Framework

We have shown the feasibility of our approach by implementing these
concepts in the Mini-Grid Framework. The framework supports context
modeling of resources and computational tasks, and dynamic task distri-
bution based on application specific quality of service parameters. The
design choice as framework provides ways to customize the framework
for specific needs. The framework supports higher levels of abstraction,
hiding complexity of the underlying resource and execution environment

Chapter 9. Conclusion 155

while providing primitives for task scheduling. Efficiency of the framework
has been evaluated technically using controlled lab experiments using real-
world applications. The performance of the framework has been compared
to the Globus and the Entropia systems.

The experimental evaluation shows that scheduling computational-intensive
tasks in Mini-Grid scales linearly with increase in number of resources
participating in Mini-Grid, provided equal workload partitioning among
the participating resources. However, the Mini-Grid Framework intro-
duces overhead due to auctioning process and data transfer between the
resource consumer and the resource provider. The overhead due to auc-
tion process could be reduced by implementing combinatorial auctions but
with increased complexity and communication overhead. The data trans-
fer overhead applies to any desktop grid computing system. We observed
that the overhead in Mini-Grid is high compared to the Globus and the
Entropia system. However, in the Globus system, there would be addi-
tional overhead related to resource selection. Further, the Globus system
provides recent but not guaranteed to be absolute latest resource infor-
mation. Hence, such system may not be suitable for desktop grid system
where the resources join and leave the system frequently. The Entropia
system performs better compared to Mini-Gird. However, another study
reports that in a real deployment there could be additional overhead.

We have evaluated the Mini-Grid Framework for new kind of application,
called Wavefront application. These application generate computational
tasks in a non-discrete stochastic nature. The Mini-Grid Framework per-
forms better when the individual tasks of the application have higher
computational complexity index, a ratio between the execution time and
the data transfer time.

• Deployment at iNano The framework has been integrated with the
CLC Bio Workbench and real-world bioinformatics applications BLAST
and PPfold have been integrated. The Mini-Grid enabled CLC Bio Work-
bench has been deployed at iNano research center to validate the frame-
work against i) support for dynamic resource participation, ii) symmetrical
resource sharing, iii) ad hoc grid formation for short usage, and iv) support
for heterogeneous resource participation.

During deployment, we observed that the Mini-Grid Framework supports
dynamic resource participation, symmetric resource participation, hetero-
geneous resource participation, and ad-hoc grid formation. Further, we
observed that deployment required minimal effort compared to other pop-
ular systems such as BOINC and Globus. BOINC and Globus require non-
trival setup efforts from system administrators as shown in Section 8.8.5
and Appendix C.

Chapter 9. Conclusion 156

9.1 Future Work

There are a number of issues related to this work that can become the basis for
further research. Some of the most significant future research work are presented
here.

• Fault tolerant scheduling: Fault tolerant scheduling tolerates failure
and volatility. It involves selecting more reliable resources according to
availability, volatility, or credibility in order to avoid failures as much as
possible, and performing reassignment or replication in the presence of
failures or volatility Abbes et al. [2010]; Anglano et al. [2006]; Bardram
[2009]. Currently checkpoint, restart, and replication approach are widely
adopted for handling fault tolerance. However, proactive fault tolerance
mechanism such as relocation or migration would be more useful. Re-
location and migration involves relocating the execution from faulty or
suspicious resources upon detection of imminent failures. Here suspicious
resources mean resource that are expected to fail based on performance
analysis. Degradation in performance of a resource could be a sign of
resource failure.

• Trust-based Security: When we scale the Mini-Grid Framework to
Internet scale, then the Mini-Grid Framework need to address security
issues. The volunteers to Internet scale desktop systems are at the edge
of the Internet. Hence, a trust-based scheduling Sonnek et al. [2006] can
be implemented for resource selection. Trust can be parametrized using
factors such as volunteering time, execution behavior and so on.

• Network connectivity: Another important issue that need to be ad-
dressed is the connectivity of the computing resources. The resources are
located in different administrative domains and are protected by NATs
and Firewalls. In such environments, direct communication between par-
ticipating resources may not be possible unless relevant configurations are
made at gateway softwares such as NATs and networking devices such as
routers. Hence, the Mini-Grid Framework need to support mechanism to
deal with NATs and Firewalls to establish direct communication between
participating resources.

• Combinatorial Auctions: Current implementation support Fixed-Price
Sealed Bid auction. In this implementation, tasks are auctioned one by one
(i.e., sequential). However, multi-unit combinatorial auctions that involves
auctioning a set of tasks would be useful. Such multi-unitcombinatorial
auctions would reduce overhead.

• Consistency Management: Current implementation ensures that the
context information supplied by default context monitors are consistent
with the defined context model. However, when the application developer
extends the framework and define his own context model and context
monitors then the developer has to ensure that the model is validated

Chapter 9. Conclusion 157

and the context information provided by the monitor is consistent with
the context model. The framework needs to be modified for ensuring
consistency checks and conflict detection.

Toward these ends, we believe that the work in this thesis will be a helpful
stepping stone for industrialization efforts to make it a production desktop grid.

Part V

Appendices

158

Appendix A

Mini-Grid Messaging
System

As described earlier, messages are the basic unit of data exchanged between
clients participating in Mini-Grid environment to provide information about
task announcements, bid submissions, etc. This section describes the format of
the messages exchanged and the set of rules governing how these messages are
exchanged.

A.1 Layers of Messaging System

The Mini-Grid messaging system defines a framework for communication be-
tween clients over the network. It defines communication process into three
layers, dividing the task involved in moving information between networked
clients. Information that need to be transferred from one client to another
client proceeds through these layers, as shown in Figure A.1.

Figure A.1: Layers of messaging system.

From the highest to lowest, these are the messenger component, the transport
component and the communication component. These three layers use various
forms of control information to communicate with their peer layers in other
client. This control information consists of specific requests and instructions

159

Appendix A. Mini-Grid Messaging System 160

that are exchanged between peer layers. Headers are the basic forms to carry
control information and are perpended to data that has been passed down from
upper layers.

A.2 Messenger Component

The executor or submitter of a client prepares its data and calls on its local
messenger component to send that data as Mini-Grid message with required
parameters as arguments of the call. The messenger component prepares a
Mini-Grid message header and attaches the data to it. It sends the Mini-Grid
message to the local transport component to transport the Mini-Grid message
to the destination messenger component. The receiving messenger component
unwraps the Mini-Grid message and passes the data to the destination executor
or submitter. The structure of Mini-Grid message and the protocol are described
in more detail in section B.

A.3 Transport Component

The transport component interfaces on one side to messenger component and
on the other side to a lower level communication component. The messenger
component transmits Mini-Grid message by calling on the transport component
with required arguments. The transport component packages the Mini-Grid
messages as transport messages and calls the local communication component
to transport the transport message to the destination transport component.
The receiving transport component places the Mini-Grid messages to its local
messenger component for processing. To make sure that each client does not
process the same transport message more than once, each transport message
is identified by a Unique IDentifier (UID). The transport component memorize
these UIDs and when a transport layer receives a transport message with a UID
it has encountered previously, it simply drops that transport message.

A.4 Communication Component

Communication component has the ability to transfer a stream of characters
in each direction between clients. It communicates directly with various types
of actual network transport protocols such as User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), Secured Socket Layer (SSL), etc.

Communication component is implemented as a wrapper around a socket
and serves as an endpoint in a bidirectional communication. If two transport
layer components want to communicate, they can obtain an instance of com-
munication component and character streams sent from one can be received at
other. Among other things, it has the job of keeping up the underlying socket
descriptor, and it automatically closes its descriptor when it is destroyed. It

Appendix A. Mini-Grid Messaging System 161

provides send() and receive() methods that are wrappers around the send()

and recv() call for the underlying socket descriptor.

Appendix B

The Mini-Grid Protocol

This section describes the Mini-Grid protocol. It consists of a set of Mini-
Grid messages for communicating command and control information between
messenger component of clients, and a set of rules governing how messages are
exchanged. An overview of the various messages is shown in Figure B.1. This
figure shows how the various messages relate to each other and how they are
packaged to create a Mini-Grid message that is passed around between clients
in the Mini-Grid environment.

Figure B.1: An overview of messages used to define Mini-Grid protocol

Briefly, a Mini-Grid message consists of a header and a payload. The header
includes the common attributes to any payload (i.e., Mini-Grid message type).
Then there are seven payloads (i.e., notifications and acknowledgments) that
can be exchanged using this protocol. Table B.1 shows the list of messages used
in the Mini-Grid protocol and their purpose. Each Mini-Grid message has a
message header, which is described in the next section.

162

Appendix B The Mini-Grid Protocol 163

Message Purpose

TaskSubmissionNotification Announces submission of a task
BidSubmissionNotification Announces submission of a bid
TaskWinnerNotification Announces winner of an auction
TaskWinnerAcknowledgement Acknowledges receipt of task winner

notification
TaskCompletionNotification Announces completion of execution of a

task
TaskCompletionAcknowledgement Acknowledges receipt of task comple-

tion notification
ExceptionNotification Announces occurrence of exception at

clients

Table B.1: Mini-Grid Messages and their Usage.

B.1 Mini-Grid Message Header

The Mini-Grid message header consists of:

1. Message Type: determines the type of client to whom the payload is
intended to. The payloads TaskSubmissionNotification, TaskWinnerNoti-
fication, and TaskCompletionAcknowledgement are for client acting as
resource provider. On the other hand the payloads BidSubmissionNoti-
fication, TaskWinnerAcknowledgement, and TaskCompletionNotification
are for clients acting as resource consumer. The payload ExceptionNotifi-
cation can be used both by the resource provider and resource consumer
to inform about any exceptions that occur during communication process
or during execution of a task at remote resource provider.

2. Payload Descriptor: contains the type of payload, i.e., TaskSubmis-
sionNotification, BidSubmissionNotification, e.t.c.

Each payload of Mini-Grid message is described in detail in the next sections.

B.1.1 Mini-Grid Message Payloads

TaskSubmissionNotification

TaskSubmissionNotification contains task context information as they are used
to announce task submission for execution in the Mini-Grid environment. The
header informs that it is a task submission notification and intended for clients
acting as resource provider. The task context contains

1. Resource identifier: the identifier of the client that has announced task
submission.

Appendix B The Mini-Grid Protocol 164

2. Bidding strategy: the strategy used for conducting the bidding process.
Normally it contains information about the type of bid expected by the
client acting as resource consumer.

3. Execution environment: the information about the environment at
resource provider necessary for execution of the submitted task.

TaskContext provides generic context information about the task and hence
it could contain any context information about the task. However, Mini-Grid
only uses the above information for scheduling the task in the Mini-Grid envi-
ronment.

B.1.2 BidSubmissionNotification

BidSubmissionNotification are send by clients that are ready to execute the an-
nounced task. A resource provider should have the requested execution environ-
ment and should submit the bid of requested type. BidSubmissionNotification
consists of:

1. Source identifier: the identifier of the client interested in executing the
submitted task.

2. Destination identifier: the identifier of the client that has announced
the submission of task.

3. Type of bid: the type of submitted bid.

4. Submitted bid: the bid as determined by the announced bidding strat-
egy and current resource context.

This is a response message to TaskSubmissionNotification. A client can send
a response only when it has the requested environment available for execution of
the announced task. The notification contains the resource consumer’s identifier
(Destination identifier) that was provided in the TaskSubmissionNotification
to ensure that only the resource consumer that announced the task submission
would process it.

B.1.3 TaskWinnerNotification

TaskWinnerNotification informs the result of the auctioning process. It is send
by resource consumer to the winning resource provider. It notifies the winning
resource provider about the award of task execution. This message needs to be
acknowledged by the winning resource provider. This message contains:

1. IP Address: is the resource consumer’s network address.

2. Port: is the resource consumer’s port for incoming connections to transfer
the submitted task.

Appendix B The Mini-Grid Protocol 165

3. Destination identifier: is the resource provider identifier that has won
the auction.

4. Task identifier: is the identifier of the announced task.

5. Source identifier: is the identifier of the resource consumer that an-
nounce the task submission.

The notification contains the resource provider’s identifier (Destination iden-
tifier) that was provided in the BidSubmissionNotification to ensure that only
the resource provider that won the auction process would process it. IP Ad-
dress and Port are optional parameters for specifying communication endpoint
of resource consumer. These parameters are required only when the resource
provider establishes a direct connection with the resource consumer to download
the submitted task.

B.1.4 TaskWinnerAcknowledgement

TaskWinnerAcknowledgement acknowledges the receipt of TaskWinnerNotifica-
tion by a resource provider. It notifies the resource consumer that it has received
the winner notification and is ready to execute the task.

1. Task identifier: is the identifier of the task whose execution has been
own by resource provider.

2. Destination identifier: is the identifier of the resource consumer that
has send the TaskWinnerNotification.

The notification signals the end of scheduling operation. The process of mak-
ing scheduling decisions involves allocating task to suitable resource provider.

B.1.5 TaskCompletionNotification

TaskCompletionNotification informs the resource provider that its task execu-
tion at a remote resource provider has been completed. This notification requires
an acknowledgment by the receiving task consumer.

1. IP Address: is the resource provider’s network address.

2. Port: is the resource provider’s port for incoming connection to transfer
the completed task.

3. Destination identifier: is the resource consumer identifier that has
submitted the task for execution.

4. Task identifier: is the identifier of the completed task.

IP Address and Port are optional parameters for specifying communication
endpoint of resource consumer. These parameters are required only when the
resource consumer established a direct connection with the resource provider to
download the completed task.

Appendix B The Mini-Grid Protocol 166

B.1.6 TaskCompletionAcknowledgement

TaskCompletionAcknowledgement acknowledges the receipt of TaskCompletion-
Notification by a resource consumer.

1. Destination identifier: is the resource provider identifier that has send
the TaskCompletionNotification.

2. Task identifier: is the identifier of the completed task.

The acknowledgment signals the end of task execution operation at remote
resource provider.

B.1.7 ExceptionNotification

ExceptionNotification reports the problems in the Mini-Grid environment to
the clients. Notifications can be send both by resource provider and resource
consumer to other parties under the following conditions:

• Communication problems such as socket timeout, I/O error when creating
the socket, etc.

• Serialization problems when reading from or writing to a socket.

• Exception in task execution at a remote resource provider.

The notification contains:

1. Destination identifier: is the identifier of the destination resource provider
or consumer to whom this notification is send.

2. Task identifier: is the identifier of the task for which exception occurred
under the conditions explained earlier.

3. Exception Message: contains detailed message that describes the con-
dition under which the exception occurred.

The protocol provides room to inform exceptions that occur under various
conditions. However, exception handling has to be dealt by appropriate com-
ponents in resource provider or resource consumer.

B.1.8 Message Sequence in Operations

We have discussed how the Mini-Grid protocol organizes the information in
different payloads. In this section, we are going to discuss how the Mini-Grid
operations are performed using the above Mini-Grid messages.

In Mini-Grid environment these messages are used to carry out two opera-
tions:

• Task Scheduling Operation: is the process of making scheduling deci-
sions.

Appendix B The Mini-Grid Protocol 167

• Task Execution Operation: is the process of informing completion of
task execution in remote resource provider.

Upcoming sections explain in more detail how different messages are used in
the above two operations using a message sequence diagram.

B.1.9 Task Scheduling Operation

A sequence diagram illustrating the sequence of messages transmitted during
task scheduling operation is shown in figure B.2 explaining normal flow. The
example assumes that there exists one resource consumer and two resource
providers currently participating in the Mini-Grid environment. Further it as-
sumes that the clients acting as resource provider have the capabilities required
for execution.

Figure B.2: Message sequence diagram for task scheduling.

As we can see, a client ResourceConsumer sends a TaskSubmissionNotifica-
tion announcing the availability of a task for execution. Two clients Resour-
ceProvider(A) and ResourceProvider(B) on receiving the announcement, since
they have the requested capabilities, express their interest in executing the task
by replying with a BidSubmissionNotification. The resource consumer selects
ResourceProvider(A) based on its task distribution algorithm and informs it by
sending a TaskWinnerNotification. The ResourceProvider(A) acknowledges the
receipt of TaskWinnerNotification by sending a TaskWinnerAcknowledgement.

B.1.10 Task Execution Operation

A sequence diagram illustrating the sequence of messages transmitted during
task execution operation is shown in figure B.3 explaining normal flow. The
example assumes that the ResourceProvider(A) has completed the execution of
task without any problem. On completion of execution of the task, the Resour-
ceProvider(A) sends a TaskCompletionNotification and once the ResourceCon-
sumer that submitted the task receives the notification sends an acknowledg-
ment.

Appendix B The Mini-Grid Protocol 168

Figure B.3: Message sequence diagram for task execution.

Appendix C

Installation of Globus - An
Experience

Here, we provide the experience of John P. Morrison et. al., in installing Globus
Toolkit Version 4 (GT4) during deployment of WebCom-G Information System
over GT4 Morrison et al. [2004].

Version 4 of Globus Toolkit requires a UNIX-based operating
system for installation. Hence, it cannot be installed on Windows
system without emulation of UNIX specific function. This is not
exactly in line with the requirement that a grid should support as
many environment as possible. Installation of Globus Toolkit is
more complex than the installation of the Web-service environment
Apache Tomcat: First, for the installation, the toolkit requires the
configuration of the desired location. Afterwards, GT4 runs without
security options. Second, to enable authentication and authoriza-
tion, SSL certificates need to be created. Third, description files,
containing the name of the grid and information about the secu-
rity policies, need to be created. These files are required on each
node participating in the grid. Finally, the standard services need
to be configured, e.g., one needs to specify the address of a direc-
tory service for publishing grid services. When following these steps,
we observed several problems: Using all standard services proposed,
Globus Toolkit throws a lot of errors on start up. The reason is that
the services are not configured correctly. Further, errors concerning
security arise, even when the platform is started following the second
step, i.e., security is deactivated. We also had problems of different
behavior of the middleware on different systems. We encountered
different, uncommented errors on different UNIX distributions. The
complete installation requires a lot editing of configuration files with
the correct parameters.

169

Bibliography

Rdf vocabulary description language 1.0: Rdf schema. Technical report, W3C,
2004. URL http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

Heithem Abbes, Christophe Cerin, and Mohamed Jemni. A decentralized and
fault-tolerant desktop grid system for distributed applications. Concurr.
Comput. : Pract. Exper., 22:261–277, March 2010. ISSN 1532-0626.

Khalid Abdelkader, Jan Broeckhove, and Kurt Vanmechelen. Economic-based
resource management for dynamic computational grids: Extension to substi-
tutable cpu resources. In El Mostapha Aboulhamid and José Luis Sevillano,
editors, AICCSA, pages 1–6. IEEE, 2009. ISBN 978-1-4244-3807-5.

Nabil Abdennadher and Régis Boesch. Towards a peer-to-peer platform for high
performance computing. In Proceedings of the 2nd international conference
on Advances in grid and pervasive computing, GPC’07, pages 412–423, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-72359-2.

David Abramson, Rajkumar Buyya, and Jonathan Giddy. A computational
economy for grid computing and its implementation in the nimrod-g resource
brok. CoRR, CS.DC/0111048, 2001.

Devlic Alisa. Sip-based context distribution: does aggregation pay off? SIG-
COMM Comput. Commun. Rev., 40(5):35–46, October 2010. ISSN 0146-4833.

M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
2581 (Draft Standard), September 2009. URL http://www.ietf.org/rfc/

rfc5681.txt.

S.F. Altschul, W. Gish, W.Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, October
1990.

Balachandar R. Amarnath, Thamarai Selvi Somasundaram, Mahendran El-
lappan, and Rajkumar Buyya. Ontology-based grid resource management.
Softw., Pract. Exper., 39(17):1419–1438, 2009.

Kaizar Amin, Gregor von Laszewski, and Armin R. Mikler. Toward an archi-
tecture for ad hoc grids. IEEE 12th Int. Conf. on Advanced Computing and
Communications, ADCOM 2004, December 2004.

170

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5681.txt

BIBLIOGRAPHY 171

Yair Amir, Baruch Awerbuch, and Ryan S. Borgstrom. The Java market: Trans-
forming the Internet into a metacomputer. Technical Report CNDS-98-2, The
Johns Hopkins University, 1998.

David P. Anderson. BOINC: a system for public-resource computing and stor-
age. In GC ’04: Proceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing, pages 365–372, New York, NY, USA, 2004. ACM Press.

David P. Anderson, Eric Korpela, and Rom Walton. High-performance task
distribution for volunteer computing. In Proceedings of the First International
Conference on e-Science and Grid Computing, E-SCIENCE ’05, pages 196–
203, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2448-6.

David P. Anderson, Carl Christensen, and Bruce Allen. Grid resource
management—designing a runtime system for volunteer computing. In SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, page
126, New York, NY, USA, 2006. ACM Press. ISBN 0-7695-2700-0. doi:
http://doi.acm.org/10.1145/1188455.1188586.

Nazareno Andrade, Lauro Costa, Guilherme Germoglio, and Walfredo Cirne.
Peer-to-peer grid computing with the ourgrid community. In Proceedings of
the 23rd Brazilian Symposium on Computer Networks, May 2005.

Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang,
Balazs Konya, Maarten Litmaath, Paul Millar, and J. P. Navarro. GLUE
Specification v. 2.0. Technical report, Open Grid Forum, March 2009. URL
http://www.ogf.org/documents/GFD.147.pdf.

Cosimo Anglano, John Brevik, Massimo Canonico, Dan Nurmi, and Rich Wol-
ski. Fault-aware scheduling for bag-of-tasks applications on desktop grids. In
Proceedings of the 7th IEEE/ACM International Conference on Grid Com-
puting, GRID ’06, pages 56–63, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 1-4244-0343-X.

Cosimo Anglano, Massimo Canonico, and Marco Guazzone. The sharegrid peer-
to-peer desktop grid: Infrastructure, applications, and performance evalua-
tion. Journal of Grid Computing, 8:543–570, 2010. ISSN 1570-7873.

Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen
McGough, and Darren Pulsipher. Job submission description language (jsdl)
specification, version 1.0. Technical Report GFD-R.056, Open Grid Forum,
2007.

Gabriel Antoniu, Mathieu Jan, and David A. Noblet. Enabling the p2p jxta
platform for high-performance networking grid infrastructures. In Laurence T.
Yang, Omer F. Rana, Beniamino Di Martino, and Jack Dongarra, editors,
High Performance Computing and Communcations, volume 3726 of Lecture
Notes in Computer Science, pages 429–439. Springer Berlin / Heidelberg,
2005.

http://www.ogf.org/documents/GFD.147.pdf

BIBLIOGRAPHY 172

Knudsen B and Hein J. Rna secondary structure prediction using stochastic
context-free grammars and evolutionary history. Bioinformatics, 15:446–454,
1999.

Knudsen B and Hein J. Pfold: Rna secondary structure prediction using stochas-
tic context-free grammars. Nuc Acids Res, 31:3423–3428, 2003.

Mark Baker and Rajkumar Buyya. Cluster computing at a glance. In Rajku-
mar Buyya, editor, High Performance Cluster Computing: Architectures and
Systems, Volume 1, pages 3–47. Prentice Hall PTR, 1999.

Mark Baker, Rajkumar Buyya, and Domenico Laforenza. Grids and grid tech-
nologies for wide-area distributed computing. Softw. Pract. Exper., 32:1437–
1466, December 2002. ISSN 0038-0644.

Z. Balaton, G. Gombas, P. Kacsuk, A. Kornafeld, J. Kovacs, A.C. Marosi,
G. Vida, N. Podhorszki, and T. Kiss. Sztaki desktop grid: a modular and
scalable way of building large computing grids. In Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1 –8,
march 2007.

James D. Baldassari. Design and evaluation of a public resource computing
framework. Master’s thesis, Worcester Polytechnic Institue, Worcester, MA,
USA, May 2006.

A. Baratloo, M. Karaul., H. Karl, and Z. M. Kedem. Knittingfactory: An
infrastructure for distributed web applications. Technical Report TR 1997-
748, New York, NY, USA, November 1997.

A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wijckoff. Charlotte: metacom-
puting on the web. Future Gener. Comput. Syst., 15:559–570, October 1999.
ISSN 0167-739X.

Jakob E. Bardram. The Java Context Awareness Framework (JCAF) - A Service
Infrastructure and Programming Framework for Context-Aware Applications.
In Hans Gellersen, Roy Want, and Albrecht Schmidt, editors, Proceedings of
the 3rd International Conference on Pervasive Computing (Pervasive 2005),
volume 3468 of Lecture Notes in Computer Science, pages 98–115, Munich,
Germany, May 2005a. Springer Verlag.

Jakob E. Bardram. Tutorial for the Java Context Awareness Frame-
work (JCAF), version 1.5. Technical report, Centre for Per-
vasive Healthcare, Aarhus, Denmark, 2005b. Available from
http://www.daimi.au.dk/ bardram/jcaf/.

Jakob E. Bardram. Design, Implementation, and Evaluation of the
Java Context Awareness Framework (JCAF). Technical report, Cen-
tre for Pervasive Healthcare, Aarhus, Denmark, 2005c. Available from
http://www.daimi.au.dk/ bardram/jcaf/.

BIBLIOGRAPHY 173

Jakob E. Bardram. The contingency management framework version 1.0. Tech-
nical Report IT University Technical Report Series TR-2009-121, IT Univer-
sity of Copenhagen, Denmark, December 2009.

Blaise Barney. Introduction to parallel computing homepage. URL https:

//computing.llnl.gov/tutorials/.

Jyoti Batheja and Manish Parashar. A framework for opportunistic cluster com-
puting using javaspaces. In Proceedings of the 9th International Conference
on High-Performance Computing and Networking, HPCN Europe 2001, pages
647–656, London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42293-5.

Joseph Bauer. Identification and Modeling of Contexts for Different Information
Scenarios in Air Traffic. PhD thesis, Technische Universitat Berlin, Berlin,
Germany, 2003.

Pourebrahimi Behnaz and Bertels Koen. Auction protocols for resource allo-
cations in ad-hoc grids. In Proceedings of the 14th international Euro-Par
conference on Parallel Processing, Euro-Par ’08, pages 520–533, Berlin, Hei-
delberg, 2008. Springer-Verlag. ISBN 978-3-540-85450-0.

Rémi Bertin, Sascha Hunold, Arnaud Legrand, and Corinne Touati. From Flow
Control in Multi-path Networks to Multiple Bag-of-tasks Application Schedul-
ing on Grids. Rapport de recherche RR-7745, INRIA, Sep 2011.

Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker. Understanding avail-
ability. In Proceedings of the 2nd International Workshop on, volume 2735 of
Lecture Notes in Computer Science, pages 256–267. Springer Berlin / Heidel-
berg, February 2003.

Guy E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):
85–97, 1996.

John Brooke, Donal Fellows, Kevin Garwood, and Carole Goble. Semantic
matching of grid resource descriptions. In In Proceedings of the European
Across Grids Conference, 2004, pages 240–249. Springer, 2004.

Thomas Buchholz and Michael Schiffers. Quality of context: What it is and
why we need it. In In Proceedings of the 10th Workshop of the OpenView
University Association: OVUA03, 2003.

Paul D. Buck. Unofficial boinc wiki: Overview of daemons, 2005. URL www.

boinc-wiki.info/BOINC_Server-Side_Daemon_Program.

David Butler. Gridft server simple performance measurements. Technical Re-
port BBC Research White Paper WHP 178, British Broadcasting Corpora-
tion, January 2010.

R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy. In M. Parashar
and C. Lee, editors, Proceedings of the IEEE, volume 93 of Special Issue on
Grid Computing, pages 698–714. IEEE Press, New Jersey, USA, Mar 2005.

https://computing.llnl.gov/tutorials/
https://computing.llnl.gov/tutorials/
www.boinc-wiki.info/BOINC_Server-Side_Daemon_Program
www.boinc-wiki.info/BOINC_Server-Side_Daemon_Program

BIBLIOGRAPHY 174

Rajkumar Buyya and Sudharshan Vazhkudai. Compute power market: Towards
a market-oriented grid. In Proceedings of the 1st International Symposium on
Cluster Computing and the Grid, CCGRID ’01, pages 574–, Washington, DC,
USA, 2001. IEEE Computer Society. ISBN 0-7695-1010-8.

Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger.
Economic models for resource management and scheduling in grid comput-
ing. Concurrency and Computation: Practice and Experience, 14(13-15):
1507–1542, 2002.

Neil Cafferkey, Philip D. Healy, David A. Power, and John P. Morrison. Job
management in webcom. In ISPDC, pages 25–30. IEEE Computer Society,
2007.

Charlie Catlett, Pete Beckman, Dane Skow, and Ian Foster. Creating and
operating national-scale cyberinfrastructure services, May 2006. URL http:

//www.ctwatch.org/quarterly/print.php%3Fp=35.html.

A.J. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-
organizing computation on a peer-to-peer network. Systems, Man and Cy-
bernetics, Part A: Systems and Humans, IEEE Transactions on, 35(3):373 –
384, May 2005. ISSN 1083-4427. doi: 10.1109/TSMCA.2005.846396.

Matthew Chalmers. A historical view of context. Comput. Supported Coop.
Work, 13(3-4):223–247, August 2004. ISSN 0925-9724.

Steve J. Chapin, Dimitrios Katramatos, John F. Karpovich, and Andrew S.
Grimshaw. The legion resource management system. In Proceedings of the
Job Scheduling Strategies for Parallel Processing, IPPS/SPDP ’99/JSSPP ’99,
pages 162–178, London, UK, 1999. Springer-Verlag. ISBN 3-540-66676-1.
URL http://portal.acm.org/citation.cfm?id=646380.689541.

Kyle Chard, Kris Bubendorfer, and Peter Komisarczuk. High occupancy re-
source allocation for grid and cloud systems, a study with drive. In Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, pages 73–84, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-942-8. doi: http://doi.acm.org/10.1145/1851476.1851486. URL
http://doi.acm.org/10.1145/1851476.1851486.

Harry Chen, Filip Perich, Timothy W. Finin, and Anupam Joshi. Soupa: Stan-
dard ontology for ubiquitous and pervasive applications. In MobiQuitous,
pages 258–267. IEEE Computer Society, 2004. ISBN 0-7695-2208-4.

Keith Cheverst, Keith Mitchell, and Nigel Davies. Design of an object model for
a context sensitive tourist guide. In Computers and Graphics, pages 883–891,
1999.

Andrew A. Chien. Architecture of a commercial enterprise desktop grid: The
entropia system. In F. Berman, G. Fox, and T. Hey, editors, Making the

http://www.ctwatch.org/quarterly/print.php%3Fp=35.html
http://www.ctwatch.org/quarterly/print.php%3Fp=35.html
http://portal.acm.org/citation.cfm?id=646380.689541
http://doi.acm.org/10.1145/1851476.1851486

BIBLIOGRAPHY 175

Global Infrastructure a Reality, pages 337 – 350. John Wiley and Sons Ltd.,,
Chichester, UK, 2003.

Andrew A. Chien, Shawn Marlin, and Stephen T. Elbert. Resource manage-
ment in the entropia system. In Jarek Nabrzyski, Jennifer M. Schopf, and
Jan Weglarz, editors, Grid resource management, pages 431–450. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2004. ISBN 1-4020-7575-8.

Chia-Hung Chien, Paul Hsueh-Mtn Chang, and Von-Wun Soo. Market-oriented
multiple resource scheduling in grid computing environments. In Proceedings
of the 19th International Conference on Advanced Information Networking
and Applications - Volume 1, AINA ’05, pages 867–872, Washington, DC,
USA, 2005. IEEE Computer Society. ISBN 0-7695-2249-1. doi: http://dx.
doi.org/10.1109/AINA.2005.239. URL http://dx.doi.org/10.1109/AINA.

2005.239.

SungJin Choi and Rajkumar Buyya. Group-based adaptive result certification
mechanism in desktop grids. Future Generation Comp. Syst., 26(5):776–786,
2010.

SungJin Choi, HongSoo Kim, EunJung Byun, and ChongSun Hwang. A tax-
onomy of desktop grid systems focusing on scheduling. Technical Report
KU-CSE-2006-1120-02, Department of Computer Science and Engineering,
Korea University, Seong gbuk-gu, Seoul, 2006.

SungJin Choi, HongSoo Kim, EunJoung Byun, MaengSoon Baik, SungSuk Kim,
ChanYeol Park, and ChongSun Hwang. Characterizing and classifying desk-
top grid. In Cluster Computing and the Grid, 2007. CCGRID 2007. Sev-
enth IEEE International Symposium on, pages 743 –748, May 2007. doi:
10.1109/CCGRID.2007.31.

Bernd O. Christiansen, Peter R. Cappello, Mihai F. Ionescu, Michael O. Neary,
Klaus E. Schauser, and Daniel Wu. Javelin: Internet-based parallel computing
using java. Concurrency - Practice and Experience, 9(11):1139–1160, 1997.

Xingchen Chu, Krishna Nadiminti, Chao Jin, Srikumar Venugopal, and Rajku-
mar Buyya. Aneka: Next-generation enterprise grid platform for e-science
and e-business applications. In Proceedings of the Third IEEE International
Conference on e-Science and Grid Computing, pages 151–159, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3064-8.

Walfredo Cirne, Francisco Brasileiro, Nazareno Andrade, Lauro Costa, Alis-
son Andrade, Reynaldo Novaes, and Miranda Mowbray. Labs of the World,
Unite!!! Journal of Grid Computing, 4(3):225–246, 2006. doi: http:
//doi.ieeecomputersociety.org/10.1007/s10723-006-9040-x.

F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the multics
system. In Proceedings of the November 30–December 1, 1965, fall joint com-
puter conference, part I, AFIPS ’65 (Fall, part I), pages 185–196, New York,
NY, USA, 1965. ACM. doi: 10.1145/1463891.1463912.

http://dx.doi.org/10.1109/AINA.2005.239
http://dx.doi.org/10.1109/AINA.2005.239

BIBLIOGRAPHY 176

George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sys-
tems: Concepts and Design (4th Edition) (International Computer Science).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.
ISBN 0321263545.

Celso Maciel da Costa, Marcelo da Silva Strzykalski, and Guy Bemard. A
reflective middleware architecture to support adaptive mobile applications.
In Proceedings of the 2005 ACM symposium on Applied computing, SAC ’05,
pages 1151–1154, New York, NY, USA, 2005. ACM. ISBN 1-58113-964-0.

DAG. Directed Acyclic Graph Manager Homepage.
http://www.cs.wisc.edu/condor/dagman/.

Nurmi Daniel, Brevik John, and Wolski Rich. Modeling machine availability in
enterprise and wide-area distributed computing environments. In Jos Cunha
and Pedro Medeiros, editors, Euro-Par 2005 Parallel Processing, volume 3648
of Lecture Notes in Computer Science, pages 612–612. Springer Berlin / Hei-
delberg, 2005. ISBN 978-3-540-28700-1.

de Almeida Damiao Ribeiro, Baptista Claudio de Souza, and de Andrade
Fabio Gomes. Using ontologies in context-aware applications. In DEXA
’06: Proceedings of the 17th International Conference on Database and Ex-
pert Systems Applications, pages 349–353, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2641-1.

D. de Roure, M. Baker, N. R. Jennings, and N. Shadbolt. The evolution of the
grid, 2003.

Anind K. Dey. Understanding and using context. Personal Ubiquitous Com-
put., 5(1):4–7, 2001. ISSN 1617-4909. doi: http://dx.doi.org/10.1007/
s007790170019.

Distributed.net. distributed.net homepage. http://www.distributed.net/.

Samir Djilali, Thomas Herault, Oleg Lodygensky, Tangui Morlier, Gilles Fedak,
and Franck Cappello. Rpc-v: Toward fault-tolerant rpc for internet connected
desktop grids with volatile nodes. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, SC ’04, pages 39–, Washington, DC, USA,
2004. IEEE Computer Society. ISBN 0-7695-2153-3.

Feitelson Dror and Nitzberg Bill. Job characteristics of a production parallel
scientific workload on the nasa ames ipsc/860. In Dror Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, volume
949 of Lecture Notes in Computer Science, pages 337–360. Springer Berlin /
Heidelberg, 1995. ISBN 978-3-540-60153-1.

Derek L Eager, Edward D Lazowska, and John Zahorjan. A comparison of
receiver-initiated and sender-initiated adaptive load sharing. Performance
Evaluation, 6(1):53 – 68, 1986. ISSN 0166-5316.

BIBLIOGRAPHY 177

Howell F and McNab R. Sim java: A discrete event simulation package for java
with applications in computer systems modelling. 1st International Confer-
ence on Webbased Modelling and Simulation, 1998.

G. Fedak, C. Germain, V. Neri, and F.Cappello. XtremWeb: a generic global
computing system. In Proceedings of First IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, pages 582–587. IEEE Press, 2001.

Gilles Fedak. Recent advances and research challenges in desktop grid and
volunteer computing. In Frdric Desprez, Vladimir Getov, Thierry Priol, and
Ramin Yahyapour, editors, Grids, P2P and Services Computing, pages 171–
185. Springer US, 2010. ISBN 978-1-4419-6794-7.

Gilles Fedak, Haiwu He, Oleg Lodygensky, Zoltan Balaton, Zoltan Farkas, Ga-
bor Gombas, Peter Kacsuk, Robert Lovas, Attila Csaba Marosi, Ian Kel-
ley, Ian Taylor, Gabor Terstyanszky, Tamas Kiss, Miguel Cardenas-Montes,
Ad Emmen, and Filipe Araujo. Edges: A bridge between desktop grids and
service grids. In Proceedings of the The Third ChinaGrid Annual Conference
(chinagrid 2008), CHINAGRID ’08, pages 3–9, Washington, DC, USA, 2008.
IEEE Computer Society. ISBN 978-0-7695-3306-3.

Marco Ferrante. The jxta way to grid: a dead
end? JXTA/Grid survey slide (2008), available at
http://www.disi.unige.it/person/FerranteM/papers/JXTA-survey.pdf,
2008.

Ian Foster. Globus toolkit version 4: Software for service-oriented systems.
Journal of Computer Science and Technology, 21(4):513–520, 2006.

Ian Foster and Adriana Iamnitchi. On death, taxes, and the convergence of
peer-to-peer and grid computing. In In 2nd International Workshop on Peer-
to-Peer Systems (IPTPS03, pages 118–128, 2003.

Ian Foster and Carl Kesselman. Computational grids. pages 15–51, 1999.

Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid:
Enabling scalable virtual organizations. Int. J. High Perform. Comput.
Appl., 15(3):200–222, August 2001. ISSN 1094-3420. doi: 10.1177/
109434200101500302.

James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke.
Condor-g: A computation management agent for multi-institutional grids.
Cluster Computing, 5:237–246, July 2002. ISSN 1386-7857. doi: 10.1023/A:
1015617019423. URL http://portal.acm.org/citation.cfm?id=592899.

593005.

T. Friese, M. Smith, and B. Freisleben. Service-oriented ad hoc grids. In Thomas
Barth and Anke Schll, editors, Grid Computing, pages 143–190. Vieweg, 2006.
ISBN 978-3-8348-0033-6. doi: 10.1007/978-3-8348-9101-3 8. URL http://

dx.doi.org/10.1007/978-3-8348-9101-3_8.

http://portal.acm.org/citation.cfm?id=592899.593005
http://portal.acm.org/citation.cfm?id=592899.593005
http://dx.doi.org/10.1007/978-3-8348-9101-3_8
http://dx.doi.org/10.1007/978-3-8348-9101-3_8

BIBLIOGRAPHY 178

Mohammad Muztaba Fuad. An autonomic software architecture for distributed
applications. PhD thesis, Bozeman, MT, USA, June 2007.

Nathalie Furmento, Jeffrey Hau, William Lee, Steven Newhouse, and John Dar-
lington. Implementations of a service-oriented architecture on top of jini, jxta
and ogsi. In Marios D. Dikaiakos, editor, Grid Computing, volume 3165 of
Lecture Notes in Computer Science, pages 249–261. Springer Berlin / Heidel-
berg, 2004.

Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. European
datagrid project: Experiences of deploying a large scale testbed for e-science
applications. In Performance Evaluation of Complex Systems: Techniques
and Tools, Performance 2002, Tutorial Lectures, pages 480–500, London, UK,
UK, 2002. Springer-Verlag. ISBN 3-540-44252-9.

Dennis Gannon, Rachana Ananthakrishnan, Sriram Krishnan, Madhusudhan
Govindaraju, Lavanya Ramakrishnan, and Aleksander Slominski. Grid Web
Services and Application Factories, pages 251–264. John Wiley and Sons,
Ltd, 2003. ISBN 9780470867167. doi: 10.1002/0470867167.ch9. URL http:

//dx.doi.org/10.1002/0470867167.ch9.

gLite. glite - lightweight middleware for grid computing homepage.
http://glite.cern.ch/.

Jacek Gomoluch and Michael Schroeder. Market-based resource allocation for
grid computing: A model and simulation. In Proceedings of the First Interna-
tional Workshop on Middleware for Grid Computing. Rio de, pages 211–218,
2003.

GPT. Grid Packaging Tools Homepage. http://grid.ncsa.illinois.edu/gpt/.

Brusa Graciela, Caliusco Maria Laura, and Chiotti Omar. A process for building
a domain ontology: an experience in developing a government budgetary on-
tology. In Orgun Mehmet A. and Meyer Thomas, editors, Second Australasian
Ontology Workshop (AOW 2006), volume 72 of CRPIT, pages 7–15, Hobart,
Australia, 2006. ACS.

H. Gümüskaya, A. V. Gürel, and M. V. Nural. Architectures for small mobile
communication devices and performance analyses. In International Confer-
ence on the Applications of Digital Information and Web Technologies, pages
342–347, Ostrava, Czech Republic, August 2008.

Alastair Hampshire and Gordon Blair. Jgrid: Exploiting jini for the develop-
ment of grid applications. In Nicolas Guelfi, Egidio Astesiano, and Gianna
Reggio, editors, Scientific Engineering for Distributed Java Applications, vol-
ume 2604 of Lecture Notes in Computer Science, pages 132–142. Springer
Berlin / Heidelberg, 2003.

http://dx.doi.org/10.1002/0470867167.ch9
http://dx.doi.org/10.1002/0470867167.ch9

BIBLIOGRAPHY 179

K. A. Hawick and H. A. James. A java-based parallel programming support
environment. In Proceedings of the 8th International Conference on High-
Performance Computing and Networking, HPCN Europe 2000, pages 363–
372, London, UK, 2000. Springer-Verlag. ISBN 3-540-67553-1.

Juan David Hincapié-Ramos, Aurlien Tabard, and Jakob Bardram. Gridorbit –
an awareness system supporting the adoption of a volunteer computing infras-
tructure. In CHI ’11: Proceedings of the 29th of the international conference
on Human factors in computing systems, New York, NY, USA, 2011. ACM.

Yan Huang. Jisga: A jini-based service-oriented grid architecture. Int. J. High
Perform. Comput. Appl., 17:317–327, August 2003. ISSN 1094-3420.

Soonwook Hwang and Carl Kesselman. A flexible framework for fault tolerance
in the grid. J. Grid Comput., 1(3):251–272, 2003.

Adriana Iamnitchi and Ian T. Foster. A problem-specific fault-tolerance mech-
anism for asynchronous, distributed systems. In ICPP, pages 4–14, 2000.

Brevik J., Nurmi D., and Wolski R. Automatic methods for predicting machine
availability in desktop grid and peer-to-peer systems. In Proceedings of the
2004 IEEE International Symposium on Cluster Computing and the Grid,
CCGRID ’04, pages 190–199, Washington, DC, USA, 2004. IEEE Computer
Society.

Bart Jacob. Grid computing: What are the key components? IBM developer
works, June 2003. URL http://www-106.ibm.com/developerworks/grid/

library/gr-overview/.

Bart Jacob, Luis Ferreira, Norbert Bieberstein, Candice Gilzean, Jean-Yves
Girard, Roman Strachowski, and Seong (Steve) Yu. Enabling Applications for
Grid Computing with Globus. IBM Red Books, June 2003. ISBN 073845333.

Bart Jacob, Michael Brown, Kentaro Fukui, and Nihar Trivedi. Introduction to
Grid Computing. IBM Red Books, December 2005. ISBN 0738494003.

Case J.D., Fedor M., Schoffstall M.L., and Davin J. Simple Network Man-
agement Protocol (SNMP). RFC 1157 (Historic), May 1990. URL http:

//www.ietf.org/rfc/rfc1157.txt.

Kerry Jean, Alex Galis, and Alvin Tan. Context-aware grid services: Issues and
approaches. In International Conference on Computational Science, pages
166–173, 2004.

Hai Jin. Challenges of grid computing. In Wenfei Fan, Zhaohui Wu, and Jun
Yang, editors, Advances in Web-Age Information Management, volume 3739
of Lecture Notes in Computer Science, pages 25–31. Springer Berlin / Heidel-
berg, 2005.

http://www-106.ibm.com/developerworks/grid/library/gr-overview/
http://www-106.ibm.com/developerworks/grid/library/gr-overview/
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt

BIBLIOGRAPHY 180

Wingstrom Joshua and Casanova Henri. Statistical Modeling of Resource Avail-
ability in Desktop Grids. Technical report, University of Hawaii atManoa,
Honolulu, U.S.A., Nov 2007.

Z. Juhasz, A. Andics, and S. Pota. Jm: A jini framework for global computing.
In Cluster Computing and the Grid, 2002. 2nd IEEE/ACM International
Symposium on, page 395, may 2002a.

Zoltan Juhasz, Arpad Andics, Krisztian Kuntner, and Szabolcs Pota. Towards
a robust and fault-tolerant multicast discovery architecture for global com-
puting grids. In In Proceedings of the 4th DAPSYS workshop, pages 74–81.
Desprez, 2002b.

Henricksen Karen, Indulska Jadwiga, and Rakotonirainy Andry. Generating
context management infrastructure from high-level context models. In 4th
International Conference on Mobile Data Management, Melbourne, Australia,
2003.

S. Kent, P. Broadbent, N. Warren, and S.R. Gulliver. On-demand hd video
using jini based grid. In Multimedia and Expo, 2008 IEEE International
Conference on, pages 1045 –1048, April 2008.

Jik-Soo Kim, Beomseok Nam, Michael A. Marsh, Peter J. Keleher, Bobby Bhat-
tacharjee, Derek Richardson, Dennis Wellnitz, and Alan Sussman. Creating a
robust desktop grid using peer-to-peer services. In IPDPS, pages 1–7. IEEE,
2007.

Paul Klemperer. How (not) to run auctions: The european 3g telecom auctions.
CEPR Discussion Papers 3215, C.E.P.R. Discussion Papers, 2002.

Paul Klemperer. Auctions: Theory and Practice, chapter 1. Princeton Univer-
sity Press, 2004.

Melvin Koh, Jie Song, Liang Peng, and Simon See. Service Registry Discovery
using GridSearch P2P Framework. Proceeding of CCGrid, 2:11, 2006. doi:
http://doi.ieeecomputersociety.org/10.1109/CCGRID.2006.166.

Derrick Kondo. Scheduling Task Parallel Applications for Rapid Turnaround on
Desktop Grids. PhD thesis, University of California, San Diego, 2005.

Derrick Kondo, Andrew A. Chien, and Henri Casanova. Resource management
for rapid application turnaround on enterprise desktop grids. In SC, page 17.
IEEE Computer Society, 2004. ISBN 0-7695-2153-3.

Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A taxonomy
and survey of grid resource management systems for distributed computing.
Softw. Pract. Exper., 32:135–164, February 2002. ISSN 0038-0644.

H. Kurdi, M. Li, and H. Al-Raweshidy. A classification of emerging and tra-
ditional grid systems. Distributed Systems Online, IEEE, 9(3):1–1, March
2008.

BIBLIOGRAPHY 181

Mcguinness Deborah L. and van Harmelen Frank. OWL web ontology lan-
guage overview. W3C recommendation, W3C - World Wide Web Consortium,
February 2004. URL http://www.w3.org/TR/owl-features/.

Kevin Lai, Lars Rasmusson, Eytan Adar, Li Zhang, and Bernardo A. Huber-
man. Tycoon: An implementation of a distributed, market-based resource
allocation system. Multiagent Grid Syst., 1:169–182, August 2005. ISSN
1574-1702.

Spyros Lalis and Alexandros Karipidis. Jaws: An open market-based framework
for distributed computing over the internet. In Rajkumar Buyya and Mark
Baker, editors, Grid Computing GRID 2000, volume 1971 of Lecture Notes
in Computer Science, pages 87–106. Springer Berlin / Heidelberg, 2000.

Laszewski, Warren Smith, and Steven Tuecke. A directory service for config-
uring high-performance distributed computations. In Proceedings of the 6th
IEEE International Symposium on High Performance Distributed Computing,
HPDC ’97, pages 365–, Washington, DC, USA, 1997. IEEE Computer Soci-
ety. ISBN 0-8186-8117-9. URL http://portal.acm.org/citation.cfm?id=

822082.823138.

Gregor von Laszewski, Eric Blau, Michael Bletzinger, Jarek Gawor, Peter Lane,
Stuart Martin, and Michael Russell. Software, component, and service de-
ployment in computational grids. In Proceedings of the IFIP/ACM Working
Conference on Component Deployment, pages 244–256, London, UK, 2002.
Springer-Verlag. ISBN 3-540-43847-5.

Young Choon Lee and Albert Y. Zomaya. On effective slack reclamation in task
scheduling for energy reduction. JIPS, 5(4):175–186, 2009.

Capra Licia, Emmerich Wolfgang, and Mascolo Cecilia. Reflective middleware
solutions for context-aware applications. In Proceedings of the Third Inter-
national Conference on Metalevel Architectures and Separation of Crosscut-
ting Concerns, REFLECTION ’01, pages 126–133, London, UK, UK, 2001.
Springer-Verlag. ISBN 3-540-42618-3.

M.J. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle Work-
stations. In Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104–111. IEEE Press, 1988.

Lu Liu and Nick Antonopoulos. From client-server to p2p networking. In
Xuemin Shen, Heather Yu, John Buford, and Mursalin Akon, editors, Hand-
book of Peer-to-Peer Networking, pages 71–89. Springer US, 2010. ISBN 978-
0-387-09751-0.

O. Lodygensky, G. Fedak, F. Cappello, V. Neri, M. Livny, and D. Thain.
Xtremweb & condor sharing resources between internet connected condor
pools. In Proceedings of the 3st International Symposium on Cluster Com-
puting and the Grid, CCGRID ’03, pages 382–, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1919-9.

http://www.w3.org/TR/owl-features/
http://portal.acm.org/citation.cfm?id=822082.823138
http://portal.acm.org/citation.cfm?id=822082.823138

BIBLIOGRAPHY 182

Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal. Al-
chemi: A .net-based enterprise grid computing system. In Hamid R. Arabnia
and Rose Joshua, editors, International Conference on Internet Computing,
pages 269–278. CSREA Press, 2005. ISBN 1-932415-69-6.

Amdahl Gene M. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, AFIPS ’67 (Spring), pages 483–485, New York,
NY, USA, 1967. ACM.

Ausubel Lawrence M. An Efficient Ascending-Bid Auction for Multiple Objects.
The American Economic Review, 94(5), 2004. ISSN 00028282.

Grüninger M. and Fox M. Methodology for the Design and Evaluation of On-
tologies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge
Sharing, April 1995.

P Nixon MA Razzaque, S Dobson. Categorization and modelling of quality in
context information. In Proceedings of the IJCAI 2005 Workshop on AI and
Autonomic Communications, 2005.

T. Malone, R. Fikes, K. Grant, and M Howard. Enterprise: A market-like
task scheduler for distributed computing environments, pages 177–205. North-
Holland, 1988.

Joe Mambretti. The grid and grid network services. In Franco Travostino, Joe
Mambretti, and Gigi Karmous-Edwards, editors, Grid Networks: Enabling
Grids with Advanced Communication Technology, pages 1–16. John Wiley
and Sons, Ltd.,, 2006. ISBN 0-470-01748-1.

Csaba Attila Marosi, Gabor Gombás, Zoltán Balaton, Péter Kacsuk, and Tamás
Kiss. Sztaki desktop grid: Building a scalable, secure platform for desktop
grid computing. In Marco Danelutto, Paraskevi Fragopoulou, and Vladimir
Getov, editors, CoreGRID Workshop - Making Grids Work, pages 365–376.
Springer, 2007. ISBN 978-0-387-78447-2.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel
programming. Software Patterns Series. Addison-Wesley Professional, first
edition, 2004. ISBN 0321228111.

Jim Maurer. A conversation with david anderson. Queue, 3(6):18–25, July 2005.
ISSN 1542-7730.

mgr inż. Marcin Cieślak. Boinc on jxta - suggestions for improvements. Technical
report, Poland, June 2007.

Daniel Minoli. Grid system deployment issues, approaches, and tools. In A
Networking Approach to Grid Computing, pages 201–331. John Wiley and
Sons, Inc.,, Hoboken, NJ, USA, 2005. ISBN 0-471-68756-1.

BIBLIOGRAPHY 183

Alberto Montresor, Hein Meling, and zalp Babaoglu. Messor: Load-balancing
through a swarm of autonomous agents. In Gianluca Moro and Manolis
Koubarakis, editors, Agents and Peer-to-Peer Computing, volume 2530 of
Lecture Notes in Computer Science, pages 125–137. Springer Berlin / Heidel-
berg, 2003.

John P. Morrison, Brian C. Clayton, David A. Power, and Adarsh Patil.
Webcom-g: Grid enabled metacomputing. Neural Parallel & Scientific
Comp., 12:419–438, 2004.

Michael Neary, Alan Phipps, Steven Richman, and Peter Cappello. Javelin
2.0: Java-based parallel computing on the internet. In Arndt Bode, Thomas
Ludwig, Wolfgang Karl, and Roland Wismller, editors, Euro-Par 2000 Par-
allel Processing, volume 1900 of Lecture Notes in Computer Science, pages
1231–1238. Springer Berlin / Heidelberg, 2000.

Michael O. Neary, Sean P. Brydon, Paul Kmiec, Sami Rollins, and Peter Cap-
pello. Javelin++: scalability issues in global computing. In Proceedings of
the ACM 1999 conference on Java Grande, JAVA ’99, pages 171–180, New
York, NY, USA, 1999a. ACM. ISBN 1-58113-161-5.

Michael O. Neary, Bernd O. Christiansen, Peter Cappello, and Klaus E.
Schauser. Javelin: parallel computing on the internet. Future Gener. Comput.
Syst., 15:659–674, October 1999b. ISSN 0167-739X.

N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed compu-
tation over the internet-the popcorn project. In Distributed Computing Sys-
tems, 1998. Proceedings. 18th International Conference on, pages 592 –601,
May 1998.

R. Olejnik, E. Laskowski, B. Toursel, M. Tudruj, and I. Alshabani. Dg-adaj:
a java computing platform for desktop grid. In Marian Bubak, Michal Tu-
rala, and Kazimierz Wiatr, editors, Cracow Grid Workshop 2005 Proceed-
ings, Cracow, Poland, April 2006. Published by Academic Computer Centre
CYFRONET AGH. ISBN 1-58113-161-5.

Zhelong Pan, Xiaojuan Ren, Rudolf Eigenmann, and Dongyan Xu. Executing
mpi programs on virtual machines in an internet sharing system. In Proceed-
ings of the 20th international conference on Parallel and distributed process-
ing, IPDPS’06, pages 101–101, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 1-4244-0054-6.

R. Mantovaneli Pessoa, C. Z. Calvi, J.G. Pereira Filho, C.R. Guareis de Farias,
and R. Neisse. Semantic context reasoning using ontology based models. In
A. Pras and M.J. van Sinderen, editors, Dependable and Adaptable Networks
and Services, 13th Open European Summer School and IFIP TC6.6 Workshop
(EUNICE), volume LNCS 4606 of Lectures Notes in Computer Science, pages
44–51, Germany, July 2007. Springer Verlag.

BIBLIOGRAPHY 184

Serge Petiton, Lamine Aouad, and Laurent Choy. Peer to peer large scale
linear algebra programming and experimentations. In Ivan Lirkov, Svetozar
Margenov, and Jerzy Wasniewski, editors, Large-Scale Scientific Computing,
volume 3743 of Lecture Notes in Computer Science, pages 430–437. Springer
Berlin / Heidelberg, 2006.

Tran Vu Pham, Lydia MS Lau, and Peter M Dew. An adaptive approach to
p2p resource discovery in distributed scientific research communities. Pro-
ceeding of CCGrid, 2:12, 2006. doi: http://doi.ieeecomputersociety.org/10.
1109/CCGRID.2006.119.

Alper Pinar, Corcho Oscar, Kotsiopoulos Ioannis, Missier Paolo, Bechhofer
Sean, and Goble Carole. S-OGSA as a Reference Architecture for OntoGrid
and for the Semantic Grid. In GGF16 Semantic Grid Workshop, 2006.

Line Pouchard, Luca Cinquini, Bob Drach, Don Middleton, David E. Bernholdt,
Kasidit Chanchio andIan T. Foster andVeronika Nefedova andDavid Brown,
Peter Fox, Jose Garcia, Gary Strand, Dean Williams, Ann L. Chervenak,
Carl Kesselman, Arie Shoshani, and Alex Sim. An ontology for scientific
information in a grid environment:the earth system grid. In CCGRID, pages
626–632, 2003.

Eric Prud́hommeaux and Andy Seaborne. SPARQL query language for RDF,
2008. URL http://www.w3.org/TR/rdf-sparql-query/.

R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed resource man-
agement for high throughput computing. High Performance Distributed Com-
puting, 1998. Proceedings. The Seventh International Symposium on, pages
140–146, July 1998. ISSN 1082-8907.

Rajesh Raman, Marvin Solomon, Miron Livny, and Alain Roy. The classads lan-
guage. In Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz, editors, Grid
resource management, pages 255–270. Kluwer Academic Publishers, Norwell,
MA, USA, 2004. ISBN 1-4020-7575-8.

Ala Rezmerita, Vincent Neri, and Franck Cappello. Toward Third Generation
Internet Desktop Grids. Technical Report RT-0335, INRIA, 2007. URL
http://hal.inria.fr/inria-00148923/PDF/RT-0335.pdf.

RSL. The Globus Resource Specification Language RSL v1.0 .
http://www.globus.org/toolkit/docs/2.4/gram/rsl spec1.html, 2007.

Robert G Sargent. Verification and validation of simulation models. Science
Education, 17(2):161–103, 1995.

Luis F. G. Sarmenta and Satoshi Hirano. Bayanihan: building and studying
web-based volunteer computing systems using java. Future Gener. Comput.
Syst., 15:675–686, October 1999. ISSN 0167-739X.

http://www.w3.org/TR/rdf-sparql-query/
http://hal.inria.fr/inria-00148923/PDF/RT-0335.pdf

BIBLIOGRAPHY 185

Hirano Satoshi. Horb: Distributed execution of java programs. In Takashi
Masuda, Yoshifumi Masunaga, and Michiharu Tsukamoto, editors, Worldwide
Computing and Its Applications, volume 1274 of Lecture Notes in Computer
Science, pages 29–42. Springer Berlin / Heidelberg, 1997.

Bill Schilit, Norman Adams, and Roy Want. Context-aware computing appli-
cations. In Proceedings of the Workshop on Mobile Computing Systems and
Applications, pages 85–90. IEEE Computer Society, 1994.

B. Schnizler. Resource Allocation in the Grid : A Market Engineering Approach.
Dissertation, Universität Karlsruhe (TH), 2007. ISBN: 978-3-86644-165-1.

Christian Schönberg and Burkhard Freitag. Evaluating rdf querying frameworks
for document metadata. Technical Report MIP-0903, University of Passau,
2009.

Jennifer M. Schopf, Mike D́Arcy Neill Miller, Laura Pearlman, Ian Foster, and
Carl Kesselman. Monitoring and discovery in a web services framework: Func-
tionality and performance of the globus toolkit’s mds4. Technical Report
ANL/MCS-P1248-0405, Argonne National Laboratory, April 2005.

Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and Rajkumar
Buyya. Libra: a computational economy-based job scheduling system for
clusters. Softw. Pract. Exper., 34:573–590, May 2004. ISSN 0038-0644.

Joa̋o Nuno Silva, Lu Veiga, and Paulo Ferreira. nuboinc: Boinc extensions for
community cycle sharing. Second IEEE International Conference on Self-
Adaptive and Self-Organizing Systems Workshops, pages 248–253, October
2008.

Matthew Smith, Thomas Friese, and Bernd Freisleben. Towards a service-
oriented ad hoc grid. In Proceedings of the Third International Symposium on
Parallel and Distributed Computing/Third International Workshop on Algo-
rithms, Models and Tools for Parallel Computing on Heterogeneous Networks,
ISPDC ’04, pages 201–208, Washington, DC, USA, 2004. IEEE Computer So-
ciety. ISBN 0-7695-2210-6.

Jason Sonnek, Mukesh Nathan, Abhishek Chandra, and Jon Weissman.
Reputation-based scheduling on unreliable distributed infrastructures. In Pro-
ceedings of the 26th IEEE International Conference on Distributed Computing
Systems, ICDCS ’06, pages 30–37, Washington, DC, USA, 2006. IEEE Com-
puter Society. ISBN 0-7695-2540-7.

Florian Stegmaier, Udo Gröbner, Mario Dö ller, Harald Kosch, and Gero Baese.
Evaluation of current rdf database solutions. In Proceedings of 10th Interna-
tional Workshop of the Multimedia Metadata Community on Semantic Mul-
timedia Database Technologies, SeMuDaTe09, 2009.

BIBLIOGRAPHY 186

Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey. In
Workshop on Advanced Context Modelling, Reasoning and Management, Ubi-
Comp 2004 - The Sixth International Conference on Ubiquitous Computing,
Nottingham/England, 2004.

Z Sükösd, B Knudsen, M Vaerum, J Kjems, and E S Andersen. Multithreaded
comparative rna secondary structure prediction using stochastic context-free
grammars. BMC Bioinformatics, 12, 2011.

Domenico Talia and Paolo Trunfio. A p2p grid services-based protocol: Design
and evaluation. In M. Danelutto, D. Laforenza, and M. Vanneschi, editors,
Proceedings of Euro-Par 2004, volume 3149 of Lecture Notes in Computer
Science, pages 1022–1031. Springer Verlag, 2004.

Andrew Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms (2nd ed.). Prentice Hall, 2007.

Hongsuda Tangmunarunkit, Stefan Decker, and Carl Kesselman. Ontology-
based resource matching in the grid - the grid meets the semantic web. In In
Proceedings of the Second International Semantic Web Conference, Sanibel-
Captiva Islands. Springer, 2003.

Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor
– a distributed job scheduler. In Thomas Sterling, editor, Beowulf Cluster
Computing with Linux. MIT Press, October 2001.

Ian J. Taylor and Andrew Harrison. From P2P and Grids to Services on the
Web: Evolving Distributed Communities. Computer Communications and
Networks. Springer Publishing Company, Incorporated, 2nd edition, 2009.
ISBN 9781848001220.

Yong Meng Teo and Xianbing Wang. Alice: A scalable runtime infrastructure
for high performance grid computing. In Hai Jin, Guang R. Gao, Zhiwei
Xu, and Hao Chen, editors, NPC, volume 3222 of Lecture Notes in Computer
Science, pages 101–109. Springer, 2004. ISBN 3-540-23388-1.

Douglas Thain and Miron Livny. Multiple bypass: Interposition agents for
distributed computing. Cluster Computing, 4(1):39–47, March 2001. ISSN
1386-7857.

Berners-Lee Tim, Hendler James, and Lassila Ora. The semantic web. Scientific
American, May 2001.

P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Penna-
nen, K. Popov, V. Vlassov, and S. Haridi. Peer-to-peer resource discovery in
grids: Models and systems. Future Gener. Comput. Syst., 23:864–878, August
2007. ISSN 0167-739X.

BIBLIOGRAPHY 187

George Tsouloupas and Marios D. Dikaiakos. Characterization of computational
grid resources using low-level benchmarks. In Proceedings of the Second IEEE
International Conference on e-Science and Grid Computing, E-SCIENCE ’06,
pages 70–, Washington, DC, USA, 2006. IEEE Computer Society. ISBN
0-7695-2734-5. doi: http://dx.doi.org/10.1109/E-SCIENCE.2006.36. URL
http://dx.doi.org/10.1109/E-SCIENCE.2006.36.

Kurt Vanmechelen. A performance and feature-driven comparison of jini and
jxta frameworks. Master’s thesis, University of Antwerp, Antwerpen, Bel-
gium, 2003.

Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A tax-
onomy of data grids for distributed data sharing, management, and process-
ing. ACM Comput. Surv., 38, June 2006. ISSN 0360-0300.

Dinesh C. Verma. Legitimate Peer to Peer Network Applications: Beyond File
and Music Swapping. Wiley-Interscience, 2004. ISBN 0471463698.

Monica Vladoiu and Zoran Constantinescu. An extended master worker model
for a desktop grid computing platform (qadpz). In ICSOFT 2008 - Proceedings
of the Third International Conference on Software and Data Technologies,
pages 169–174. INSTICC Press, 2008.

Monica Mihaela Vladoiu, Zoran Constantinescu, and Catalina Negoita. Avail-
ability of computational resources for desktop grid computing. Bulletin of
PG University, MIF Series 1, Petroleum-Gas University of Ploiesti (UPG),
Romania, 2009.

Gregor von Laszewski, Warren Smith, Steven Tuecke, Steven Fitzgerald, Ian
Foster, and Carl Kesselman. A directory service for configuring high-
performance distributed computations. High-Performance Distributed Com-
puting, International Symposium on, 0:365, 1997. ISSN 1082-8907. doi:
http://doi.ieeecomputersociety.org/10.1109/HPDC.1997.626445.

Gregor von Laszewski, Eric Blau, Michael Bletzinger, Jarek Gawor, Peter Lane,
Stuart Martin, and Michael Russell. Software, component, and service de-
ployment in computational grids. In Judith Bishop, editor, Component De-
ployment, volume 2370 of Lecture Notes in Computer Science, pages 79–103.
Springer Berlin / Heidelberg, 2002.

Jim Waldo. The Jini Specifications. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd edition, 2000. ISBN 0201726173.

Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Jeffrey O. Kephart,
and W. Scott Stornetta. Spawn: A distributed computational economy. IEEE
Trans. Softw. Eng., 18:103–117, February 1992. ISSN 0098-5589.

Xiao Hang Wang, Tao Gu, Da Qing Zhang, and Hung Keng Pung. Ontol-
ogy based context modeling and reasoning using owl. In IEEE International

http://dx.doi.org/10.1109/E-SCIENCE.2006.36

BIBLIOGRAPHY 188

Conference on Pervasive Computing and Communication (PerCom04), pages
18–22, 2004.

Zhuozhi Wang and Kaizhong Zhang. Rna secondary structure prediction. In
Tao Jiang, Ying Xu, and Michael Q. Zhang, editors, Current Topics in Com-
putational Molecular Biology, pages 345–363. MIT Press, Cambridge, MA,
USA, 2002. ISBN 0-262-10092-2.

Marek Wieczorek, Stefan Podlipnig, Radu Prodan, and Thomas Fahringer. Ap-
plying double auctions for scheduling of workflows on the grid. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 27:1–
27:11, Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9.
URL http://portal.acm.org/citation.cfm?id=1413370.1413398.

Allcock William, Bresnahan John, Kettimuthu Rajkumar, Link Michael, Du-
mitrescu Catalin, Raicu Ioan, and Foster Ian. The globus striped gridftp
framework and server. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, SC ’05, pages 54–64, Washington, DC, USA, 2005. IEEE
Computer Society. ISBN 1-59593-061-2.

R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing market-based re-
source allocation strategies for the computational grid. International Journal
of High Performance Computing Applications, 15(3):258–281, Fall 2001.

Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double
auctions for electionic commerce: theory and implementation. Decis. Support
Syst., 24(1):17–27, November 1998. ISSN 0167-9236.

Lijuan Xiao, Yanmin Zhu, Lionel M. Ni, and Zhiwei Xu. Gridis: An incentive-
based grid scheduling. In IPDPS. IEEE Computer Society, 2005. ISBN 0-
7695-2312-9.

Wei Xing, Marios D. Dikaiakos, and Rizos Sakellariou. A core grid ontology
for the semantic grid. Cluster Computing and the Grid, IEEE International
Symposium on, 0:178–184, 2006. doi: http://doi.ieeecomputersociety.org/10.
1109/CCGRID.2006.3.

Jia Yu and Rajkumar Buyya. A taxonomy of workflow management systems
for grid computing. J. Grid Comput., 3(3-4):171–200, 2005.

Yuanyuan Zhang, Wei Sun, and Yasushi Inoguchi. Predict task running time in
grid environments based on cpu load predictions. Future Generation Comp.
Syst., 24(6):489–497, 2008.

Liu Zhong, Dou Wen, Zhang Wei Ming, and Zou Peng. Paradropper: A
general-purpose global computing environment built on peer-to-peer over-
lay network. In Proceedings of the 23rd International Conference on Dis-
tributed Computing Systems, ICDCSW ’03, pages 954–, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1921-0. URL http:

//portal.acm.org/citation.cfm?id=839280.840612.

http://portal.acm.org/citation.cfm?id=1413370.1413398
http://portal.acm.org/citation.cfm?id=839280.840612
http://portal.acm.org/citation.cfm?id=839280.840612

BIBLIOGRAPHY 189

Albert Y. Zomaya. Parallel computing for bioinformatics and computational
biology : models, enabling technologies, and case studies / edited by Albert Y.
Zomaya. John Wiley & Sons, Hoboken, N.J. :, 2006. ISBN 9780471718482
0471718483.

	I Introduction
	Introduction
	Problem Description
	Research Questions
	Research Methodology
	Contributions
	Thesis Outline

	Related Work
	Introduction
	Overview of Desktop Grid Systems
	BOINC
	DG-ADAJ
	SZTAKI Local Desktop Grid
	distributed.net
	XtremWeb
	Alchemi
	Bayanihan
	Condor
	Entropia
	QADPZ
	Javelin
	Charlotte
	CPM
	POPCORN
	The Spawn System
	OurGrid

	Classification of Desktop Grids
	Centralized Desktop Grids
	Distributed Desktop Grid System
	Computational Grids based on JXTA Technology
	Jini for Grid Computing

	Discussion
	Desktop Grid Architecture
	Desktop Grid Adoption
	Grid Application Development
	Quality of Service
	Scheduling Policy
	Limitations of Jini and JXTA
	Research Gap

	Infrastructure Awareness System
	Summary

	II The Mini-Grid Framework
	The Mini-Grid Framework
	Motivations and Design Objectives
	Design Objectives
	Conceptual Architecture of the Mini-Grid Framework
	Concepts
	Conceptual Architecture

	Task Scheduling Model
	Resource Discovery and Selection
	Auction Mechanisms
	Task Distribution Protocol

	Module Architecture View
	Resource Consumer - Module View
	Resource provider - Module view

	Execution Architecture View
	Task Submission
	Bid Submission
	Winning / Loosing the Auction
	Remote Task Execution
	Providing Results

	Summary

	Context-Awareness for Quality of Service
	Context-Awareness for Task and Resource Modeling
	Context Definition and Classification
	Context Modeling Techniques
	Context Modeling Using Ontology

	Ontology Design
	Motivation Scenarios
	Competence Questions
	Object Oriented Data Model

	Context Modeling
	Resource Modeling
	Task Modeling
	QoS Modeling
	Evaluation

	Context-awareness Sub-system
	Conceptual layers
	Context Management System - Modular View
	Context Management System - Dynamic View.

	Summary

	Programming API
	Sample Application
	Grid Enabling Sample Application
	Distributing Tasks in the Mini-Grid Environment
	Providing Results
	Participating in Mini-Grid - Resource Provider

	Defining Context
	Defining resource context
	Defining task context

	Framework Extension
	Defining a Context Monitor
	Defining a Context Interpreter
	Defining query template
	Defining Bid
	User Defined Bidder

	Mini-Grid Enabling Application Toolkit
	Grid Enabling Algorithm
	User Interface Changes

	Summary

	III Evaluation and Discussion
	Experimental Evaluation
	Experimental Setup
	Application
	Testbed

	Average Completion Time
	Overhead
	The Auction Overhead
	The data transfer overhead
	The Context Processing Overhead

	Speed-up
	Discussions
	Mini-Grid vs Globus
	Mini-Grid vs Entropia
	GridFTP vs TCP
	Semantic Vs Keyword Based Matchmaking
	Conclusion

	PPfold Lab Deployment
	Application
	Testbed
	Distributing PPfold in Mini-Grid
	Theoretical Speed-up
	Experimental Results

	Summary

	Simulation
	The architecture of the simulator
	Desktop Grid Configurations
	Workloads
	Validation of Simulation Results
	Results and Discussion
	Impact of Resource Failures on Scheduling
	Impact of Multiple Resource Consumers

	Summary

	Real-World Usage and Deployment at a Biology Lab
	CLC Bio Workbench and Framework Integration
	Real-World Applications
	The BLAST Algorithm
	PPfold Algorithm
	CLC Bio Workbench and Application Integration

	Plugin Installation
	Deployment Challenges
	Deployment Aim
	Deployment Process

	Deployment Execution
	Application Specific Setup
	Application Deployment

	Deployment
	Deployment Period
	Deployment Environment

	Learning from the Field
	The First Deployment
	The Second Deployment

	Results and Discussion
	Dynamic Resource Participation
	Symmetric Resource Participation
	Support for Heterogeneous Resource Participation
	Ad hoc Mini-Grid Formation
	Deployment Effort

	Summary

	IV Conclusion
	Conclusion
	Future Work

	V Appendices
	Appendix Mini-Grid Messaging System
	Layers of Messaging System
	Messenger Component
	Transport Component
	Communication Component

	Appendix The Mini-Grid Protocol
	Mini-Grid Message Header
	Mini-Grid Message Payloads
	BidSubmissionNotification
	TaskWinnerNotification
	TaskWinnerAcknowledgement
	TaskCompletionNotification
	TaskCompletionAcknowledgement
	ExceptionNotification
	Message Sequence in Operations
	Task Scheduling Operation
	Task Execution Operation

	Appendix Installation of Globus - An Experience

